用户名: 密码: 验证码:
自适应逆控制方法研究及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应逆控制将传统的控制理论与信号处理理论相结合,成为研究控制问题的一种新颖方法,其实现的基础就是自适应滤波技术及控制结构设计。本文以基本的自适应逆控制方法为出发点,根据不同对象设计了相应的自适应逆控制方法,在改进线性系统和非线性系统自适应逆控制方法、自适应建模方法、多变量自适应逆控制方法的结构设计等方面进行了深入的研究并提出了一些新的思路,丰富和扩展了原有的自适应逆控制方法。
     1.基于自适应逆控制方法设计了主汽温系统的双回路扰动消除系统。采用基于神经网络的自适应预测器解决扰动消除回路的延迟,实现了主汽温系统内外回路输出端扰动的瞬时消除。
     2.提出使用Givens变换简化Volterra泛函级数建模维数的解决方案,使得改进的Volterra基函数网络运算量大为减少,提高了系统运算速度。将改进Volterra基函数网络应用于自适应前馈控制系统及具有不确定性的非线性自适应逆控制系统。仿真结果表明改进的Volterra基函数网络组成的自适应逆控制系统在网络规模较小的前提下,仍具有令人满意的控制精度和较强的鲁棒性。
     3.提出了一种基于自适应逆控制方法的二阶神经网络执行机构死区逆补偿方法,实现了对未知非线性死区环节的动态补偿。这种方法用于死区补偿不需要任何死区非线性和约束性假设,实现了由神经网络估计器和神经网络补偿器组成的补偿策略,为非线性补偿提供了新的解决方法。此外,本文使用了BP网络和RBF网络进行神经网络在非线性系统自适应逆控制中的研究。
     4.提出了基于支持向量回归的自适应逆控制方法。采用支持向量回归在线辨识算法作为建模方法建立被控对象的逆模型。由于支持向量回归具有更好的推广性,从而使整个系统具有更好的控制性能。
     5.提出了基于多变量内模控制的多输入多输出系统(MIMO)自适应逆控制方法。将多变量内模控制的控制器结构设计与MIMO系统自适应逆控制的多变量建模方法相结合,应用于电厂单元机组负荷系统、钢球磨煤机中间储仓制粉系统。并且针对存在时滞的多变量对象,采用对角矩阵补偿和加入时间预测器来解决,应用于钢球磨煤机中间储仓制粉系统,仿真结果表明控制方法的有效性。
The traditional control theory is combined with the signal processing theory to form a novel method for the control problems--Adaptive inverse control. Its realization is based on adaptive filtering technology and design of control configuration. In this paper, based on the elementary adaptive inverse control methods, different methods are designed according to the various objects. Improvements on the methods of adaptive inverse control for linear systems and nonlinear systems, adaptive modeling method and configuration design of adaptive inverse control for multivariable objects are deeply researched and some new ideas are proposed, which enriches and extends the original methods of adaptive inverse control.
     1. Based on the methods of adaptive inverse control, double loops of disturbance canceling system are designed for the main steam temperature system. Adaptive predictor is based on neural network to solve the delay for the loops of disturbance canceling, and then the output disturbance is instantaneously cancelled of double loops for the main steam temperature system.
     2. Givens transform is proposed to solve the dimentions problem of Volterra series modeling, which greatly reduces the calculation of the network composed of volterra basic polynomial functions. This improved network is applied to adaptive feedforward control system and adaptive inverse control system with some uncertainties. Simulation results showed that this improved adaptive inverse control system still has satisfying control precision and strong robustness.
     3. A deadzone inverse compensation of second-order neural network method based on adaptive inverse control is proposed for implemented organization, which realized the dynamic compensation for unknown nonlinear deadzone. This method doesn’t require any hypothesis of nonlinear and constraint for deadzone, and realized the compesation strategy composed of estimator and compensator using neural network, which supplies a new solution for nonlinear compensation. Moreover, BP and RBF neural network are used to research on the adaptive inverse control for nonlinear systems.
     4. The support vector regression is introduced to adaptive inverse control systems. Online identification algorithm of support vector regression is used to build the inverse model for the plant. Due to its favorable generalization, the total system has fine control performance.
     5. Adaptive inverse control method for Multi-input and multi-output (MIMO) plant based on multi-variable internal model control is proposed in this paper. The configuration design of controller in multi-variable internal model control is combined with multi-variable modeling in MIMO Adaptive inverse control method to be applied into units load system and ball mill system. For the delay multi-variable plant, diagonal matrix compensator and time predictor are used to ball miss system, and the result shows that this method is effective.
