用户名: 密码: 验证码:
雷电活动及地形地貌对输电线路绕击特性的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济高速增长,电网不断向超/特高压、远距离、大容量的方向发展,输电线路雷电绕击防护问题日渐突出,受到了国内外的广泛关注。输电线路绕击特性的影响因素较多,如雷电活动规律及其特性参数、输电线路的结构参数、地形地貌等。目前有关雷电活动的规律,如先导发展过程的影响机理研究尚不完善;雷电流幅值概率是最重要的雷电特性表征参数之一,规程法给出的计算公式与实测值差异较大;不同地形地貌导致避雷线对导线的屏蔽作用不同,有关工作亟待开展;传统输电线路绕击率计算模型未考虑沿档距方向任意点导线高度的变化,计算结果和实际相比存在一定误差。因此,本文重点研究了雷电活动及地形地貌对输电线路绕击特性的影响,丰富了输电线路雷电屏蔽失效理论,对于线路雷电绕击的防护具有重要实用价值。论文围绕以下几个方面展开:
     研制了火花放电实验装置和放电路径辨识装置,分析了采用高速摄像机拍摄的放电图片,发现并阐述了短间隙火花放电的“阶段”现象,认为短间隙火花放电与雷电梯级先导发展过程存在相似性。研究了针电极间位置改变对放电次数的影响,通过对大量的试验数据进行拟合,找到了下电极被击概率随距离差变化的规律。建立了输电线路雷击模型,仿真研究了输电线路高度变化、电压极性对雷击概率的影响。
     调研了某地区2008年雷电活动分布,以该地区两条500kV输电线路为例,统计分析了各档距落雷数据。通过对比雷电流幅值概率分布的规程DL/T620-1997推荐公式计算结果和实测值,发现二者存在很大的差异。在CIGRE、IEEE Std等给出的雷电流幅值概率计算公式的基础上,通过近10年来雷电参数实测数据拟合得到雷电流幅值概率的计算公式,给出了系数β的变化范围和工程计算的推荐值。
     提出了以电气几何模型为基础的保护弧面、暴露弧面的概念,建立了三维电气几何模型。以导线的高度为变量,给出了绕击率随垂直于线路的截面与杆塔间距离的变化规律及计算式,通过将该计算式沿线路档距方向进行积分,得出单档距三维模型的雷电绕击率计算公式。研究了采用该计算公式后导线高度变化、保护角、雷电流幅值等因素的变化规律,并与电气几何模型做了对比分析。
     建立了山顶、山坡、从山脚到山顶架设等几种典型的输电线路架设方式下绕击跳闸率的分析模型,提出了这几种架设方式下输电线路绕击跳闸率的计算公式。以220kV双避雷线输电线路为例,研究了输电线路处于山脉不同位置时最大绕击雷电流和绕击跳闸率随地面倾角的变化规律。分析了单档距为跨谷地形时不同位置绕击特性的变化情况。
Power grid is continuously developing toward Extra-high Voltage (EHV), long-distance and High-capacity with the high speed development of Chinese economy, thus the shielding failure protection issues of transmission line are gradually outstanding and have been widespread concern at home and abroad. Shielding failure characteristic of transmission line is under affected by many factors, such as, activity regularity and characteristic parameters of lightning, structure parameters of transmission line, topography and geomorphology, etc. At present, lightning activity regularity, such as influence mechanism of discharge selectivity is not sufficiently studied. The probability of lightning current amplitude is one of the most important parameters of characterization, while its calculation result from regulation method existing large difference compared with actual measured value. Different topography and geomorphology leads to the different shielding effect of shielded wire to conductor and this work is necessary to carry out. In addition, because the conductor height in arbitrarily point alone span direction is neglect, the error is existed between the calculation results of current shielding failure model of transmission line and actual data. Thus the key in this paper is to research how lightning activity and topography influence shielding failure characteristic of transmission line, which enriches the lightning shielding failure theory of transmission line and has important practical value for the lightning shielding failure protection. This paper commences around the following aspects:
     Test apparatus are made to produce spark discharge in short gap and identify spark paths. According to the analysis to some spark discharges photos which high-speed video camera take, several stages in spark discharge are discovered and cause of these phenomenons is explained. It also showed comparability of spark discharge and lightning discharge. Then a large number of experiments are fitted on the relationship between the location of point electrode and probability of discharge. The function relationship between the location and discharge probability of point electrode is obtained. Lightning model of transmission line is established, and the influence mechanism of height change of transmission line and voltage polarity to lightning probability is analysed.
