用户名: 密码: 验证码:
风化和降雨作用下软岩边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山体滑坡是山区常见的自然灾害,其危害性很大,常造成生命财产的重大损失,给人们的生产生活带来巨大威胁。
     滑坡的发生离不开自身的地质条件和岩土体结构条件,风化作用是岩土体强度降低的主要因素,降雨是诱导边坡滑坡的最主要因素。因此研究岩土体在风化作用下的强度发展变化规律,探讨降雨对风化边坡稳定性的影响,具有重要的现实意义和工程价值。
     本文以福州至银川高速公路十堰段的隧道边坡实际工程为依托,以十堰地区阳南沟公路隧道进口边坡为落脚点,通过岩土体室内外物理力学试验,考察了阳南沟风化软岩边坡的地质条件和岩土体的强度条件,在探讨风化的时间、深度效应规律的基础上,提出了符合阳南沟风化软岩边坡强度随深度变化的Boltzmann函数方程,根据十堰市降雨特征,考察了降雨对阳南沟风化边坡的影响,主要研究成果如下:
     1、阳南沟隧道进口边坡母岩为绢云母绿泥石片岩,为软岩,强度低,易风化,且片理和裂隙发育。全风化片岩残积土为角砾碎石土,细颗粒部分塑性指数为9.5,小于10,具有粉土的性质。表层残积土直剪试验显示,其粘聚力分布于13~20kPa,内摩擦角约为30°,饱和后强度更低。采用中国科学院武汉岩土力学研究所与香港大学联合研制的应变控制式大型现场和室内两用直剪设备,对阳南沟边坡进行了全风化岩残积土现场大型直剪试验。试验显示全风化残积土大型直剪试验的应力应变曲线为应变硬化曲线,剪切面上具有明显风化片岩残留,具有方向性,试样保留有一定的原岩结构性特征。
     2、利用中国科学院武汉岩土力学研究所研制的RMT-150C岩石力学试验系统,采用横观各向同性本构模型对该边坡绢云母绿泥石片岩进行了各向异性试验研究。研究表明该片岩具有明显的各向异性特征,平行片理方向抗压强度、变形模量均较大,试样整体变形小,垂直片理面方向抗压强度、变形模量均较小,试样整体变形较大。平行向与垂直向各参数比值,极限抗压强度比c/c'为2.44,弹性模量比E/E '为3.86,泊松比之比v/v '为1.26,剪切模量比为G/G '为4.10。当弹性模量比E/E '大于3时,便可以用更为简化的弹性方程G ' E '/2(1v')代替圣维南经验方程。平行片理加载,试样多为具有裂纹尖端的Ⅰ劈裂破坏,垂直片理面加载,试样多为剪切破坏。
     3、岩体风化具有时间和深度效应,表现在时间和深度上岩体强度的逐渐变化上,目前缺乏对风化演变过程的探索研究,本文将风化结果看成是光照温度场、大气降雨渗流场影响的集合,据此探索性的建立了岩体风化强度降低过程的渐变性函数方程,利用片岩的干湿循环试验验证了该方程的有效性;探索性的提出了风化深度效应的Boltzmann函数方程,并利用阳南沟钻孔资料、直剪试验、风化过渡层岩石点荷载试验、新鲜岩石单三轴试验的成果,验证了该深度效应方程的有效性,对方程的参数取值进行了探讨。
     4、根据十堰地区降雨特征,采用了两种雨型对阳南沟边坡进行了渗流分析,结果表明,降雨会造成边坡表层土体含水量增加,基质吸力下降,坡脚水位上升。随着降雨的进行,边坡土体孔隙水压力、体积含水率、水力传导系数在逐渐增大,在降雨停止后又逐渐减小;边坡表面最先受到降雨作用的影响,随着高程的降低,下层土体孔隙水压力、体积含水率和水力传导系数开始依次增大,沿高程的降低存在滞后效应。边坡稳定性随降雨的进行而减小,降雨结束后又开始增大,具有滞后性,强降雨对边坡稳定性影响较大。
     以上研究成果消除了风化分带来的地层分界面上强度的突变性,可以为研究岩体的风化效应提供参考,为降雨下边坡的失稳提供预报,为边坡的合理设计和有效防护提供决策依据。
The landslides are common natural disasters in mountainous areas. The landslidesmay often cause great loss of life and property, and often threaten the people's productionand living.
