用户名: 密码: 验证码:
川西中二叠统栖霞组白云岩形成机制及其与川东北下三叠统飞仙关组对比
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川盆地西部二叠系的碳酸盐岩有良好的勘探前景,尤其是栖霞组二段的白云岩储层,是继四川盆地长兴组、飞仙关组和石炭系白云岩储层之后的勘探开发潜力储层。对于四川盆地西部下二叠统白云岩的成因,由于沉积背景总体上为海侵背景,缺乏蒸发岩沉积,与蒸发作用相关的白云岩化模式不适用,而混合水成因模式在近年来受到广泛的质疑。因此,有必要根据白云岩的特征及地质背景,研究适用于该区的白云岩成因机制,为白云岩储层分布预测提供合理的地质模型。川东北地区下三叠统飞仙关组白云岩的成因及其机制前人做了大量的工作,理论上已非常地成熟和完善。因此从川东北飞仙关组白云岩的岩石结构特征、地球化学特征、流体温度和盐度、白云岩成因机制和白云化模式与川西地区栖霞组白云岩做相应的对比,进一步说明川西栖霞组白云岩的形成机制。
     前人对四川盆地基础地质工作的研究,诸如构造、沉积相、岩相古地理、成岩作用等方面的研究是我们的工作得以深入的基础。通过具体的室内外工作,从野外剖面实测、岩心观察、采样、磨样、薄片鉴定、阴极发光分析、电子探针分析、扫描电镜分析、能谱测试、碳氧同位素分析、X衍射分析、包裹体均一温度测试这些方法来获得栖霞组白云岩的岩石学及地球化学特征,并由此科学地反演白云化流体的性质及白云岩成因机制。
     栖霞组白云岩类型单一,只有一种结晶白云岩,缺乏代表原始沉积的泥晶—微晶白云岩和膏盐沉积。白云岩的微量元素Mn、Fe、Sr含量的变化,相对于先驱灰岩来说表现为Mn、Fe含量增加,Sr含量降低。白云岩的Mn含量28.4~117ppm,Fe含量199.4~381.4ppm,Sr含量35.9~110.5ppm。除宏观的地表剖面和岩心常见的黄铁矿、沥青之外,借助薄片鉴定、扫描电镜、能谱测试等方法和手段,观察到栖霞组白云岩中存在较多的热液矿物,石英、萤石、伊利石、重晶石、磷灰石充填于白云石溶蚀的孔、洞中,还可见在过度白云化使岩石致密后,鞍形白云石溶蚀、破碎,又在其中沉淀方解石。栖霞组白云岩具有典型的晶面弯曲的鞍形白云石,在正交偏光下呈波状消光。且具有溶蚀、垮塌角砾化等特征,这些特征总与热液相伴。
     栖霞组白云岩及伴生灰岩的δ13C(PDB)值分布在-0.66~3.84‰,白云岩的δ18O值介于-3.42~9.16‰,反映白云化的流体是海源流体。白云石基质包裹体均一温度67~243℃,鞍形白云石包裹体均一温度91~223℃,方解石包裹体均一温度54~215℃,从包裹体均一温度来看,白云石沉淀的温度至少比方解石沉淀高出10℃以上。包裹体均一温度高达243℃,远不是仅埋藏条件能够达到的温度。
     据氧同位素和包裹体均一温度反演白云化流体与方解石沉淀的流体,白云石基质、孔洞白云石及鞍形白云石胶结物对应的流体的氧同位素主要在0~12‰(SMOW),少数的几个样品对应的流体氧同位素在-4~0‰(SMOW)区间,有2个样品(1个为白云石基质,另1个为鞍形白云石胶结物)投点在12~13.5%之间。对方解石的氧同位素及其包裹体均一温度投点,与白云石投点结果相似,流体的氧同位素主要投在-4~0‰(SMOW),0~8‰(SMOW),12~14.5‰(SMOW)之间,记录了50~100℃,100~170℃,190~250℃这几个沉淀期次。从反演的流体氧同位素来看,流体的盐度高于甚至远远高于同期海水。二叠纪同期海水87Sr/86Sr比值介于0.7085~0.7067之间,白云岩的87Sr/86Sr比值介于0.7076~0.7069之间,接近而略低于同期海水。热史演化记录了中、晚二叠世这一异常的热事件,在中二叠世末、晚二叠世初,大约在259Ma,古热流值达到极值,晚二叠世后热流值持续降低。白云化流体是受异常热事件“烘烤”的高温、高盐度的近同期海源流体。
     结晶白云岩是川东北地区下三叠统飞仙关组的主要白云岩类型,也存在一些原始结构保存的粒屑白云岩和微晶白云岩。川东北地区白云岩具有低Mn(平均63.47ppm)、Fe含量(平均1019.67ppm),较高Sr含量(132.38ppm)。结晶白云岩具有较高的Sr含量,尤其是与其伴生的方解石胶结物具有很高的Sr含量;碳同位素接近同期海水的δ13C值;流体的氧同位素值δ18O值较高2~7‰(SMOW);87Sr/86Sr比值高于相应的同期海水,从长兴组、飞仙关组、嘉陵江组和雷口坡组,白云岩的锶同位素比值与同期海水的锶同位素比值的差值越来越小,白云化流体逐渐趋向于完全同期的海水;包裹体均一温度较高介于85.85~142.24℃);包裹体盐度较高(3.01~12.61%NaCl,大致是海水盐度的2倍以上)。因此,飞仙关组白云化流体是一种海源流体,来源于蒸发浓缩向下渗透回流的嘉陵江期海水,白云化时间出现在相对深埋藏条件下相对封闭的成岩系统中,是深埋藏条件下盐水的渗透机制。
Dolomite reservoir in Qixia Formation, Middle Permian, Western Sichuan Basinhas well exploration potential, cause depositional setting is marine transgression,lacking of evaporate rocks deposition, evaporation dolomitization is not applicable,while mixed water dolomitization are being questioned for the past few years. So it isnecessary to research the dolomitization mechanism and mode in this area, based onthe geological background and dolomite character. Researchers had done lots ofdetailed work about dolomite genesis and mechanism of Feixianguan Formation inNortheastern Sichuan Basin, which is approximate to technically maturation andtheoretically perfect. That’s why using dolomite of Qixia Formation contrast toFeixianguan Formation, incluing the following aspects: rock fabric, geochemicalcharacteristic, fluid inclusion homogenization temperature and salinity, dolomitegenesis and dolomitization mode, to make further explanation of dolomite genesis ofQixia Formation.