引文
[1] 金以慧. 方崇智. 过程控制. 北京:清华大学出版社,1993
    [2] 方建军. 何广平. 智能机器人. 北京:化学工业出版社,2004
    [3] 白英彩,唐冶文,余巍. 计算机集成制造系统. 北京:清华大学出版社,1997
    [4] 魏巍,周成. 航空航天技术. 北京:国防工业出版社,2003
    [5] 俞立. 鲁棒控制——线性矩阵不等式处理方法. 北京:清华大学出版社,2002
    [6] S. H. Lane, R. F. Stengel. Flight control design using nonlinear inverse dynamics. Automation, 1998, 24(4): 471~483
    [7] D. Enns, D. Bugajski, R. Hendrick, G. Stein, Dynamic inversion: An envolving methodology for flight control design, Int. J. Contr. 1994, 59(1): 71~91
    [8] Y. D. Song, T. L. Mitchell, H. Y. Lai. Control of a class of nonlinear uncertain systems via compensated inverse dynamics approach. IEEE Trans. Automat. Contr. 1994, 39: 1866~1871
    [9] B. S. Kim, A. J. Calise. Nonlinear flight control using neural networks. J. Guidance, Contr. Dyn. 1997, 20(1): 26~33
    [10] L. Yan, C. J. Li. Robot learning control based on recurrent neural network inverse model. J. Robot. Syst. 1997, 14(3): 199~212
    [11] B. Widrow, E. Walach. Adaptive inverse control. Upper saddle river, NJ: Prentice Hall, 1996: 1~158
    [12] B. Widrow, E.Walach.刘树棠,韩崇昭译. 自适应逆控制. 西安:西安交通大学出版社,2000
    [13] 吴忠强,朴春俊. 鲁棒自适应控制综述. 测控自动化,2004,1
    [14] 褚健. 鲁棒控制理论及应用. 杭州:浙江大学出版社,2000
    [15] J. S. Shamma, M. Athans. Guaranteed properties for nonlinear gain scheduled control systems. Proceedings of the 27th IEEE conference on Decision and control. 1998, 3: 2202~2208
    [16] B. Farhang-Boroujeny, K. Ayatollahi, New solution to adaptive inverse control. IFAC Symposia Series. 1991, 7:35~40
    [17] 郑应平. 从 IFAC’96 世界大会看自动控制发展的若干动向. 自动化学报. 1997, 23(3): 428~431
    [18] B. Widrow. Adaptive inverse control. Second IFAC Workshop on adaptive systems in control and signal processing. Lund, Sweden, plenary paper, Pergamon Press. 1986:1~5
    [19] G. L. Plett. Adaptive inverse control of plants with disturbances. Ph.D dissertation,
    Stanford University, Stanford, CA, 1998: 1~174
    [20] B. Widrow, G. L. Plett, E. Ferreira, M. Lamego. Adaptive inverse control based on
    nonlinear adaptive filtering. Proceedings of 5th IFAC workshop Algorithms
    arthitectures for real-time control. AARTC’ 98, Cancun, Mexico. 1998: 247~252
    [21] B. Widrow, G. L. Plett. Nonlinear Adaptive inverse control. Proceedings of 36th IEEE
    conference. Decision Control. San Diego, CA 1997, 2: 1032~1037
    [22] M. bilello. Nonlinear adaptive inverse control. Ph.D dissertation, Stanford University,
    Stanford, CA, 1996: 1~19
    [23] B. Widrow, G. L. Plett. Adpative Inverse Control based on linear and nonlinear
    adaptive filtering. Proceedings of World congress. Neural networks, San Diego, CA
    1996: 620~627
    [24] G. L. Plett. Adaptive inverse control of unknown stable SISO and MIMO linear
    systems. Int. J. Adaptive control. Signal Processing. 2002, 16(4): 243~272