     The landslides cannot come into being without their own geological conditions androck soil structure conditions, weathering is the main factor in decrease of rock massstrength, and at the same time, the rainfall is the main induced factors of landslide. Sothere are important practical significances and engineering values to study rock massstrength development in weathering and slope stability under rainfall infiltration.
     The paper is based on the tunnel slope of Shiyan section coming from Fuzhou toYinchuan expressway, and focused on Yangnangou tunnel slope. The geologicalconditions and rock mass strength condition were mainly studied by indoor and outdoorphysical mechanics experiment on weathered rock mass, the strength-depth Boltzmannfunction was established. According to the characteristics of rainfall in Shiyan area, therainfall influence to the weathering slope is studied. Main results are as follows:
     (1)The lithology for the slope is serictie chlorite schist, which is soft rock, with thelow strength and Schistosity and fracture, and may easily weathered. The full weatheredrock residual soil is belong to gravel soil, the plasticity index of fine particle part soil is9.5, less than10, there is some property of silt. The direct shear test result of residual soilwas that the cohesive value was from13KPa to20KPa and friction angle value was about30degree, the value reduced when soil saturated. The large scale in-situ direct shear testwas carried out using the instrument developed by the Chinese academy of sciences,Wuhan rock mechanics research institute and Hong Kong University. The result of testshow that, the stress strain curve is the strain hardening type, the original rock structuralcharacteristics can be seen form the weathered rock residual soil.
     (2)Based on transversely isotropic model, anisotropic properties of serictie chloriteschist were studied, using rock mechanics test machine RMT-150C, developed byInstitute of Rock and Soil Mechanics, Chinese Academy of Sciences. The strength andelastic modulus parallel to foliations was higher than that vertical to foliations, The Ultimate compressive strength ratio (c/c') was2.44, it showed great different withlayered rock for the ratio was usually about1.0. Five elastic constants of transverselyisotropic rocks showed obvious anisotropic property. The elastic modulus ratio (E/E ')was3.86, the Pionsson’s ratio (v/v ') was1.26. As the Poisson’s ratio v 'is usuallyabout0.2, so when E is more than three times of E ', the Saint-Venant’s empiricalequation can be take place by a simple elastic equation G ' E '/2(1v'). Under parallelcompression, tension-split happened along foliations and rod press-bent failure was easilycaused by Poisson effect. Under vertical compression, tension-shear failure was easilycaused along lateral direction.
     (3)The strength of rock gradually changed under weathering, the weathering hasthe time and depth effect. The exploration research on weathering evolution process isvery lack, for weathering is caused by temperature and rainfall infiltration, rockweathering intensity decreased process was exploratory established using rainfallinfiltration for reference. It was verified by wetting-drying test of rock. Boltzmannfunction was used to express Weathering depth effect, and verified by test. Equations ofparameter selection were discussed.
     (4)According to rainfall characteristics in Shiyan area, two kinds of rainfall wereused for seepage analysis. The result is that, with rainfall infiltration water content willincrease, the matrix suction will decline, and water level will rise at the feet of slope.Pore water pressure, volatile water content and hydraulic conductivity gradually is risingwith elevation, there is hysteresis effect. The stability of the slope decrease with therainfall, and with hysteresis quality increase after the rain, heavy rainfall has greaterinfluence on the slope stability.
     The results eliminate the mutability of strength at the weathering boundary surface,which can be referenced for weathering effect, and can be useful for forecast of rainfalllandslide, making reasonable design and effective protection.
引文
[1] Heim, Albert. Der Bergsturz von Elm. Deutsch[J]. Geol Zeitschr,1882,34:74-115.