     On the basis of our predecessors’ work on basic geology, such as tectonic,sedimentary facies, lithofacies paleogeography, diagenesis, etc. We gainedtremendous depth and insight form all of those work and influenced us to achievedgreat results. Using a series of methods to gain rock fabric and geochemicalcharacteristic, included field section measurement, core observation, sampling,ground sample, thin section examination, cathodoluminescence analysis, electronmicroprobe analysis, scanning electron microscopy analysis, energy spectrum analysis,carbon and oxygen isotopic analysis, x-ray diffraction analysis, fluid inclusionhomogenization temperature test, to invert dolomitization fluid and dolomite genesis.
     The category of Qixia Formation dolomite is very mono, there is only one singlecrystalline dolomite, lack of micrite dolomite, and also lack of gypsum deposition.Trace element of dolomite changed contrast to pioneer limestone, showing the contentof Manganese (28.4~117ppm) and Ferrum (199.4~381.4ppm) increase, Sr(35.9~110.5ppm) decrease. Cause Pyrite and bitumen can often be seen at outcrop andcore, with the benefit of thin section examination, scanning electron microscopyanalysis, energy spectrum analysis, etc., there also have many hydrothermal mineralsdeposited in dolomite of Qixia Formation. These hydrothermal minerals includingquartz, fluorite, illite, barite and apatite filled in the corroded pores and vugs.Over-dolomitization means that the dolomite precipitated in the pores and vugs andthus made the rock more compact. After that the saddle dolomite dissolution, calciteprecipitate in the pores and vugs formed by dolomite dissolution. Dolomite of QixiaFormation has typical saddle crystal morphology and curved crystal faces, and appearwavy extinction in thin section under crossed-polarized light, also has dissolution,brecciation, all these features are associated with hydrothermal fluid.
     The δ13C(PDB) of dolomite and limestone of Qixia Formation lie in the range of-0.66~3.84‰, the δ18O(PDB) of dolomite lie in the range of-3.42~9.16‰,reflectingthe fluid comes from marine. Homogenization temperature of matrix dolomite fluidinclusions show a range of67~243℃, homogenization temperature of saddle dolomitein a range of91~223℃, and the homogenization temperature of calcite in a range of54~215℃, demonstrating that the temperature dolomite precipitated higher more than10℃than calcite precipitated. And the homogenization temperature reach up to243℃,which is not only the burial condition can be reached.
     Adopting oxygen isotope of minerals and the homogenization temperature offulid inclusions to invert the oxygen isotope of fluid. The δ18O of fluid correspondingwith matrix dolomite, void-filling dolomite and saddle dolomite lie in the range of0~12‰(SMOW), the δ18O of few samples’ corresponding fluid lie in the range of-4~0‰(SMOW), and there are2samples’(one is matrix dolomite, the other is saddledolomite) δ18O of fluid lie in the range of12~13.5%(SMOW). The δ18O of fulid thatcalcite precipitate lie in the range of-4~0‰(SMOW),0~8‰(SMOW),12~14.5‰(SMOW), and recorded the multi-periods of50~100℃,100~170℃,190~250℃, and the salinity of fulid is higher or much higher than the coeval seawater.The87Sr/86Sr ratios of coeval sewater in Permian lies in0.7085~0.7067, while the87Sr/86Sr ratios of dolomite of Qixia Formation lies in0.7076~0.7069and is lowerthan the coeval seawater. Thermal history recorded the temperature anomaly between Middle and Late Permian, the maximum paleo-heat flow reached in the early stage ofLate Permian at approximately259Ma, after that the paleo-heat flow decreased topresent. Meaning the dolomitization fluid mainly derived from the coeval seawaterwhich influenced by the abnormal heat.
     The crystalline dolomites are the mainstream dolomite phases in FeixianguanFormation of Lower Triassic, Northeastern Sichuan Basin. And there also exist somefabric-retentive dolomitic grainstones and micritic dolomites. The dolomites inNortheastern Sichuan Basin have low manganese contents (average of63.47ppm),low Ferrum contents (average of1019.67ppm) and high strontium contents (averageof132.39ppm). The crystalline dolomite phases have high strontium contents, and theassociated calcite cements have extreme high strontium contents. The δ13C values areclose to the compositions of coeval seawater. The precipitating fluids of thesedolomite phases have the relatively high δ18O values (ranges between2to7‰;SMOW), and have the higher87Sr/86Sr ratios than the ratios of coeval seawater. Fromthe earlier Changxing Formation to the later Leikoupo Formation, the differencesbetween strontium isotope ratios of dolomites and of coeval seawater decreasedgradually. The precipitating fluids of dolomites were getting closer and closer tocoeval seawater. The homogenization temperatures of fluid inclusions in dolomitesare high (ranges from85.85to142.24℃). And the salinities of fluid inclusions indolomites are double as much as the salinity of seawater (ranges from3.01to12.61%NaCl). Thus, the dolomitizing fluid is a kind of marine-derived fluid, andoriginated from downward-migrated refluxing evaporated and concentrated seawaterof Jialingjiangian. The dolomitization occurred in a closed diagenetic system duringdeep burial, and was the product of brine infiltration during deep burial.
引文
[1] Adams J F, Rhodes M L. Dolomitization by seepage refluxion[J]. AAPG Bulletin,1960,44:1912-1920.
    [2] Badiozamani K. The Dorag dolomitization model–application to the Middle Ordovician ofWisconsin[J]. Journal of Sedimentary Petrology,1973,43:965-984.
    [3] Badiozamani K. The drag dolomitization model—application to the Middle Ordovician ofWisconsin[J].Journal of Sedimentary Petrology,1973,43:965-984.