    [25] G. L. Plett. Adaptive inverse control of linear and nonlinear systems using dynamic
    neural networks. IEEE transactions on neural netoworks. 2003, 14(2): 360~376
    [26] 于萍,韩璞,董泽,等. 基于神经网络的非线性系统辨识方法的比较, 第十三届
    中国神经网络学术会议,山东青岛,2003. 11
    [27] 焦李成. 神经网络系统理论. 西安:西安电子科技太学出版杜,1990
    [28] 王永骥,涂健. 神经元网络控制, 北京:机械工业出版社,1998
    [29] 黄苏南,邵矗鹤,张仲俊. 智能控制的理论和方法. 控制理论与应用,1994, 11(4):
    386~395
    [30] Hunt K.J. Neural networks for control systems—A survey. Automatica. 1992. 28(6):
    1083~1112
    [31] 于萍,韩璞,董泽,等. 基于神经网络优化梯度算子的边缘检测方法. 第十三届
    中国神经网络学术会议,山东青岛,2003. 11
    [32] 董泽,韩璞,于萍,等. 改进的遗传算法及其在控制系统参数优化中的应用. 第
    十三届中国神经网络学术会议,山东青岛,2003. 11
    [33] 苏烨,韩璞,董泽,于萍等. 混沌优化在神经网络中的应用. 第十三届中国神经
    网络学术会议,山东青岛,2003. 11
    [34] 丛爽,王怡雯. 随机神经网络发展现状综述. 控制理论与应用,2004, 21(6):
    975~980,985
    [35] 杨一鸣,童学锋. 神经网络在导弹故障诊断专家系统中的应用. 微计算机应用,
    2005, 26(5): 538~540
    [36] 杨慧,刘玉洁,吴俊基. 基于FBP神经网络的航空发动机故障诊断. 计算机工程,2005, 31(17): 187~188
    [37] 王启志. 神经网络辨识的自适应逆控制, 华侨大学学报:自然科学版,2005, 26(4): 397~400
    [38] 王卫红,于镭,姚广. 基于对角回归神经网络的转台伺服系统逆控制. 系统工程与电子技术,2005, 27(8): 1456~1458
    [39] 于灵慧,房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用. 物理学报,2005, 54(9): 4012~4018
    [40] 王启志,王晓霞. 利用神经网络自适应逆控制消除干扰和噪声. 江南大学学报:自然科学版,2005, 4(5): 469~471
    [41] Funahashi K I. On the proximate realization of continuous mappings by neural networks. Neural networks, 1989, 2: 183~192
    [42] 杜刚,战兴群,钟山,张卫明,基于神经网络的非线性船舶航向自适应逆控制, 测控技术,2005, 24(4): 23~26
    [43] 刘亚秋,马广富,石忠. 基于实型遗传算法的抽头延迟线滤波器及其在自适应逆控制中的应用. 控制与决策,2002, 17(6): 876~880
    [44] 张颖颖,曹广益,朱新坚. 神经网络非线性逆控制方法实现 PEMFC 分布式发电系统的负荷响应. 动力工程,2005, 25(5): 689~692,732
    [45] 董正宏,周辉,朱仁峰. 利用神经网络逆控制系统提高 Turbo 码译码性能. 北京航空航天大学学报,2005, 31(9): 989~993
    [46] 王庆超,李达. 基于反馈线性化的动能拦截器姿态控制研究. 宇航学报,2005, 26(3): 358~361, 367
    [47] 杜刚,战兴群,钟山,等. 基于神经网络的非线性船舶航向自适应逆控制. 测控技术,2005, 24(4): 23~26
    [48] 彭道刚,杨平,王志萍. 基于单神经元的自适应逆控制仿真研究. 自动化与仪器仪表,2005, 3: 7~9
    [49] 韩璞,张海琳,张丽静. 神经网络自适应逆控制的仿真研究. 华北电力大学学报,2001, 28(3): 26~30
    [50] Vapnik, V.N. The nature of statistical learning theory. New York: Springer Verlag, 1995.
    [51] 张学工. 关于统计学习理论与支持向量机. 自动化学报,2000, 26(1): 32~42
    [52] 边肇祺,张学工,模式识别,北京:清华大学出版社
    [53] Vapnik V. N. Statistical learning theory. J. Wiley, New York, 1998
    [54] Vapnik V. N. An overview of statistical learning theory. IEEE Trans Neural Networks, 1999, 10(5): 988~999
    [55] Vidgasagar. A theory of learning and generalization. New York: Springer-Verlag, 1997
    [56] Smola A., Scholkopf B. A tutorial on support vector regression. Neuro COLT: Technical Report 19, 1998
    [57] Vapnik V.N. Support vector method for function approximation, regression, and signal processing. In: Proc. NIPS’9, San, 1987
    [58] 范劲松. SVM 理论及其应用的研究. [博士学位论文],合肥,中国科学技术大学,2000
    [59] 徐大平,杨金芳,翟永杰,等. SVR的限定记忆在线辨识算法及其应用. 动力工程,2005, 5(25):680~684.