    [2] Kent P E. The Transport mechanism in catastrophic rock falls[J]. Geology,1966,74(1):79-83.
    [3]山田刚二,渡正亮,小桥澄治.地すべり·斜面崩坏の実态と对策[M].东京:山海堂,1971.
    [4]王恭先,徐峻龄,刘光代等.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [5]全国地质灾害通报(2008)[EB/OL].中国地质环境信息网,2009-7-29.
    [6]李媛,孟晖,董颖,等.中国地质灾害类型及其特征—基于全国县市地质灾害调查成果分析[J].中国地质灾害与防治学报,2004,15(2):29-34.
    [7]钟立勋.中国重大地质灾害实例分析[J].中国地质灾害与防治学报,1999,10(3):1-10.
    [8] Winkler E M. Stone: Properties, Durability in Man’s Environment[M]. New York:Sptinger-Verlag.,1973.
    [9] Fookes P G, Gourley C S, Ohikere C. Rock Weathering in engineering time[J].Quarterly Journal of Engineering Geology,1988,21(1):33-57.
    [10] Deere D U. Technical description of rock cores[J]. Rock Mechanics EngineeringGeology,1964,1(1):16-22.
    [11]杜时贵,王思敬.岩石质量指标(RQD)的方向异性分析[J].工程地质学报,1996,4(4):48~54.
    [12]杜时贵,许四法,杨树峰,等.岩石质量指标RQD与工程岩体分类[J].工程地质学报,2000,8(3):351-356.
    [13] Barton N, Lien R, Lunde J. Engineering classification of rock masses for the designof tunnel support[J]. Rock Mechanics,1974,6(4):189-236.
    [14] Bieniawski Z T. Rock mass classification in rock engineering[C]. In Proc. Symp. onExploration for Rock Engineering. Balkema, Rotterdam,1976,97-106.
    [15] Romana M. New adjustment ratings for application of Bieniawski classification toslopes[C]. Proc. ISRM Int. Symp. on the Role of Rock Mech., Zacatecas,1985,49-53.
    [16]姚颖康,周传波,郭廖武,等.龙洞-74m水平采矿巷道围岩稳定性评价[J].矿业研究与开发,2007,27(1):84-86.
    [17]蔡斌,喻勇,吴晓铭.《工程岩体分级标准》与Q分类法、RMR分类法的关系及变形参数估算[J].岩石力学与工程学报,2001,20(增刊):1677-1679.
    [18]李日运,吴林峰.岩石风化程度特征指标的分析研究[J].岩石力学与工程学报,2004,23(22):3830-3833.
    [19]冯庆祖,陈龙,聂德新.岩体风化程度量化分带研究[J].地质灾害与环境保护,2001,12(2):76-79.
    [20]聂德新,韩爱果,巨广宏.岩体风化的综合分带研究[J].工程地质学报,2002,10(1):20-25.
    [21]魏云杰,许模,陶连金,等.峨眉山玄武岩岩体风化分带量化研究[J].湖南科技大学学报(自然科学版),2008,23(3):32-36.
    [22]谭卓英,蔡美峰,岳中琦,等.钻进参数用于香港复杂风化花岗岩地层的界面识别[J].岩石力学与工程学报.2006,25(增1):2939-2945.
    [23]谭卓英,岳中琦,谭国焕,等.金刚石钻进比功及风化花岗岩实时分级研究[J].岩石力学与工程学报,2007,26(增1):2907-2912.
    [24] Lumb P. The variability of natural soils[J]. Canadian Geotechnical Journal,1966,3(2):74-97.
    [25] Lumb P. Probability of Failure in Earth Works[C]. Proceeding of2ndSoutheastAsian Conference on Soil Engineering, Singapore.1970:139-147.
    [26] Vanmarcke E H. Probability modeling of soil profile[J]. Can. Geotech J.1987,24(4):520-535.
    [27] Vanmarcke E H. Random fields: analysis and synthesis[M]. MIT Press, Cambridge,Mass.1983.