    [4] Baltzer F., Kenig F., Boichard R. et al. Organic matter distribution,water circulation anddolomitization beneath the bu Dhabi sabhka (United Arab Emirates)[M]//. In: Purser B. H.,Tucker M. E., Zenger D.H.(eds), Dolomites-A volume in Honour of Dolomieu. InternationalAssociation of Sedimentologists, Special Publications,1994,21:409-428.
    [5] Bissell H.J., Chilingar G. V.1967. Classification of sedimentary carbonate rocks. In:Chilingar G. V., Bissell H. J., Fairbridge R. W.(eds), Carbonate rocks A-Developments insedimentology9A. Amsterdam, Elsevier,87-168.
    [6] Bulter G. P. Holocene gypsum and anhydrite of the Abu Dhabi sabhka, Trucial Coast: analternative explanation of origin[M]//: In: Rau J. L., Dellwig D. F.(eds), Third Symposiumon Salt, Northern Ohio Geological Society, Cleveland, OH,1970,1:120-152.
    [7] Burke W H, Hetherington E A, Koepnick R B, et al. Variation of Seawater87Sr/86Sr throughtphanerozoic time. Geology,1982,10
    [8] Davies G R, Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies:Anoverview[J]. AAPG Bulletin,2006,90:1641-1690.
    [9] Dawans J. M., Swart P. K. Textural and geochemical alternations in Late Cenozoic Bahamiandolomites[J]. Sedimentology,1988,35:385-404.
    [10] Deffeyes K. S., Lucia F. J., Weyl P. K. Dolomitization of recent and Plio-Pleistocenesediments by marine evaporate waters on Bonaire, Netherlands Antilles[M]//. In: Pray L. C.,Murray R. C.(eds), Dolomitization and Limestone Diagenesis. Society of EconomicPaleontologists and Mineralogists, Special Publications,1965,13:71-88.
    [11] Fabricius I. L. Interpretation of burial history and rebound from loading experiments andoccurrence of microstylolites in mixed sediments of Caribbean Sites999and1001[M]//. In:Leckie R. M., Sigurdson H., Acton G. D. Draper G.(eds), Proceedings of the Ocean DrillingProgram, Scientific Results,165, Ocean Drilling Program, College Station, TX,2000,177-190.
    [12] Firechild IJ.Chemical controls of cathodoluminescence of natural dolomites and calcites: newdata an view[J]. Sedimentology,1983,30(4):579-583.
    [13] Friedman G M, Sanders J E. Origin and occurrence of dolostones[M]//Chilingar G V, BissellH J, Fairbridge R W. Carbonate Rocks: Origin, Occurrence, and Classification. Amsterdam:Elsevier,1967,267-348.
    [14] Flügel E.碳酸盐岩微相——分析、解释及应用[M].马永生,田海芹,陈洪德,等译.北京:地质出版社,2007.
    [15] Gregg J. M., Sibley D. F. Epigenetic dolomitization and the origin of xenotopic dolomitetexture[J]. Journal of Sedimentary Petrology,1984(54):908-931.
    [16] Hanshaw B. B., Back W., Deike R. G. A geochemical hypothesis for dolomitization byground water[J]. Economic Geology,1971,66:710-724.
    [17] Hardie L. A. Dolomitization: a critical view of some current views[J]. Journal of SedimentaryPetrology,1987,57:166-183.
    [18] Hodell D A, Mead G A, Mueller P A. Variation in the strontium isotopic composition of seawater (8Ma to present): implications for chemical weathering rates and dissolved fluxes tothe oceans[J]. Chem Geol (Isot Geosci Sect),1990,80:291-307.
    [19] Holser W T, Magaritz M. Events near the Permian-Triassic boundary[J]. Modern Geology,1987,11:155-180.
    [20] Hsu K. J. Siegenthaler C. Preliminary experiments on hydrodynamic movements induced byevaporation and their bearing on the dolomite problem[J]. Sedimentology,1969,12:11-25.
    [21] Jones G. D., Rostron B. J. Analysis of flow constraints in regional-scale reflux dolomitization:constant versus variable-fulx hydrological models[J]. Bulletin of Canadian PetroleumGeology,2000,48:230-245.
    [22] Jones G. D., Smart P. L., Whitaker E. F. et al. Numerical modeling of reflux dolomitization inthe Grosmont platform complex (Upper Devonian), Western Canda SedimentaryBasin[J].AAPG Bulletin,2003,87:1273-1298.
    [23] Jones G. D., Whitaker E. F., Smart P. L. et al. Fate of reflux brines in carbonate platforms[J].Geology,2002,30:371-374.
    [24] Jones G. D., Whitaker E. F., Smart P. L. et al. Numerical analysis of seawater circulation incarbonate platforms: Ⅱ. The dynamic interaction between geothermal and brine refluxcirculation[J]. American Journal of Science,2004,304:250-284.
    [25] Kaufman J. Numerical models of fluid flow in carbonate platforms[J]. Journal of SedimentaryResearch,1994,A64:128-139.
    [26] Korte C, Jasper T, Kozur H W, et al.87Sr/86Sr record of Permian seawater[J]. PaleogeographyPaleoclimatology Paleoecology,2006,240:89-108.
    [27] Korte C, Kozur H W, Veizer J. δ13C andδ18O values of Triassic brachiopods and carbonaterocks as proxies for coeval seawater and palaeotemperature. PaleogeographyPaleoclimatology Paleoecology,2005,226:287-306.
    [28] Korte C, Kozur H. W, Bruckschen P, et al. Strontium isotope evolution of Late Permian andTriassic seawater[J]. Geochemica et Cosmochemica Acta,2003,67:47-62.
    [29] Land L. S. The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125.
    [30] Lee Y I, Friedman G M. Deep-burial dolomitization in the Ordovician Ellenburger Groupcarbonates, west Texas and southeastern New Mexico[J].Journal of Sedimentary Petrology,1987,57(3):544-557.