     Lightning activity distribution in a certain area has been investigated and lightning strike condition of different span of two500kV transmission lines is analyzed. The distribution of lightning amplitude between actual data and calculation result of recommend formula in regulation DL/T620-1997is compared, and the data showns great difference between them. Formula about Probability of lightning current amplitude is fit based on recommend formulas of CIGRE、IEEE Std. and measured data about lightning parameters through the past10years. The effect of coefficient β on the formula on curves is analyzed and value range of coefficients is given.
     The concepts of protection globoidal and exposure globoidal are presented based on electro geometric model, and a three-dimensional electro-geometric model is built.The conductor height is made variable, change rules of shielding failure rate is obtained which changed with distance between the section vertical to transmission lines and tower. By means of integral to this formula, the formula about shielding failure rate of the whole span spatial model is obtained. The change regularities of conductor height variation, protection angle and lightning current amplitude by taking these calculation formulae are comparatively analyzed with electric geometry method (EGM).
     When transmission lines are installed on the following terrains, such as:the top of the hill, hillside and installed from the mountain foot to mountain top, model analysis model on transmission lines shielding failure trip-out rate is built. Calculation formulae for corresponding shielding failure trip-out rates are derived. Taking220kV transmission line with two overhead ground wires for example, both maximum shielding failure lightning current of transmission line located at different positions of the mountain range and the variation regularity of shielding failure trip-out rate with the dip angle of ground are researched. Finally, the change regularity of shielding failure performance at different positions of single span of transmission line is researched when single span is erected upon valley.
引文
[1]A.C.Liew, P.C.Thum.Comparative studies of lightning performance of a quadruple-ciruit dual voltage 275/132V transmission line design with wooden crossarms [J]. IEEE Transactions on Power Delivery,1993,8(4):1973-1980
    [2]T.E.Mcdermott, T.A.Short, J.G.Anderson. Lightning protection of distribution lines [J]. IEEE Transactions on Power Delivery,1994,9(1):138-152
    [3]P.Chowdhuri.Response of overhead lines of finite length to nearby lightning strokes [J]. IEEE Transactions on Power Delivery,1991,6(1):343-351.
    [4]K.Munukutla, V.Vittal, G.T.Heydt, et al. A practical evalution of surge arrester placement for transmission line lightning protection [J]. IEEE Transactions on Power Delivery,2010,25(3):1742-1748
    [5]维列夏金,吴维韩.俄罗斯超高压和特高压输电线路防雷运行经验分析[J].高电压技术,1998,24(2):76-79.
    [6]秦海波,李琳,赵志斌.输电线路绕击跳闸率的改进电气几何模型[J].电力科学与工程,2009,25(5):16-19.
    [7]舒先民,敖德胜,尹正来.湖北省超高压输变电线路故障跳闸统计分析[J].高电压技术.1999,25(2):76
    [8]寻凯,何成华.绕击是造成湖北区域500 kV线路雷击跳闸的主要原因[J].中国电力,2000,33(6):55-58
    [9]基于暴露弧投影模型的输电线路绕击计算研究[J].水电能源科学,2010,28(6):125-128.
    [10]Bengang Wei, Zhengcai Fu, Haiyan Yuan. Analysis of lightning shielding failure for 500kV overhead transmission lines based on an improved leader progression model [J]. IEEE Transactions on Power Delivery,2009,24(3):1433-1440.
    [11]束洪春,曹璞磷,张广斌等.雷电流波形参数检测视角下±800 kV直流输电线路导线绕击分析[J].高电压技术,2011,37(5):1203-1215.