    [28] Chowdhurry R N. Simulation of risk of progressive slop failure[J]. Can. Geotech. J.,1992,29(1):94-102.
    [29] Phoon K K, Kulhawy F H. Characterization of geotechnical variability[J]. Can.Geotech. J.,1999,36(4):612-624.
    [30] Phoon K K, Kulhawy F H. Evaluation of geotechnical property variability[J].Can.Geotech.J.,1999,36(4):625-639.
    [31] Wolff T F. Analysis and Desigh of Embankment Dam Slopes: A probabilisticApproach[D]. PhD Thesis of Purdue University, USA.1985.
    [32] Wolff T F. Probabilistic Slope Stability in Theory and Practice[C]. In Uncertainty inThe Geologic Environment: From Theory to Practice, Proceeding of Uncertainty’96.1996,419-433.
    [33] Baecher G B, Christian J T. Reliability and Statistics in GeotechnicalEngineering[M]. John wiley and Sons, New York,2003.
    [34] Ditlevsen. Model uncertainty in structural reliability[J]. structural safety,1982,1(1):73-86.
    [35] Ditlevsen. Uncertainty modeling[M]. McGraw-Hill, New York,1981.
    [36] Wilson H, Tang M. Principles of probabilistic of soil properties[C]. probabilisticcharacterization of soil properties: Bridgen Brtween Theroy and Practice, ASCE,New York,1981,74-89.
    [37] Der K A. Bayes analysis of model uncertainty in structural reliability[C].Proceeding: Third IFIP working conf. on reliability and optimization of structuralsystems, Springer-Verlag, New York,1990,356-370.
    [38] Barton N, By T L, Chryssanthakis P, et al. Predicted and measured performance ofthe62m span Norwegian Olympic Ice Hockey Cavern at Gjovik[J]. Int. J. RockMech. Sci.&Geomech. Abstr.,1994,31(6):617-641.
    [39]吴兴春,王思敬,丁恩保.岩体变形模量随深度的变化关系[J].岩石力学与工程学报,1998,17(5):487-492.
    [40]林达明,尚彦军,孙福军,等.岩体强度参数估算方法研究及应用[J].岩土力学,2011,32(3):837-842.
    [41] Hoek E, Brown E T. Empirical strength criterion for rock masses[J]. J. Geotech.Engng Div., ASCE,1980,106:(GT9),1013-1035.
    [42] SAOKA A A. Observational procedure of settlement prediction[J]. Soils andFoundations,1978,18(4):87-101.
    [43]陈昌富,秦海军.考虑强度参数时间和深度效应边坡稳定性分析[J].湖南大学学报(自然科学版),2009,36(10):1-6.
    [44]刘特洪,林天健.软岩工程设计理论与施工实践[M].北京:中国建筑工业出版社,2001.
    [45] Mark R K, Newman E B. Rainfall totals before and during the storm: distributionand correlation with damaging landslides [A]. Ellen S D,Wieczorek G F. Landslides,floods and marine effects of the storm of January3-5,1982, in the San FranciscoBay Region[C]. California: US Geological Survey Professional Paper1434,1990,17-26.
    [46] Fausto G, Mauro C, Paola R, et al. Landslide striggered by the23November2000rainfall event in theImperia Province, Western Liguria, Italy [J]. EngineeringGeology,2004,73:229-245.
    [47] Dai F C, Lee C F. Frequency-volume relation and prediction of rainfall-inducedland slides[J]. Engineering Geology,2001,59:253-266.
    [48] Brand E W, Premchitt J, Philipson H B. Relantionship between rainfall andlandslides in Hong Kong[C]. Proc.4th Int. symp. Landslides. Torono,1984,377-384.
    [49]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学,1995,16(3):62-69.
    [50]钟荫乾.滑坡与降雨关系及其预报[J].中国地质灾害与防治学报,1998,9(4):81-86.
    [51]林孝松.滑坡与降雨研究[J].地质灾害与环境保护,2001,12(3):1-7.