    [31] Lee Y. I., Friedman G.M. Deep-burial dolomitization in the Ordovician Ellenberger Groupcarbonates, west Texas and southeastern New Mexico[J]. Sediment. Petrol.,1987,57:544-577.
    [32] Lind I. L. Stylolites in chalk from leg130, Ontong Java Plateau[M]//. In: Berger W. H.,Kroenke L. W., Mayer L. A.(eds), Proceedings of the Ocean Drilling Program, ScientificResults,1993,13:445-452.
    [33] Lippman F. Sedimentary carbonate minerals[M].Berlin:Spring-Verlag,1973,150.
    [34] Luczaj J A. Evidence against the Dorag (mixing-zone) model for dolomitization along theWisconsin arch-A case for hydrothermal diagenesis[J]. AAPG Bulletin,2006,90:1719-1738.
    [35] Machel H. G., Lonnee J. Hydrothermal dolomite–a product of poor definition andimagination[J]. Sedimentary Geology,2002,152:163-171.
    [36] Machel H G, Lonnee J. Hydrothermal dolomite—a product of poor definition andimagination[J]. Sediment Geol,2002,152:163-171.
    [37] Machel H. G. Concepts and models of dolomitization: A critical reappraisal. In: BraithwaiteC. J. R., Rizzi G., Darke G.(eds), The geometry and petrogenesis of dolomite hydrocarbonreservoirs. Geological Society (London), Special Publications,235:7-63.
    [38] Machel H. G. Concepts and models of dolomitization: A critical reappraisal[M]//. In:Braithwaite C. J. R., Rizzi G., Darke G.(eds), The geometry and petrogenesis of dolomitehydrocarbon reservoirs. Geological Society (London), Special Publications,2004,235:7-63.
    [39] Machel H. G.,1994. Mountjoy E. W. Dolomitisierung von devonischen Riff-undplatformkarbonaten in West-Kanada[J].Zentralblatt fur Geologie and Palaontologie, TeilⅠ,1993,941-957.
    [40] Machel H. G., Mountjoy E. W. Coastal mixing zone dolomite, forward modeling, andmassive dolomitization of platform-margin carbonates-Discussion[J]. Journal of SedimentaryPetrology,1990,60:1008-1012.
    [41] Magaritz M.13C minima fallow extinction events: A clue to faunal radiation[J]. Geology,1989,17:337-340.
    [42] McArthur J M, Howarth R J, Bailey T R. Strontium isotope stratigraphy LOWESS version3:best fit to the marine Sr-isotope curve for0-509Ma and accompanying look-up table forderiving numerical age[J]. Journal of Geology,2001,109:155-170.
    [43] McArthur J M. Recent trends in strontium isotope stratigraphy[J]. Terra Nova,1994,6:331-358.
    [44] Mckenzie J. A., Hsu K. J., Schneider J. F. Movement of subsurface waters under the sabkha,Abu Dhabi, UAE,and its relation to evaporative dolomite genesis[M]//. In: Zenger D. H.,Dunhum J. B., Ethington R. L.(eds), concepts and Models of Dolomitization. Society ofeconomic Paleontologists and Mineralogists, Special Publications,1980,28:11-30.
    [45] Melim L. A., Swart P. K., Eberli G. P. Mixing-zone diagenesis in the subsurface of Floridaand the Bahamas[J]. Journal of Sedimentary Research,2004,74(6):904-913.
    [46] Melim L. A., Swart P. K., Eberli G. P. Mixing-zone diagenesis: separating fact from theory.In:12th Bathurst Meeting-International Conference of Carbonate Sedimentologist[C].2003,8-10July, Durhum,68.
    [47] Muller D. W., Mckenzie J. A. Mueller P. A. Abu Dhabi sabkha, Persian Gulf, revisited:application of strontium isotopes to test an early dolomitization model. Geology[J],1990,18:618-621.
    [48] Northrop D A, Clayton R N. Oxygen isotope fractionation in systems containingdolomite[J].Journal of Geology,1966,74:174-196.
    [49] Palmer M R, Edmond J M. The strontium isotope budget of the modern ocean[J]. EarthPlanet Scilett,1989,92:11-26.
    [50] Palmer M R, Elderfield H. Sr isotope composition of sea water over the past75Ma[J]. Nature,1985,314:526-528.
    [51] Patterson R. J., Kinsman D. J. Formation of diagenetic dolomite in coastal sabkha along theArabian (Persian) Gulf. AAPG Bulletin[J].1982,66:28-43.
    [52] Pierson BJ. The control of cathodoluminescence in dolomite by iron and manganese[J].Sedimentology,1981,28(5):601-610.
    [53] Popp B N, Podosek F A, Brannon J C, et al.87Sr/86Sr ratios in Permo-Carboniferous Seawater from the analyes of well-preserved brachiopod shells[J]. Geochimica et CosmochimicaActa,1986,50:1321-1328.
    [54] Rozanov A Y. The Precambrian-Cambrian boundary in Siberia[J].Episodes,1984,7:20-24.
    [55] Sibley D. F. and Gregg J. M. Classification of dolomite rock textures. Journal of SedimentaryPetrology,1987,(57):967-975.
    [56] Simms M. Dolomitization by ground water-flow systems in carbonate platforms.Transactions of the Gulf Coast Association of Geological Societies,1984, ⅩⅩⅩⅣ,411-470.
    [57] Smart P. L., Dawans J. M., Whitaker F. F. Carbonate dissolution in a modern mixing zone[J].Nature,1988,335:811-813.
    [58] Ten Have T and Heijnen W. Cathodoluminescence activation and zonation in carbonate rocks:an experimental approach[J]. Geol. Mijnbouw,1985,64(3):297-310.
    [59] Vahrenkamp V C, Stewart P K. A new distribution coefficient for the incorporation ofstrontium into dolomite and its implications for the formation of ancientdolomites[J].Geology,1990,18:387-391.
    [60] Vahrenkamp V. C., Swart P. K. Late Cenozoic dolomites of the Bahamas: metastableanalogues for the genesis of ancient platform dolomites[M]//. In: Purser B. H., Tucker M. E.,Zenger D. H.(eds), Dolomites-A Volume in Honour of Dolomieu. International Associationof Sedimentologists, Special Publications,1994,21:133-153.