    [12]王志勇,余占清,李雨.基于先导发展法的特高压直流输电线路绕击特性分析[J].高电压技术,2011,37(9):2178-2184.
    [13]IEEE Guide for Improving the Lightning Performance of Transmission Lines, IEEE Std. 1243-1997.
    [14]谢耀恒,谢伟,谷山强等.应用雷电参数统计分析220 kV同塔双回输电线路绕击 性能[J].高电压技术,2009,35(11):2657-2662.
    [15]中华人民共和国电力工业部.DL/T 620-1997交流电气装置的过电压保护和绝缘配合[S].
    [16]J.L.He, Y.P.Tu and R.Zeng. Numeral Analysis Model for Shielding Failure of Transmission Line Under Lightning Stroke [J]. IEEE Transactions on Power Delivery, 2005,20(2):815-822.
    [17]孙萍,郑庆均,吴璞三等.220kV新杭线Ⅰ回路27年雷电流幅值实测结果的技术分析[J].中国电力,2006,39(7):74-76.
    [18]孙萍,220kV新杭线Ⅰ回线1961~1994年雷击闪络跳闸分析[J].电网技术,2001,25(2):137-141
    [19]H.R.Armstrong and E.R.Whitehead. Field and analytical studies of transmission line shielding [J]. IEEE Transactions on Power Apparatus and Systems,1968,87(1): 270-281.
    [20]G.W.Brown and E.R.Whitehead. Field and analytical studies of transmission line shielding:Part Ⅱ[J]. IEEE Transactions on Power Apparatus and Systems,1969,88(5): 617-625
    [21]A.J.Eriksson. The incidence of lightning strikes to power line [J]. IEEE Transactions on Power Delivery,1987,2(3):871-886.
    [22]A. J. Eriksson. An improved electrogeometric model for transmission line shielding analysis [J]. IEEE Transactions on Power Delivery,1987,2(3):859-870.
    [23]W. Nowak, R. Tarko. Computer Modelling and Analysis of Lightning Surges in HV substations Due to Shielding Failure [J]. IEEE Transations on Power Apparatus and Systems,2010,25(2):1138-1145.
    [24]S.Taniguchi, T.Tsuboi, and S.Okabe. Observation Results of Lightning Shielding for Large-scale Transmission Lines [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2009,16(2):552-559.
    [25]马御棠,吴广宁,张星海等.地形对输电线路最大绕击雷电流的影响[J].2010,(1):29-32
    [26]吴克谦,刘卫红,郭开禄等.负角保护针在降低220kV线路雷电绕击方面的应用[J].江西电力,2007,31(3):21-24.
    [27]王惠忱.雷电绕击机理分析[J],高电压技术,1999,25(3):52-54.
    [28]李瑞芳,吴广宁,曹晓斌等.尖端-尖端的火花放电路径的选择性[J].天津大学学 报.2009,42(6):497-501.
    [29]J.M.K.Macalpine,Qiu D.H.and L.A.Snider. Developing a predictive simulation for lightning paths[C], Proceedings of 6th International Conference on Adwances in Power System Control,Operation and Management, Hong Kong,2003,833-838.
    [30]J.M.K.Macalpine. Prediction of spark paths in a point/two-rod gap in air [J]. IEEE Transations on Dielectrics and electral insulation.2005,12(3):469-476.
    [31]徐勇,汪霄飞,朱英浩,王亚.大气条件对空气间隙放电特性的影响及其数值解析式[J].电工技术学报,2007,22(4):21-26.
    [32]钟连宏,常美生.不同土壤电阻率对雷电放电过程的影响[J].高电压技术,1997,23(1):64-66.
    [33]王巨丰,周世濂,田树军,赵权.基于雷电走向与场强最大方向一致原理的接地导体雷击范围的计算[J].广西电力,2004,(6):39-41.
    [34]王巨丰;周世濂;田树军;赵权.地面上金属接地体高度对雷击选择性的影响[J].高电压技术,2005,31(4):64-65.
