用户名: 密码: 验证码:
轮履复合式煤矿井下环境探测机器人设计与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是世界产煤大国,同时也是矿难大国。近十年来,约50,000人因矿难失去生命。矿难发生后,及时有效地进行灾后搜救工作至关重要。但由于事故发生后的矿井巷道包含许多不确定因素和危险因素,对于事故现场的确定有一定的盲目性。如何在72小时黄金救援期内及时、准确地获知事故现场信息、减少井下受困人员的伤亡、提高应急抢险能力、为救援指挥人员提供决策和建议,成为目前研究的重要课题。
     本文根据煤矿井下环境探测机器人的国内外研究现状以及发展趋势,提出一种新型的8自由度煤矿井下环境探测机器人的设计方案。该机器人最大创新在于设计了一种带有四轮驱动装置的三节式对称复合结构,并将摆臂驱动减速机构集成到摆臂单元中。
     本文从机器人的移动机构方案设计、运动性能分析、移动机构设计、结构分析和运动仿真等几个方面展开研究。主要研究工作如下:
     (1)机器人移动机构方案设计。根据现有救灾机器人的典型移动机构,提出轮履复合式移动机构,并结合隔爆、正压防爆和本安防爆等多种防爆技术,设计了机器人移动平台,同时给出机器人主要技术性能指标。
     (2)机器人运动特性分析。运用机器人运动学理论分析了机器人的运动学特性。
     (3)机器人移动机构设计。根据工况和设计要求,计算了机构中关键零部件的尺寸,使用SolidWorks软件对机器人本体结构进行完整的数字样机建模,对模型进行了虚拟装配、干涉检查和质量特性检测。
     (4)机器人结构分析。依据有限元理论,利用SolidWorks Simulation对机器人主要零部件—主驱动轴和履带从动轮进行了静态分析、疲劳分析和频率分析。
     (5)机器人运动仿真。应用ADAMS软件建立了机器人移动机构的虚拟样机模型,并对机器人移动机构进行了运动仿真与分析。
     通过对虚拟仿真结果分析,表明本文设计的机器人本体结构设计合理,各项评测指标均达到设计要求。
China is the biggest coal production country as well as the most coal mine disaster country in the world. Over the past decades, about 50,000 people lost their lives because of mining accidents. It is essential to provide timely and effective search and rescue work after coal mine disaster. However, the confirmation of the accident site is blind in some degree due to the numerous uncertainties and risk factors of the mine tunnel situation. At the present, some works, such as learning the information timely and accurately, reducing casualties trapped under coal mine, improving capability of emergency response and providing decision-making recommendations during the golden period of 72 hours, have became more and more important.
     According to the research situation and development tendency of the coal mine robot at dommestic and overseas, an 8-DOF environment detection robot with wheel-track under coal mine is designed in this thesis. There are two biggest innovations. One is that the device of four-wheel drive and three segmented composite structures are presented. The other is the driven reduction mechanism is integrated into the swinging arm unit.
     This article includes the project design, the analysis of kinematic characteristics, the structural design, the structural analysis, the motion simulation and so on. The main works in this thesis are as follows.
     (1)The project design of the mobile mechanism. Aiming at the existing mobile mechanism of disaster rescue robot, we put forward a wheel-track mechanism, which is combined with isolating explosion positive pressure, explosion-proof and essence safety. The main technical parameters of robot are given at last.
     (2)The analysis of kinematic characteristics. The kinematic characteristics of robot are analyzed.
     (3) The structural design of the mobile mechanism. According to the working conditions and the design requirements, the key part's dimension of the mobile mechanism is calculated. Using the Solid-Works software, a complete digital model of the robot body is accomplished. Moreover, the virtual assembly, the interference check and the quality characteristic test on the model are done.
     (4) The structural analysis of the mobile mechanism. Based on the finite element theory, the main components are analysed through the SolidWorks Simulation software. Including the static analysis, fatigue analysis and frequency analysis as regards main drive shaft and driven belt pulley.
     (5) The kinematic simulation and analysis of mobile mechanism. Applying the ADAMS software, the virtual prototyping model is established. Moreover, the kinematic simulation and analysis of robot are carried out.
     It shows from the simulation results that the structural design of robot is reasonable. Moreover, the evaluation indicators meet the design requirements.
引文
[1]王忠民,刘军,窦智等.矿难救援机器人的研究应用现状与开发[J].煤矿机械,2007,28(11):6-8.
    [2]钱善华,葛世荣,王永胜等.救灾机器人的研究现状与煤矿救灾的应用[J].机器人,2006,28(3):350-354.
    [3]J. Deuel. Rapid Response Investigation of Robots for Post-Accident Safety Assessment [EB/OL]. http://robotics.sandia.gov/minerobot.html/2008-01-17.
    [4]朱华.矿井救灾机器人研究现状及需要重点解决的技术问题[J].徐州工程学院学报,2007,22(6):5-8.
    [5]R. Murphy, J. Kravitz, S. Stover, R. Shoureshi. Mobile robots in mine rescue and recovery [C]. IEEE Robotics & Automation Magazine,2009:91-103.
    [6]S. Hobby. Making miners safer Sandia's Gemini-Scout robot likely to greet future trapped miners before rescuers do [EB/OL]. http://www.sandia.gov/LabNews/101022. html/2010-10-22.
    [7]董春蕾.井下救援机器人成功研制可进行生命探测[EB/OL]. http://news.xinhuanet. com/tech/2009-12/01/content_12569443.htm/2009-12-01.