    [61] Vahrenkamp V. C., Swart P. K., Ruiz J. Episodic dolomitization of Late Cenozoic carbonatesin the Bahamas: evidence from strontium isotopes[J]. Journal of Sedimentary Petrology,1991,61:1002-1014.
    [62] Veizer J, Ald D, Azmy K, et al.87Sr/86Sr, δ13C andδ18O evolution of Phanerozoic seawater.Chemical Geology,1999,161:59-88.
    [63] Wanless H R. Limestone response to stress-pressure solution and dolomitization[J].Journal ofSedimentary Petrology,1979,49(2):437-462.
    [64] Warren J. Dolomite: occurrence, evolution and economically important associations[J].Earth-Science Reviews,2000,52:1-81.
    [65] White D E. Thermal waters of volcanic origin[J]. Geol Soci Amer Bull,1957,68:1637-1658.
    [66] Wickman F E. Isotope ratios: a clue to the age of certain marine sediments[J]. Geol,1948,56:61-66.
    [67] Wright D T., Wacey D. Sedimentary dolomite[M]//: A reality check. In: Braithwaite C. J. R.,Rizzi G., Darke G.,(eds), The geometry and petrogenesis of dolomite hydrocarbon reservoirs.Geological Society (London), Special Publications,235:65-74.
    [68]陈代钊.构造—热液白云岩化作用与白云岩储层[M].石油与天然气地质,2008,29(5):614-622.
    [69]陈更生,曾伟,杨雨,等.川东北部飞仙关组白云石化成因探讨[J].天然气工业,2005,25(4):40-41+6-7.
    [70]陈锦石,邵茂茸,霍卫国,等.浙江长兴二叠系和三叠系界线地层的碳同位素[J].地质科学,1984,19(1):88-93.
    [71]陈明启.川西南下二叠统白云岩成因探讨[J].沉积学报,1989,7(2):45-50.
    [72]陈维涛,周瑶琪,马永生,等.关于龙门山地区东吴运动的存在及其性质的认识[J].地质学报,2007,81(11):1518-1525.
    [73]陈宗清.论四川盆地中二叠统栖霞组天然气勘探[J].天然气地球科学,2009(20):325-334.
    [74]戴荔果,郑荣才,李爽,等.川东—渝北地区飞仙关组层序-岩相古地理特征[J].中国地质,2009,36(1):110-119.
    [75]戴永定,李菊英,蒋协光,等.四川盆地二叠系茅口组碳酸盐岩岩石学与储集性质[J].地质科学,1978,3:203-219+283-294.
    [76]范明,胡凯,蒋小琼,等.酸性流体对碳酸盐岩储层的改造作用[J].地球化学,2009,38(1):20-26.
    [77]范明,蒋小琼,刘伟新,等.不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用[J].沉积学报,2007,25(6):825-830.
    [78]冯增昭,杨玉卿,金振奎,等.中国南方二叠纪岩相古地理[M].北京:石油大学出版社,1997:13-70.
    [79]龚浩,朱传庆,徐明,等.四川盆地西北地区热流史及烃源岩演化[J].地球物理学进展,2010,25(3):1031-1036.
    [80]郭正吾,邓康龄,韩永辉,等.四川盆地形成与演化[M].北京:地质出版社,1996.
    [81]何斌,徐义刚,王雅玫,等.用沉积记录来估计峨眉山玄武岩喷发前的地壳抬升幅度[J].大地构造与成矿学,2005(29):316-320.
    [82]何斌,王雅玫,姜晓玮.上扬子西缘茅口灰岩顶部古喀斯特地貌的厘定及地质意义[J].中国地质,31(1):46-50.
    [83]何斌,徐义刚,肖龙,等.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据[J].地质学报,2003(77):194-201.
    [84]何幼斌,冯增昭.四川盆地及其周缘下二叠统细—粗晶白云岩成因探讨[J].江汉石油学院学报,1996,18(4):15-20.
    [85]胡明毅,魏国齐,胡忠贵,等.四川盆地中二叠统栖霞组层序—岩相古地理[J].古地理学报,2010(12):515-526.
    [86]胡忠贵.川东—渝北地区石炭系白云岩成因与成岩系统研究[D].成都:成都理工大学,2009.
    [87]胡作维,黄思静,王春梅,等.锶同位素方法在油气储层成岩作用研究中的应用[J].地质找矿论丛,2009,24(2):160-165.
    [88]胡作维.川东北地区三叠系飞仙关组白云岩的形成机制研究[D].成都:成都理工大学,2010.
    [89]黄第藩,王兰生.川西北矿山梁地区沥青脉地球化学特征及其意义[J].石油学报,2008,29(1):23-29.
    [90]黄思静.海相碳酸盐矿物的阴极发光性与其成岩蚀变的关系[J].岩相古地理,1990,(4):9-15.
    [91]黄思静.碳酸盐矿物的阴极发光性与其Fe、Mn含量的关系[J].矿物岩石,1992,12(4):74-79.
    [92]黄思静.上扬子二叠系—三叠系初海相碳酸盐岩的碳同位素组成与生物灭绝事件[J].地球化学,1994,23(1):60-68.
    [93]黄思静.上扬子地台区晚古生代海相碳酸盐岩的碳、锶同位素研究[J].地质学报,1997,71(1):45-53.
    [94]黄思静,石和,刘洁,等.锶同位素地层学研究进展[J].地球科学进展,2001.16(2):194-200.
    [95]黄思静,石和,张萌,等.锶同位素地层学在碎屑岩成岩研究中的应用[J].沉积学报,2002,20(3):359-366.
    [96]黄思静,石和,毛晓冬,等.早古生代海相碳酸盐的成岩蚀变性及其对海水信息的保存性[J].成都理工大学学报(自然科学版),2003,30(1):9-18.
    [97]黄思静,吴素娟,孙治雷,等.中新生代海水锶同位素演化和古海洋事件[J].地学前缘,2005,12(2):133-141.