    [35]W.S.Harris, On Some Elementary Laws of Electricity [J]., Philosophical Transations of the royal society,1834, (124):213-245
    [36]F. Paschen, Ueber die zum funkenubergang in luft, wasserstuffund kohlensaure bei verschiedenen drucken erforderliche potential differenz[J], Annual Review of Physical Chemistry,1889,. (37):69-96
    [37]N. L. Aleksandrov, E. M. Bazelyan. Simulation of Long streamer Propagation in air at Atmospheric Pressure.[J], Journal of Physics D:Applied Physics,1996,29(3):740-752
    [38]I. Fofana,A. Beroual. A Predictive Model of the Positive Discharge in Long Air Gaps under Pure and Oscillating Impulse Shapes [J]. Journal of Physics D:Applied Physics, 1997,30(11):1653-1667.
    [39]G. V. Naidis. Simulation of Streamer-to-spark Transition in Short Non-uniform Air Gaps[J]. Journal of Physics D:Applied Physics,1999,32(20):2649-2654.
    [40]I. Fofana and A. Beroual. Modelling of Leader Current with an Equivalent Electrical Network[J], Journal of Physics D:Applied Physics,1995,28(2):308-313.
    [41]N. Yu, Babaeva,G. V. Naidis. Two-dimensional Modelling of Positive Streamer Dynamics in Non-uniform Electric Fields in Air[J],. Journal of Physics D:Applied Physics,1996,29(9):2423-2431.
    [42]D. Djermoune, E. Marode,P. Segur. Two Dimensional Modeling of Streamer Induced Discharges [C], Proceedings of the 22nd International Conference on Phenomena. Ionized Gases, Hoboken, USA,1995,1:33-34.
    [43]S.Taniguchi, S.Okabe, T.Takahashi, T.Shindo. Discharge characteristics of 5m long air gap under foggy conditions with lightning shielding of transmission line[J], IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1031-1037.
    [44]N. L. Niemeyer. A Stepped Leader Random Walk Model[J]. Journal of Physics D: Applied Physics,1987,20(7):897-906.
    [45]A.Borghette, C.A.Nucci, M.Paolone. Estimation of the statistical distributions of lightning current parameters at ground level from the data recorded by instrumented towers[J], IEEE Transactions on Power Delivery,2004,19(3):1400-1409.
    [46]F.Heidler, J.M.Cvetic, B.V.Stanic. Calculation of lightning current parameters [J]. IEEE Transactions on Power Delivery,1999,14(2):399-404.
    [47]J.Takami, S.Okabe. Observational Results of Lightning Current on Transmission Towers [J],2006,22(1):547-556.
    [48]蒲路,杜秦生,杜建忠,郑小川.区域雷电基础参数的统计和分析方法[J].专题论坛,2007,35(4):29-32.
    [49]陈家宏,冯万兴,王海涛等.雷电参数统计方法[J].高电压技术,2007,33(10):6-10.
    [50]周文俊,喻剑辉,陈荣,雷电流全参数及避雷器状态在线监测研究[J],高电压技术,2008,34(10):2054-2058.
    [51]赵文光,文银平,张文亮.雷电定位系统运行数据分析[J],高电压技术,2001,27(5):1-3.
    [52]杜澍春.关于输电线路防雷计算中若干参数及方法的修改建议[J].电网技术,1996,20(12):53-56.
    [53]R.B.Rodrigues, V.M.F.Mendes, J.P.S.Catalao. Lightning data observed with lightning location system in Portugal [J]. IEEE Transactions on power delivery,2009,25(2): 870-875.
    [54]S.M.Chen, Y.Du, L.M.Fan. A lightning location system in china:its performacne and applications [J]. IEEE Transactions on electromagnetic Compatibility, 2002,44(4):555-560.
    [55]S.M.Chen, Y.Du, L.M.Fan. Lightning data observed with lightning location system in Guang-Dong Province, China [J]. IEEE Transactions on Power Delivery,2004,19(3): 1148-1153.