    [8]矿用井下机器人[EB/OL].http://www.ekaicheng.com/product.cfm?id=3133/2010-10-28.
    [9]宋华.新西兰矿难续:搜索机器人短路.矿用井下机器人[EB/OL].http://news.163. com/10/1124/10/6M8GLPKB00014AED.html/2010-11-24
    [10]A. Wolf, H. B. Brown, R. Casciola, etc. A mobile hyper redundant mechanism for search and rescue tasks[C]. in Intelligent Robots and Systems,2003. (IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference,2003:2889-2895.
    [11]曹冲振,张吉亮,史大光等.煤矿救援机器人头部垂直越障性能研究[J].煤矿机械,2009,30(8):64-66.
    [12]刘建辉,叶静.基于类蜘蛛仿生煤矿救灾机器人步态研究煤矿救援机器人头部垂直越障性能研究[J].辽宁工程技术大学学报(自然科学版),2008,27(6):878-880.
    [13]S. Ali, A. Moosavian, H. Semsarilar, A. Kalantari. Design and Manufacturing of a Mobile Rescue Robot[C]. in Intelligent Robots and Systems,2006 IEEE/RSJ International Conference,2006:3982-3987.
    [14]郭丽峰,陈恳,赵旦谱等.一种轮腿式变结构移动机器人研究[J].制造业自动化,2009,31(10):1-6.
    [15]徐春浩.河南理工大学“矿用救灾蛇形机器人”诞生记[EB/OL]. http://www.aqsc.cn/ 101807/101922/142901.html/2009-12-21.
    [16]王忠民.灾难搜救机器人研究现状与发展趋势[J].现代电子技术,2007,30(17):152-155.
    [17]李允旺,葛世荣,朱华.摇杆式履带悬架的构型推衍及其在煤矿救灾机器人上的应用[J].机器人,2010,32(1):25-33.
    [18]Y. W. Li, S. Ge, H. Zhu, etc. Mobile platform of rocker-type coal mine rescue robot[J]. Mining Science and Technology,2010,20(3):466-471.
    [19]J. Y. Gao, X. H. Gao, W. Zhu, etc. Coal Mine Detect and Rescue Robot Design and Research.in Networking, Sensing and Control,2008. ICNSC 2008. IEEE International Conference on,2008:780-785.
    [20]J. Y. Gao, X. H. Gao, J. G. Zhu, etc. Coal Mine Detect and Rescue Robot Technique Research. in Information and Automation,2009. ICIA'09. International Conference on, 2009:1068-1073.
    [21]Y. B. Li, C. H. Li, P. Chen. Research and Design of Control System for a Tracked SAR Robot Under Coal Mine. in Proceedings of the IEEE International Conference on Automation and Logistics,2009:1957-1961.
    [22]葛世荣,李允旺,朱华.用于煤矿井下搜救作业的隔爆型机器人平台[P].中国专利:201179899,2009-1-14.
    [23]GB3836.1-2000,爆炸性气体环境用电气设备[S].北京:中国标准出版社,2000.
    [24]Y. Nakamura. Advanced Robotics, Redundancy and Optimization[M]. Addsion-Wesley Publishing Company, New York:1991.
    [25]田浩.煤矿救援机器人运动控制与系统研究[D].西安:西安科技大学,2009.
    [26]冯虎田,欧屹欧,高晓燕.小型地面移动机器人特殊运行姿态动力学建模与分析[J].南京理工大学学报,2006,30(4):486-490.
    [27]肖俊君.多姿态便携式履带机器人设计与分析[D].长沙:国防科学技术大学,2006.
    [28]李允旺,葛世荣,朱华.摇杆式履带悬架的构型推衍及其在煤矿救灾机器人上的应用[J].机器人,2010,32(1):25-33.
    [29]T. Y. Guo, C. H. Zheng, Z. J. Du, etc. Research on Obstacles Avoidance Technique of Mine Exploration and Rescue Robot Based on Fuzzy Reasoning.in Fuzzy Systems and Knowledge Discovery,2009. FSKD'09. Sixth International Conference on,2009:396-399.
    [30]W. D. Wang, Z. J. Du, L. N. Sun. Obstacle Performance Analysis of Mine Research Robot Based on Terramechanics. in Proceedings of the 2007 IEEE International International Conference on Mechatronics and Automation,2007:1382-1387.
    [31]赵罘,龚堰珏,张云杰等,编著.SolidWorks 2010从入门到精通[M].北京:科学出版社,2010-04.
    [32]成大先.机械设计手册(第五版)[M].北京:化学工业出版社,2008-01.
    [33]罗善明,余以道,郭迎福等,编著.带传动理论与新型带传动[J].北京:国防工业出版社,2006-02.
    [34]机械工程学会,中国机械设计大典编委会编著.中国机械设计大典[M].南昌:江西科学技术出版社,2006-02.
    [35]二代龙震工作室编著.SolidWorks 2009高级设计(第二版)[M].北京:清华大学出版社,2009-08.
    [36]宋志安,于涛,李红艳等,编著.机械结构有限元分析—ANSYS与ANSYS Workbench工程应用[M].北京:国防工业出版社,2010-06.
    [37]李大磊,赵玉奇,张志林,主编.SolidWorks 2009高级功能与工程应用[M].北京:北京邮电大学出版社,2009-08.
    [38]陈立平,张云清等,编著.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005-01.
    [39]李增刚,编著.ADAMS入门详解与实例[M].北京:国防工业出版社,2006-04.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700