    [98]黄思静,卿海若,裴昌蓉,等.川东三叠系飞仙关组白云岩锶含量、锶同位素组成与白云岩化流体[J].岩石学报,2006a,22(8):2132-2132.
    [99]黄思静,卿海若,胡作维,等.西藏南部晚白垩世厚壳蛤不同壳层的地球化学特征及其对古海洋信息的保存性[J].沉积学报,2006b,24(1):68-74.
    [100]黄思静,孙治雷,吴素娟,等.三叠纪全球海水的锶同位素组成及其主要控制因素[J].矿物岩石,2006c,26(1):43-48.
    [101]黄思静,裴昌蓉,卿海若,等.四川盆地东部海相下、中三叠统界线的锶同位素年龄标定[J].地质学报,2006d,80(11):1691-1698.
    [102]黄成刚,黄思静,吴素娟,等.100Ma来海水的锶同位素组成演化及主要控制因素[J].地球科学与环境学报,2006e,28(2):19-24.
    [103]黄思静,Hairuo Qing,胡作维,等.四川盆地东北部三叠系飞仙关组碳酸盐岩成岩作用和白云岩成因的研究现状和存在问题[J].地球科学进展,2007a,22(5):495-503.
    [104]黄思静,Qing Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007c,25(6):815-824.
    [105]黄思静,卿海若,胡作维,等.川东三叠系飞仙关组碳酸盐岩的阴极发光特征与成岩作用[J].地球科学,2008a,33(1):26-34.
    [106]黄思静,王春梅,黄培培,等.碳酸盐成岩作用的研究前沿和值得思考的问题[J].成都理工大学学报(自然科学版),2008b,35(1):1-10.
    [107]黄思静,毛晓冬,张萌,等.塔里木盆地塔河油田寒武—奥陶系深埋岩溶的物质基础与埋藏成岩作用[R].成都理工大学档案馆,2009a.
    [108]黄思静,石和,覃建雄,等.川东P-T储层白云岩化机理及溶解过程的化学热力学研究[R].成都理工大学档案馆,2009b.
    [109]黄思静,黄可可,张雪花,等.碳酸盐倒退溶解模式的化学热力学基础—与CO2有关的溶解介质[J].成都理工大学学报(自然科学版),2009c,36(5):457-464.
    [110]黄思静,黄培培,黄可可,等.碳酸盐倒退溶解模式的化学热力学基础—与H2S有关的溶解介质及其与CO2的对比[J].沉积学报,2010a,28(1):1-9.
    [111]黄思静,龚业超,黄可可,等.埋藏历史对碳酸盐溶解—沉淀的影响——以四川盆地东北部三叠系飞仙关组和塔里木盆地北部奥陶系为例[J].地球科学进展,2010b,25(4):381-390.
    [112]黄思静,黄可可,佟宏鹏,等.四川盆地东北部三叠纪飞仙关组天然气中CO2的成因[J].中国科学,2010c,40(5):583-591.
    [113]黄思静.碳酸盐岩的成岩作用[M].北京:地质出版社,2010d.
    [114]黄思静,王春梅,佟宏鹏,等.四川盆地东北部二叠系长兴组礁岩中的放射轴状纤维状胶结物[J].岩性油气藏,2010e,22(3):9-15.
    [115]黄思静,黄可可,吕杰,等.早三叠世海水的碳同位素组成与演化——来自四川盆地东部的研究[J].中国科学,2011,印刷中.
    [116]黄先平,杨天泉,张红梅.四川盆地下二叠统沉积相及其勘探潜力区研究,2004(24):10-12.
    [117]江兴福,谷志东,赵容容,等.四川盆地环开江—梁平海槽飞仙关组地层水的地化特征及成因研究[J].天然气勘探与开发,2009,32(1):5-17.
    [118]江兴福,杨雨,黄建章,等.川东北地区飞仙关期沉积相对储层的控制作用[J].天然气工业,2003,23(3):141-143.
    [119]江兴福,左云安,徐人芬,等.川东地区飞仙关组地层压力分布特征[J].天然气勘探与开发,2003,26(2):1-5+35.
    [120]蒋志斌,王兴志,曾德铭,等.川西北下二叠统栖霞组有利成岩作用与孔隙演化[J].中国地质,2009,36(1):102-109.
    [121]金振奎,冯增昭.滇东—川西下二叠统白云岩的形成机理——玄武岩淋滤白云化[J].沉积学报,1999,17(3):383-389.
    [122]金之钧.我国海相碳酸盐岩层系石油地质基本特征及含油气远景[J].前沿科学,2010.1(4):11-23.
    [123]金之钧.中国海相碳酸盐岩层系油气勘探特殊性问题[J].地学前缘,2005,12(3):15-22.
    [124]李国辉,李翔,宋蜀筠,等.四川盆地二叠系三分及其意义[J].天然气勘探与开发,2005(28):20-25.
    [125]李国军,郑荣才,唐玉林,等.川东北地区飞仙关组层序-岩相古地理特征[J].岩性油气藏,2007,19(4):64-70.
    [126]李红敬,解习农,颜佳新,等.扬子地区典型剖面二叠系不同沉积相地球化学特征[J]地质科技情报,2010,29(2):16-23.
    [127]李心如,刘效曾.川东地腹区长兴礁岩的成岩作用和孔隙演化特征[J].成都地质学院学报,1991,18(1):111-119.
    [128]李仲东,张健,江兴福,等.川东北飞仙关组鲕滩气藏压力与成藏特征研究[J].矿物岩石,2009,29(4):39-44.
    [129]刘宝珺,张锦泉.沉积成岩作用[M].北京:科学出版社,1992.
    [130]刘成英,朱日祥.试论峨眉山玄武岩的地球动力学含义[J].地学前缘,2009(16):52-69.
    [131]刘昊年,黄思静,胡作维,等.锶同位素在沉积学中的研究与进展[J].岩性油气藏,2007,19(3):59-65.