    [56]李进喜,刘达新,魏建苏等ADTD雷电定位监测系统异常情况分析[J].气象科技,2009,37(6):775-778.
    [57]E.Richard, G.Orville, R.Huffines.Cloud-to-ground lightning in the united states:NLDN results in the first decade,1989-98[J].Monthly Weather Review,2001,129:1179-1193.
    [58]樊灵孟,何宏明,钟定珠等.人工引雷试验中雷电流测量分析[J].高电压技术,2000,26(4):50-52.
    [59]王巨丰,齐冲,车诒颖,范李莉.雷电流最大陡度及幅值的概率分布[J].中国电机工程学报,2007,27(3):106-110.
    [60]王巨丰,陆俊杰,彭宇宁.雷电参数的测量及其装置研究[J].电网技术,2009,33(18):162-165.
    [61]E.B.Shim, J.W.Woo, S.O.Han, J.D.Moon. Lightning characteristics in Korea and lightning performance of power systems[C]. Proceedings of the IEEE/PES,2002,1(3): 534-539.
    [62]陈家宏,童雪芳,谷山强,李晓岚.雷电定位系统测量的雷电流幅值分布特征[J].高电压技术,2008,34(9):1893-1897.
    [63]A.N.Carlo, P.Mario. Estimation of the statistical distributions of lightning current parameters at ground level from the data recorded by instrumented towers [J]. IEEE Transactions on power delivery.2004,19(3):1400-1409
    [64]P.Chowdhuir, J.GAnderson, W.A.Chisholm, et al. Lightning and insulator subcommittee of the T&D Committee. Parameters of lightning strokes:A review [J]. IEEE Transactions on power delivery.2005,20(1):346-358.
    [65]I.S.Grant, J.GAnderson, A.R.Hileman, et al. A simplified method for estimating lightning performance of transmission lines[J], IEEE Transaction on Power Apparatus and Systems,1985,104(4):919-932.
    [66]T.Udo. Estimation of lightning shielding failures and mid-span back-flashovers based on the performance of EHV double circuit transmission lines[J], IEEE Transactions on Power Delivery,1997,12(2):832-836
    [67]S.Taniguchi, S.Okabe. A contribution to the investigation of the shielding effect of transmission line conductors to lightning strikes [J], IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(3):710-720
    [68]苏红梅,刘晓冬,魏国平,等.500kV交流同塔四回线路的绕击耐雷性能[J].高电压技术,2007,33(11):205-209.
    [69]寻凯.架空线路防绕击避雷针实用化技术[J].高电压技术.2008,34(6):1301-1305
    [70]邓维,篮磊,文习山,彭旭东.用广义回归神经网络研究输电雷电绕击特性[J].高电压技术.2006,32(5):26-30.
    [71]吴荻,黄家栋,王爱.山区超高压输电线路绕击跳闸率的探讨[J].华北水利水电学院学报,2009,30(3):58-60.
    [72]林峰,林韩国,温步瀛等.基于蒙特卡罗法对输电线路绕击跳闸率的计算与分析[J].福建电力与电工,2008,28(2):5-12.
    [73]F. S. Young, J. M. Clayton, and A. R. Hileman, "Shielding of transmission lines", IEEE Trans. Power Apparatus Syst., Special Supplement, Vol. S82, pp.132-154,1963.
    [74]A. J. Eriksson, "An improved electrogeometric model for transmission line shielding analysis", IEEE Trans. Power Delivery, Vol.2, pp.871-886,1987.
    [75]A. J. Eriksson, "An improved electrogeometric model for transmission line shielding analysis," Trans. Power Delivery, vol.2, no.3, pp.859-870,1987.
    [76]L. Dellera and E. Garbagnati, "Lightning strokes simulation by means of the leader progression model, Part I:Description of the model and evaluation of exposure of free-standing structures", IEEE Trans. Power Delivery, Vol.5, pp.2009-2022,1990.
    [77]F.A.M. Rizk, "Modeling of transmission line exposure to direct lightning strokes", IEEE Trans. Power Delivery, Vol.5, pp.1983-1997,1990.