    [52]黄玲娟,林孝松.滑坡与降雨研究[J].湘潭师范学院学报(自然科学版),2002,24(4):55-62.
    [53]谢剑明,刘礼领,殷坤龙,等.浙江省滑坡灾害预警预报的降雨阀值研究[J].地质科技情报,2003,22(4):100-101.
    [54]张友谊,胡卸文,朱海勇.降雨与滑坡关系研究展望[J].自然灾害学报,2007,16(1):104-108.
    [55]张明,胡瑞林,谭儒蛟,等.降雨型滑坡研究的发展现状与展望[J].工程勘察,2009,(3):11-18.
    [56]李长江,麻士华,李炜.滑坡频度-降雨量的分形关系[J].中国地质灾害与防治学报,2010,21(1):87-92.
    [57]魏丽,郑有飞,单九生.暴雨型滑坡灾害预报预警方法研究评述[J].气象,2006,31(10):3~6.
    [58]陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法[J].岩土力学,1997,18(2):8-12.
    [59]陈善雄,谭新,柳治国.降雨条件下土质边坡稳定性预测预报方法[J].岩土力学,2002,23(增刊):31-36.
    [60]李铁锋,丛青威.基于Logistic回归及前期有效雨量的降雨诱发型滑坡预测方法[J].中国地质灾害与防治学报,2006,17(1):33~35.
    [61]殷坤龙,张桂荣,龚日祥,等.基于Web-GIS的浙江省地质灾害实时预警预报系统设计[J].水文地质工程地质,2003,(3):19-22.
    [62]张玲,黄敬峰,王深法,等.基于GIS的滑坡临界降雨指标的研究[J].浙江大学学报(农业与生命科学版),2003,29(5):493-498.
    [63]黄润秋,徐则民,许模.地下水的致灾效应及异常地下水流诱发地质灾害[J].地球与环境,2005,33(3):1-9.
    [64]刘建华,郭忠印.基于非饱和土理论的公路排水设计方法[J].同济大学学报,2006,34(2):191-195.
    [65] Bishop A W, Donald I B. The experiment study and of partly saturated soil intriaxial apparatus[C]. Proc.5th int. Conf on SMFE,1963,3:1157-1163.
    [66] Lumb P B. Effects of rain storms on slope stability[C]. Proceedings of Symposiumon Hong Kong Soils, Hong Kong,1962,73-87.
    [67] Fredlund D G, Rahardjo H,陈仲颐等译.非饱和土力学[M].北京:中国建筑工业出版社,1997.
    [68] Sammon T,Tsuboyama Y. Pararnetrie study on slope stability with numericalsimaIation inconsideration of seepage proess[C]. In: Proc.6th.Int. Symp. onLandslide. Bell(ed.) Balkema. Rotterdam.1991,539-544.
    [69] Alonso E, Gen S, Lioret A, et al. Effect of rain infiltration on the stability ofslopes[J]. Unsaturated Soils.1995,1:241-249.
    [70]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1997.
    [71] Ng C W, Shi Q. A numerical investigation of the stability of unsaturated soil slopessubjected to transient seepage[J]. Computers and Geotechnics,1998,22(1):1-28.
    [72] Rahardjo H, Li X W, Toll D G, et al. The effect of antecedent rainfall on slopestability[J]. Geotechnical and Geological Engineering,2001,19(3):371-399.
    [73] Lin W W, Lee D J. Liquid saturation profile in capillary suction time filter paper[J].Industrial and Engineering Chemistry Research,2001,40(3):808-821.
    [74] Simms P H, Yanful E K. Measurement and estimation of pore shrinkage and poredistribution in a clay during soil-water characteristic curve tests[J]. CanadianGeotechnical Journal,2001,38(4):741-754.
    [75] Bishop A W, Alpan I, Blight G E, et al. Factor controlling the shear strength ofpartly saturated cohesive soils[C]. ASCE Reasearch Conference on the shaearstrength of cohesive soils. Univ. of Colorado,1960,503-532.