    [132]刘洁,皇甫红英.碳酸盐矿物的阴极发光性与微量元素的关系[J].沉积与特提斯地质,2000,20(3):71-76.
    [133]刘丽红,黄思静,王春连,黄可可,佟宏鹏,钟倩倩.碳酸盐岩中方解石胶结物的阴极发光环带与微量元素构成的关系——以塔河油田奥陶系碳酸盐岩为例[J].海相油气地质,2010,15(1):55-60.
    [134]刘萍.川东北地区下三叠统飞仙关组白云岩成因分析[J].地质找矿论丛,2010,25(3):241-245.
    [135]刘琦,卢耀如,张凤娥,等.温度与动水压力作用下灰岩微观溶蚀的定性分析[J].岩土力学,2010,31(增刊2):149-154.
    [136]刘树根.四川盆地西部的峨眉地裂运动及找气新领域[J].成都地质学院学报,1991,18(1),83-90.
    [137]刘新宇,颜佳新.华南地区二叠纪栖霞组燧石结核成因研究及其地质意义[J].沉积学报,2007,15(5):730-736.
    [138]刘秀明,王世杰,孙承兴,等.(古)盐度研究的一种重要工具——锶同位素[J].矿物学报,2000,20(1):91-96.
    [139]刘岫峰.沉积岩实验室研究方法[M].北京:地质出版社,1991.
    [140]卢武长,崔秉荃,杨绍全,等.二叠纪海相碳酸盐的锶同位素演化及其意义[J].矿物岩石,1992,12(4):80-87.
    [141]卢武长,崔秉荃,杨绍全,等.石炭纪海相碳酸盐岩的锶同位素演化及其意义[J].矿物岩石,1992,12(2):86-93.
    [142]吕炳全,瞿建忠.下扬子地区早二叠世海进和上升流形成的缺氧环境的沉积[J].科学通报,1989,22:1721-1724.
    [143]罗志立,雍自权,刘树根,等.“峨眉地裂运动”对扬子古板块和塔里木古板块的离散作用及其地学意义[J].新疆石油地质,2004,25(1):1-6.
    [144]罗志立.峨眉地裂运动和四川盆地天然气勘探时间[J].新疆石油地质,2009(30):419-424.
    [145]马永生,陈洪德,王国力,等.中国南方层序地层与古地理[M].北京:科学出版社,2009.
    [146]马永生,陈洪德,王国力,等.中国南方构造—层序岩相古地理图集[M].北京:科学出版社,2009.
    [147]马永生,郭彤楼,赵雪凤,等.普光气田深部优质白云岩储层形成机制[J].中国科学(D辑地球科学),2007b,37(增刊Ⅱ):43-52.
    [148]马永生,郭彤楼,朱光有,等.硫化氢对碳酸盐储层溶蚀改造作用的模拟实验证据—以川东飞仙关组为例[J].科学通报,2007c,52(增刊Ⅰ):136-141.
    [149]马永生.四川盆地普光超大型气田的形成机制[J].石油学报,2007a,28(2):9-14.
    [150]穆曙光,周茂,华永川.川东北地区下三叠统飞仙关组白云岩成因类型[J].天然气工业,1994,14(3):23-27.
    [151]南京大学地质系矿物岩石教研室.火成岩岩石学[M].北京:地质出版社,1980.
    [152]强子同,郭一华,张帆,等.四川上二叠统老龙洞生物礁及其成岩作用[J].石油与天然气地质,1985,6(1):82-90.
    [153]强子同,文应初,雷卞军,等.川东鄂西上二叠统生物礁白云石化岩石学和地球化学[J].地球化学,1992,21(2):158-165.
    [154]任建国,黄奕普,方志山,等.热带西太平洋雨水的氢氧同位素组成[J].海洋学报,2000,22(5):60-64.
    [155]施春华,胡瑞忠,颜佳新.栖霞组沉积地球化学特征及其环境意义[J].矿物岩石地球化学通报,2004,23(2):144-148.
    [156]石新,王兴志,张帆,等.川西北地区栖霞组白云岩储集层研究[J].西南石油学院学报,2005,27(2):13-15.
    [157]石新.川西北地区下二叠统储层研究[D].成都:西南石油学院,2004.
    [158]四川油气编写组.中国石油地质志(卷十):四川油气区[M].北京:地质出版社,1991.
    [159]宋文海.四川盆地二叠系白云岩的分布及天然气勘探[J].天然气工业,1985,5(4):22-23.
    [160]宋章强,王兴志,曾德铭.川西二叠纪栖霞期沉积相及其与油气的关系[J].西南石油学院学报,2005(27):20-23.
    [161]苏立萍,罗平,胡社荣,等.川东北罗家寨气田下三叠统飞仙关组鲕粒滩成岩作用[J].古地理学报,2004,6(2):182-190.
    [162]苏立萍.川东北飞仙关组鲕粒白云岩储层发育规律及其控制因素研究[D].北京:中国矿业大学,2005.
    [163]孙靖,金振奎,薛晶晶.流体包裹体分析在划分碳酸盐胶结物形成期次中的应用[J].天然气地球科学,2010,21(5):781-785.
    [164]覃建雄.白云岩化研究的新进展[J].地质科技情报,1992,11(2):23-27.
    [165]童崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992.
    [166]王春梅,黄思静,裴昌荣,郜晓勇,王庆东.西湖凹陷古近系碳酸盐阴极发光特征分析[J].断块油气田,2008,15(2):1-3.
    [167]王丹,陈代钊,杨长春,等.埋藏环境白云石结构类型[J].沉积学报,2010,28(1):17-25.
    [168]王瑞华,牟传龙,谭钦银,等.达县—宣汉地区长兴组礁滩白云岩成岩作用与成岩环境研究[J].沉积与特提斯地质,2006,26(1):30-36.
    [169]王兴志,张帆,蒋志斌,等.四川盆地东北部飞仙关组储层研究[J].地学前缘,2008,15(1):117-122.
    [170]王兴志,张帆,蒋志斌,等.四川盆地东北部飞仙关组储层研究[J].地学前缘,2008,15(1):117-122.