    [78]L. Dellera and E. Garbagnati, Lightning stroke simulation by means of the leader progression model. II. Exposure and shielding failure evaluation of overhead lines with assessment of application graphs[J]. IEEE Trans. Power Delivery,1990,5(4):2023-2029
    [79]曾嵘,耿屹楠,李雨,等.高压输电线路先导发展绕击分析模型研究[J].高电压技术,2008,34(10):2041-2046
    [80]L. Dellera and E. Garbagnati. Lightning strokes simulation by means of the leader progression model, Part I:Description of the model and evaluation of exposure of free-standing structures [J], IEEE Transations on Power Delivery,1990,5(4):2009-2022.
    [81]E. R. Love, Improvement on lightning stroke modeling and application to design of EHV and UHV transmission lines, M.Sc. thesis, University of Colorado, USA,1973.
    [82]S. Taniguchi, T. Tsuboi, S. Okabe, et al. Improved method of calculating lightning stroke rate to large-sized transmission lines based on electric geometry model [J], IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(1):53-62..
    [83]S. Taniguchi and S. Okabe. A contribution to the investigation of the shielding effect of transmission line conductors to lightning strikes[J], IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(3):710-720.
    [84]S. Taniguchi, T. Tsuboi, and S. Okabe, "Method of calculating the lightning outage rate of large-sized transmission lines", IEEE Transactions on Dielectrics and Electrical Insulation,2010,17(4):1276-1283.
    [85]S. Taniguchi, S. Okabe, T. Takahashi, and T. Shindo. Discharge Characteristics of 5m Long Air Gap under Foggy Conditions with Lightning Shielding of Transmission lines [J], IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4):1031-1037.
    [86]S. Taniguchi, S. Okabe, A. Asakawa, and T. Shindo. Flashover Characteristics of Long Air Gaps with Negative Switching Impulses [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(2):399-406.
    [87]魏本刚,傅正财,袁海燕,等.改进先导传播模型法500kV架空线路雷电绕击分析[J].中国电机工程学报.2008,28(25):25-29.
    [88]张其林,冯建伟,赵中阔等.分形闪电通道模型的建立及其电磁辐射特征[J],大气科学学报,2010,33(6):719-724.
    [89]何金良,张薛巍,董林等.输电线路雷击过程分析的雷电通道分形模型[J],中国科学,2009,39(11):1818-1823.
    [90]Jianbiao Li, Qing Yang, Wenxia Sima, et al. A new estimation model of the lightning shielding performance of transmission lines using a fractal approach [J]. IEEE Transactions on Dieletrics and Eletrical Insulation,2011,18(5):1712-1723.
    [91]司马文霞,李建标,杨庆等.雷电先导分形特性及其在特高压线路耐雷性能分析中的应用[J].高电压技术,2010,36(1):86-91.
    [92]N.I.Petrov, G.N.Petrova, F.D.Alessandro. Quantification of the probability of lightning strikes to structures using a fractal approach [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10(4):641-654.
    [93]伏进,司马文霞,李建标,等.基于分形理论的超特高压线路绕击耐雷性能评估[J].高电压技术,2009,35(6):1274-1278.
    [94]王洪泽.关于山区输电线路雷击跳闸率的计算问题[J].高电压技术,1982, (02):26-32.
    [95]王洪泽.导线和地面临界电场强度不相同时雷电最大击距的计算公式[J].广西电力技术,1996,(2):10-14.
    [96]李如虎.对多雷山区输电线路雷击跳闸的看法[J].中国电力,1982,(09):12-15.
    [97]陈及时.山区送电线路实际雷击跳闸率的分析[J].高电压技术.1995,21(1):77-78.
    [98]袁海燕,傅正财,魏本刚等.综合考虑风偏、地形和工作电压的特高压交流线路雷电绕击性能[J].电工技术学报,2009,24(5):148-153.
    [99]周远翔,鲁斌,燕福龙.山区复杂地形输电线路绕击跳闸率的研究[J].高电压技术,2007,33(6):45-49.