    [76] Gan F K, Fredlund D G, Rahardjio H. Determination of shear strength parametersof unsaturated soil using direct shear test[J]. Canadian Geotechnical Journal.1988,25(3):500-510.
    [77] Daud W R, David J W. A relationship describing the shear strength of unsaturatedsoils[J]. Canadian Geotechnical Journal.1999,36(2):363-368.
    [78] Chen Z H, Fredlund D G, Julian K M. Overall volume change, water volumechange, and yield associated with an unsaturated compacted loess[J]. CanadianGeotechnical Journal,1999,36(2):321-329.
    [79]姚海林,郑少河,陈守义.考虑裂隙及雨水入渗影响的膨胀土边坡稳定性分析[J].岩土工程学报,2001,23(5):606-609.
    [80]李兆平,张弥.考虑降雨入渗影响的非饱和土边坡瞬态安全系数研究[J].土木工程学报,2001,34(5):57-61.
    [81]陈善雄,陈守义.考虑降雨的非饱和土边坡稳定性分析方法[J].岩土力学,2001,22(4):447-450.
    [82]谭新,陈善雄,杨明.降雨条件下土坡饱和一非饱和渗流分析[J].岩土力学,2003,24(3):382-384.
    [83]张华,陈善雄,陈守义.非饱和土入渗的数值模拟[J].岩土力学,2003,24(5):715-718.
    [84]许健聪,尚岳全.降雨作用下碎石土滑坡解体变形破坏机制研究[J].岩土力学,2008,29(1):106-118.
    [85] Sergio D N, Sassa K, Hiroshi F. Failure process and hydrologic response of a twolayer physical model: Implications for rainfall-induced landslides[J].Geomorphology,2006,73:115-130.
    [86]张卓,练继建,杨晓慧.不同降雨强度下岩体边坡的渗流场分析[J].水力发电学报,2006,25(5):27-30.
    [87]中国地质大学,鄂西北地区公路片岩质边坡变形破坏机理及处治技术研究阶段性成果报告[R].湖北十白高速公路建设指挥部,2011.
    [88] Terzaghi K. Theoretical Soil Mechanics[M]. John Wiley. New York,1943.
    [89] Bishop A W, Blight G E. Some aspects of effective stress in saturated and partlysaturated soils[J]. Geotechnique,1963,13(3):177-197.
    [90] Fredlund D G, Morgenstern N R, Widger R A. The shear strength of unsaturatedsoils[J]. Canadian Geotechnical Journal.1978,15(3):313-321.
    [91] Gardner W R. Some steady-state solutions of the unsaturated moisture flowequation with application to evaporation from a water table[J]. Soil Science,1958,85(4):228-232.
    [92] Croney D, Coleman J D, Black W P. Movement and Distribution of Water in Soil inRelation to Highway Design and Performance[J]. Water and Its Conduction in Soils,Highway Res. Board, Special Report, Washington, DC.1958,(40):226-252.
    [93] Brooks R H, Corey A T. Hydraulic properties of porous medium[J].Colorado StateUniversity(Fort Collins), Hydrology Paper,1964,3:1-27.
    [94] Van Genuchten M T. A Closed-form equation for predicting the hydraulicconductivity of unsaturated soils[J]. Soil Science Society of America Journal,1980,44(5):892-898.
    [95] Fredlund D G, Xing A. Equations for the soil-water characteristic curve[J].Canadian Geotechnical Journal,1994,31(4):521-532.
    [96] Fredlund D G. Slope stability analysis incorporating the effect of soil suction[M]. In:Slope Stability. Anderson M G. and Richards New York,1987.
    [97]戚国庆,黄润秋.土水特征曲线的通用数学模型研究[J].工程地质学报,2004,12(2):182-186.
    [98]林宗元.岩土工程勘察设计手册[M].辽宁:辽宁科学技术出版社,1996.