    [60] 韩璞,于萍,王东风,等. 基于支持向量机的自适应逆控制方法. 华北电力大学学报,2006. 5
    [61] E.Walach, B. Widrow. Adaptive signal processing for adaptive control. IFAC Workshop in adaptive systems in control and signal processing, San Francisco, CA, 1983. Acoustics, Speech, and Signal processing, IEEE international conference on ICASSP’84. 1984,9: 191~194
    [62] B. Widrow. Adaptive noise canceling. Principles and applications. Proc. IEEE, 1975, 63(12): 1692~1716
    [63] 刘侠,张瑞金等. 自适应逆控制的研究综述. 电气自动化,2003, 25(6):15~18
    [64] 韩璞,于萍,王东风,等. 主汽温系统的扰动消除方法,中国电力,2006年5月第4期
    [65] 刘亚秋. 基于动态神经网络的自适应逆控制及其应用研究:[博士学位论文]. 哈尔滨:哈尔滨工业大学控制科学与工程系,2004
    [66] J.C. Burgess. Active adaptive sound control in a duct: a computer simulation. J Acoust. Soc. Am. 1981, 70(3): 715~726
    [67] B. Widrow, D. Shur, S. Shaffer. On adaptive inverse control. In: Proc. 15th Asilomar Conf. 1981: 185~189
    [68] 赵斌,张如辉,齐占庆. 基于 U-滤波 LMS 算法的自适应逆控制系统. 自动化与仪器仪表,2002, 6: 7~10
    [69] 党映农,韩崇昭. 基于Volterra级数模型的非线性系统自适应控制稳定性研究.控制理论与应用,2002, 19(1): 80~84
    [70] 党映农,韩崇昭. 基于 Volterra 基函数网络的自适应逆控制方法. 西安交通大学学报,2000, 34(9): 8~12
    [71] 党映农,韩崇昭. 基于改进型 Volterra 基函数网络的直接自适应逆控制方法. 控制与决策,2001, 16(5): 633~636
    [72] 党映农,韩崇昭. 基于Volterra级数模型的内模控制方法. 西安交通大学学报,2001., 35(4): 385~389.
    [73] 王文正,唐晓泉,欧文,韩崇昭,Volterra范函级数辨识方法的综述及一种简化方法,非线性动力学学报,1999, 6(1): 30~36
    [74] 欧文,韩崇昭,Volterra范函级数辨识中维数灾难的一种解决方法,西安交通大学学报,2001, 35(6): 658~660
    [75] 欧文,韩崇昭,王文正,Volterra泛函级数在非线性系统辨识中的应用,控制与决策,2002, 17(2): 239~242
    [76] 张华君,韩崇昭,基于变步长分块滤波器的Volterra级数简化辨识方法,西安交通大学学报, 2004, 38(6):583~586.
    [77] 欧文,韩崇昭,王文正,Volterra范函级数在非线性系统辨识中的应用,2002, 17(2): 239~242
    [78] Guoping P.Liu,Visakan Kadirkamanathan, Steve A.Billings,On-line identification of nonlinear systems using Volterra polynomial basis function neural networks. Neural networks: 1645~1657.
    [79] Liang J, Peter N N, Gupta M M, Dynamic recurrent neural networks for control of unknown nonlinear systems[J], ASME J Dyn Sys, Meas & Contr, 1994, 116(12): 567~576.
    [80] 焦李成. 非线性传递函数理论与应用,西安:西安电子科技大学出版社,1992
    [81] 魏瑞轩,基于 Volterra 级数模型的非线性系统辨识及故障诊断方法研究:[博士学位论文],西安交通大学,2001
    [82] 党映农,基于 Volterra 级数模型的自适应鲁棒控制方法研究:[博士学位论文],西安交通大学,2000
    [83] Ping Yu, Pu Han, Ze Dong, etc. Volterra Basic Function Network Based Adaptive Controller, 2004 International Conference on Machine Learning and Cybernetics,Shanghai, China 2004.8
    [84] Pu Han, Ping Yu, Dong-feng Wang, etc. The study of system identification based on Volterra series, Proceedings of the International Scientific Conference-Control, Moscow, Russia, 2003, 10
    [85] Yu Huamin, Zhu Haichao, Shi Yin. Active noise control FXLMS Algorithm based on Non-minimum phase adaptive inverse control. Journal of vibration Engineering. 2003, 16(3): 331~336
    [86] A. Kaelin. On the use of a priori knowledge in adaptive inverse control. IEEE Transactions on circuits and systems Ⅰ: Fundamental theory and applications, 2000, 47(1): 54~62
    [87] M. Shafiq, S. H. Riyaz. Internal model control structure using Adaptive inverse control strategy. ICCA. Final program and book of abstracts. The 4th international conference on control and automation. 2003. 59~69