    [100]王晓彤,施围,刘文泉.改进电气几何模型计算输电线路绕击率[J].高电压技术.1998,24(1):85-87.
    [101]钱冠军,王晓瑜,徐先芝.输电线路绕击分散性的试验研究[J],高电压技术,1998,24(3),17-20.
    [102]孔祥贞,郄秀书,张广庶,张彤.多接地点的梯级先导及回击过程的研究[J],中国电机工程学报,2005,25(22):142-147.
    [103]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [104]章润陆,陆宠惠,李劲波;输电线路绕击率的探讨[J],高电压技术1985,1(9):39-45
    [105]邓世聪,曹宁,冯杰.利用雷电参数划分深圳雷区分布[J],广东电力,2009,22(1):35-39.
    [106]陆国俊1,熊俊,陈家宏.广州地域1999-2008年地闪密度图及雷电参数分析[J],高电压技术,2008,34(12):2930-2936.
    [107]尹丽云,许迎杰,张腾飞.一种新的雷电日及雷电参数统计方法[J],气象科技,2009,37(6):739-744.
    [108]陈水明,何金良,曾嵘输电线路雷电防护技术研究(一):雷电参数[J],高电压技术,2009,35(12):2903-2909
    [109]童雪芳,王海涛,陈家宏,谷山强.雷电定位系统地闪密度分布图与雷击故障相关性分析[J],高电压技术,2008,34(12):2924-2929.
    [110]王海燕,基于雷电定位数据的架空线路雷电参数统计新方法[J],现代电力,2010,27(5):34-37.
    [11 1]樊灵孟,李志峰,何宏明等.雷电定位系统定位误差分析[J].高电压技术,2004,30(7):61-63.
    [112]黄浩辉,宋丽莉.广东省雷电定位数据库查询系统介绍[J].广东气象,2005,(3):32-34.
    [113]陈水明,樊灵孟,何宏明等.广东省雷电定位系统运行情况[J].中国电力,2001,34(12):43-47.
    [114]王城钢,张仲先,潘秀宝,闻集群等.架空输电线路绕击防护的新措施[J].高电压技术,2008,34(3):620-622.
    [115]James T W, William A C. Estimating lightning performance of transmission lines II-updates to analytical models [J]. IEEE Transactions on power delivery,1993,8(3): 1254-1267.
    [116]李晓岚,尹小根,余仁山,何俊佳.基于改进电气几何模型的绕击跳闸率的计算[J].高电压技术,2006,32(3):42-44.
    [117]张志劲,司马文霞,蒋兴良等.超/特高压输电线路雷电绕击防护性能研究[J].中国电机工程学报,2005,25(10):1-6.
    [118]Gordon W.Brown, "Lightning Performance-I Shielding Failures Simplified," IEEE Transations on Power Apparatus and Systems,1978, PAS-97(1):33-38.
    [119]Gordon W.Brown, "Lightning Performance-II Updating Backflash Calculations," IEEE Transations on Power Apparatus and Systems,1978, PAS-97(1):39-52.
    [120]C.L.Fan, G. N.Wu and R.F.Li, "Study on Shielding Failure Flashover Rate for EHV transmission line," International Conference on High Voltage Engineering and Application, China,2008,172-175.
    [121]黄韬,文远芳,陈敏等,基于暴露弧投影模型的输电线路绕击计算研究[J],水电能源科学,2010,28(6):125-128.
    [122]李瑞芳,吴广宁,曹晓斌,等.输电线路雷电绕击率的三维计算方法研究[J].电工技术学报.2009,24(10):134-138.
    [123]贾磊,张桂红,舒亮等.计算输电线路绕击跳闸率的新模型[J].西安交通大学学报,2007,41(2):223-227.
    [124]James T W, William A C. Estimating lightning performance of transmission lines II-updates to analytical models[J]. IEEE Transactions on power delivery,1993,8(3): 1254-1267.
    [125]王云飞.输电线路雷击选择性及其影响因素的研究[D].西南交通大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700