    [171]王兴志,张帆,马青,等.四川盆地东部晚二叠世—早三叠世飞仙关期礁、滩特征与海平面变化[J].沉积学报,2002,20(2):249-252.
    [172]王彦斌,刘敦一,姚建新,等.黔西南下—中三叠统界线年龄[J]地质学报,2004,78(5):580-590.
    [173]王一刚,刘划一,文应初,等.川东飞仙关组鲕滩储层分布规律勘探方法与远景预测[J].天然气工业,2002,22(增刊):14-19.
    [174]王一刚,文应初,洪海涛,等.四川盆地三叠系飞仙关组气藏储层成岩作用研究拾零[J].沉积学报,2007,25(6):831-839.
    [175]王一刚,张静,杨雨,等.四川盆地东部上二叠统长兴组生物礁气藏形成机理[J].海相油气地质,1997,5(1-2):145-152.
    [176]王运生,金以钟.四川盆地下二叠统白云岩及古岩溶的形成与峨眉地裂运动的关系[J].成都理工学院学报,1997,24(1):8-16.
    [177]魏国齐,陈更生,杨威,等.川北下三叠统飞仙关组“槽台”沉积体系及演化[J].沉积学报,2004,22(2):254-260.
    [178]魏国齐,杨威,张林,等.川东北飞仙关组鲕滩储层白云化成因模式[J].天然气地球科学,2005,16(2):162-166.
    [179]魏国齐,杨威,朱永刚,等.川西地区中二叠统栖霞组沉积体系,2010(31):442-448.
    [180]吴胜和,冯增昭,何幼斌.中下扬子地区二叠纪缺氧环境研究[J].沉积学报,1994,12(2):29-36.
    [181]吴素绢,黄思静,孙治雷,等.鄂尔多斯盆地三叠系延长组砂岩中的白云石胶结物及形成机制[J].成都理工大学学报(自然科学版),2005,32(6):569-575.
    [182]杨博,蔡忠贤,赵文光.白云岩形成的化学动力学及其成因模式[J].新疆石油地质,2009,30(3):393-397
    [183]颜佳新,伍明,李方林,等.湖北省巴东栖霞组沉积成岩作用地球化学特征研究[J].沉积学报,1998,16(4):78-84.
    [184]杨立成,朱莎.锶同位素的几种应用[J].中国西部科技,2010,9(28):27-28.
    [185]杨威,魏国齐,金惠,等.川东北飞仙关组鲕滩储层发育的主控因素和成因模式[J].天然气地质学,2007,18(2):192-196.
    [186]杨雨,曾云贤,刘威.川东北部地区飞仙关组沉积相对鲕滩储层分布的控制[J].天然气勘探与开发,2002,25(3):1-9.
    [187]殷辉安.岩石学相平衡[M].北京:地质出版社,1988,304.
    [188]曾德铭,王兴志,王思仪.溶蚀在川东北飞仙关组储层演化中的意义[J].西南石油大学学报,2007,29(1):15-18.
    [189]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
    [190]张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985.
    [191]张萌,黄思静,张玥,等.锶同位素地层学在海相地层定年中的潜在价值[J].成都理工大学学报(自然科学版),2003,30(3):242-248.
    [192]张瑞锡,乐昌硕.碳酸盐岩[M].北京:武汉地质学院北京研究部,内部教材.
    [193]张荫本.四川盆地二叠系中的白云岩化[J].石油学报,1982,1:29-35.
    [194]张招崇,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论[J].岩石矿物学杂志,2001(20):239-246.
    [195]张招崇.关于峨眉山大火成岩省一些重要问题的讨论[J].中国地质,2009(36):634-646.
    [196]赵澄林,朱筱敏.沉积岩石学[M[.北京:石油工业出版社,2001.
    [197]赵锡奎.黔中下二叠统碳酸盐岩中的构造—埋藏热液白云化作用[J].岩相古地理,1991,(6):41-47.
    [198]赵友年,陈斌.四川省主要构造单元及其特征[J].四川地质学报,2009(29):88-94.
    [199]郑荣才,耿威,郑超,等.川东北地区飞仙关组优质白云岩储层的成因[J].石油学报,2008,29(6):815-821.
    [200]郑荣才,胡忠贵,冯青平,等.川东北地区长兴组白云岩储层的成因研究[J].矿物岩石,2007,27(4):78-84.
    [201]郑荣才,罗平,文其兵,等.川东北地区飞仙关组层序—岩相古地理特征和鲕滩预测[J].沉积学报,2009,27(1):1-8.
    [202]郑荣才,史建南,罗爱君,等.川东北地区白云岩储层地球化学特征对比研究[J].天然气工业,2008,28(11):16-21.
    [203]周瑶琪,柴之芳,毛雪瑛,等.浙江长兴煤山二叠三叠系界线硫和锶同位素异常[J].中国科技大学研究生院学报,1990,7(1):83-88.
    [204]朱传庆,徐明,袁玉松,等.峨眉山玄武岩喷发在四川盆地的地热学相应[J].科学通报,2010(55):474-482.
    [205]朱光有,张水昌,梁英波,等.TSR对深部碳酸盐岩储层的溶蚀改造—四川盆地深部碳酸盐岩优质储层形成的重要方式[J].岩石学报,2006,22(8):2182-2194.
    [206]《中国地层典》编委会.中国地层典二叠系[M].北京地质出版社,2000.
    [207]朱金富,于炳松,樊太亮,等.沉积成岩环境对白云岩储层的影响[J].新疆地质,2009,27(1):43-48.
    [208]张静,胡见义,罗平,等.深埋优质白云岩储集层发育的主控因素与勘探意义[J].石油勘探与开发,2010,37(2):203-210.
    [209]钟倩倩,黄思静,邹明亮,等.碳酸盐岩中白云石有序度的控制因素——来自塔河下古生界和川东北三叠系的研究[J].岩性油气藏,2009,21(3):50-55.
    [210]张学丰,胡文瑄,张军涛.白云岩成因相关问题及主要形成模式[J].地质科技情报,2006,25(5):32-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700