    [99] Green W H, Ampt G A. Studies on soil physics: Flow of air and water throughsoils[J]. J Agric Sci,1911,4(1):1-24.
    [100] Bouwer H. Unsaturated flow in ground water hydraulics [J]. J Hydraul Div AmerSoc Civil Eng,1964,90(5):121~144.
    [101] Gardner W R. Some steady-state solutions of the unsaturated moisture flowequation with application to evaporation from a water table[J]. Soil Science,1958,85(4):228-232.
    [102] Kostiakov A N. On the dynamics of the coefficient of water-percolation in soils andon the necessity for studying it from a dynamic point of view for purposes ofamelioration[J]. Trans. Sixth Comm. Intern. Soil Sci. Soc. Russian.1932, part A:17-21.
    [103] Mezencev V J. Theory of formation of the surface runoff [J]. Meteorologia eHidrologia,1948(3):33-40.
    [104] Horton R E. An approach toward a physical interpretation of infiltration capacity[J].Soil Sci, Soc. Am Proc,1941,5(C):399~417.
    [105] Philip J R. The theory of infiltration: the infiltration equation and its solution [J].Soil Sci,1957,83(5):345-357.
    [106]薛禹群.地下水动力学原理[M].北京:地质出版社,1986.
    [107] Hoek E, Brown E T. Practical estimates of rock mass strength[J]. Int. J. Rock Mech.Min. Sci.1995,34(8):1165-1186.
    [108] Hoek E. Reliability of Hoek-Brown estimates of rock mass properties and theirimpact on design[J]. Int. J. Rock Mech. Min. Sci.1998,35(1):63-68.
    [109] Evert Hoek. Practical Rock Engineering[M]. Netherlands, A.A. Balkema Publishers,2002.
    [110]陆明万,罗学富.弹性理论基础[M].清华大学出版社,Springer出版社,2001.
    [111]张晓霞,周柏卓.正交各向异性材料弹性本构关系分析[J].航空发动机,1997,1:20-25.
    [112] Saint-Venant B. Sur la distribution des e′lasticite′sautour de chaque point d’unsolide ou d’un milieu decontexture quelconque, particulierement lorsqu’ilestamorphe sans etre isotrope[J]. J Math Pures Appl,1863,7–8:353–430(inFrench).
    [113] Claesson J, Bohloli B. Brazilian test: stress field and tensile strength of anisotropicrocks using an analytical solution[J]. Int J Rock Mech Min Sci,2002,39(8):991–1004.
    [114]梁正召,唐春安,李厚祥,等.单轴压缩下横观各向同性岩石破裂过程的数值模拟[J].岩土力学,2005,26(1):57-62.
    [115] Cho J W, Kim H, Jeon S, et al. Deformation and strength anisotropy of Asan gneiss,Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanicsand Mining Sciences,2012,50:158-169.
    [116]陈正洪,孟斌.湖北省降雨型滑坡泥石流及其降雨因子的时空分布、相关性浅析[J].岩土力学,1995,16(3):62-69.
    [117]尹恒.20世纪后30年十堰市暴雨时空分布特征[J].湖北气象,2005(2):18-20.
    [118]章征茂,沈桐立,马月枝.“05.8”十堰大暴雨的数值模拟与诊断分析[J].暴雨灾害,2008,27(1):24-31.
    [119]伊盼盼,牛圣宽,韦昌富.干密度和初始含水率对非饱和重塑粉土土水特征曲线的影响[J].水文地质工程地质,2012,39(1):42-46.
    [120]余沛,柴寿喜,魏厚振,等.不同干密度下玄武岩残积土土水特征曲线分析[J].工程勘察,2012,(7):1-5.
    [121]李志清,李涛,胡瑞林.非饱和土土水特征曲线(SWCC)测试与预测[J].工程地质学报,2007,15(5):700-707.
    [122] Yang H, Rahardjo H, Leon E C, et al. Factors affecting drying and wettingsoil-water characteristic curves of sandy soils[J]. Can. Geotech. J.2004,41(5):908-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700