    [88] C. Harnold, K. Y. Lee. Application of the free-model based neural networks in model reference adaptive inverse control. American Control Conference, 2000. Proceeding of 2000. 2000, 3. 1664~1668
    [89] H. J. Cochofel, D. Wooten, J. Principle. A neural network development envirnonment for adaptive inverse control. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on Neural networks Proceeding. 1998, 2. 963~967
    [90] W. Klippel. Adaptive inverse control of weakly nonlinear systems. IEEE International Conference on Acoustics, Speech, and Signal Processing. 1997, 1. 355~358
    [91] Li Li-zheng, He Qing-hua, Adaptive inverse control based on an incremental linear regression model in one unknown. Systems Engineering and Electronics. 2002, 24(10): 53~58
    [92] 曹建福,韩崇昭,方洋旺,非线性系统理论及应用. 西安:西安交通大学出版社,2001. 453~469
    [93] Jeng Jin-Tsong, Lee Tsu-Tain. Nonlinear Adaptive Inverse control via the unified model neural network. Proceedings of SPIE- The International Society for Optical Engineering. 1999, 3722: 153~162
    [94] 赵国军,安锦文,沈毅. 基于演化神经网络的飞机自动着陆自适应逆设计. 系统仿真学报,2004,16(6): 1333~1335
    [95] 邢志伟,封锡盛. 水下机器人神经网络自适应逆控制. 控制工程(沈阳),2003, 10(3): 235~238, 258
    [96] 刘小勇,杨清宇,施仁. 基于 X 滤波最小均方算法的冲击振动自适应逆控制. 西安交通大学学报,2004, 38(2): 144~148
    [97] 万建,徐德民,等. 一种小波变换域的自适应扰动消除方法. 电机与控制学报. 2001 年 5 卷 4 期 267~269
    [98] 赵隽,战兴群,张炎华. 基于自适应逆控制技术的船舶操纵仿真控制. 上海交通大学学报,2003, 37(8): 1168~1171
    [99] 柳晓菁,易建强,赵冬斌,等. 一种基于 RBF 网络的非线性自适应逆控制系统. 控制与决策,2004, 19(10): 1175~1177, 1182
    [100] 蔡勇,战兴群,张炎华. 船舶自适应逆控制操舵. 中国造船,2004, 45(4): 71~76
    [101] 赵隽,战兴群,张炎华. 基于 RLS 自适应逆控制理论的船舶自动舵研究. 计算技术与自动化,2003,22(2): 28~30
    [102] 赵隽,战兴群,张炎华. 基于 X-LMS 自适应逆控制理论的船舶自动舵研究. 船舶工程,2003, 25(4): 59~61
    [103] 曲东升,孙立宁,等. 压电陶瓷致动器自适应逆控制方法的研究. 压电与声光,2002, 24(5): 354~357
    [104] 李元杰. 基于自适应滤波技术的控制系统研究:[硕士学位论文]. 福建泉州:华侨大学,2002
    [105] Zheng Q. S, Zafiriou E, A local form of small gain theorem and analysis of feedback Volterra system, IEEE AC, 1999, 44(3): 635~649
    [106] Wray J, Calculation of Volterra lernal of nonlinear dynamic systems using an artificial neural networks, Biol Cybern, 1994, 71: 187~195.
    [107] Marmarelis V Z, Volterra models and the three-layer perceptron, IEEE Trans NN, 1997, 8: 1421~1433.
    [108] Bellafemina M, Benedetto S.Identification and equalization of nonlinear channels for digital transmission, Proc of the 1985 IEEE lnt. Symp Circuits System, Tokyo, Japan, Jun, 1985, 1477~1480
    [109] Sicuranza. G, Bucconi. A, Mitri. P. Adaptive echo cancellation with nonlinear digital filter, Proc.IEEE International Conference on ICASSP '84. Acoustics, Speech, and Signal Processing, San Diego, CA, 1984, 9(1): 130~133
    [110] Mqusi M., Performance of base band digital data transmission in nonlinear channel with memory, IEEE Trans, Communication, 1985, 33(7): 715~7l9
    [111] Coker M J, ·Simkins D N, A nonlinear adaptive noise canceller, Proc 1980 IEEE International Conference on Acoustics, Speech and signal Processing, 1980, 470~473
    [112] Koh T, Powers E J, An adaptive nonlinear digital filter with lattice orthogonalization. Proc IEEE International Conference Acoustics, Speech, Signal Processing, Boston, MA, 1983.4: 37~40
    [113] Hunter I W, Korenberg M J, The identification of nonlinear biological systems, Wiener and Hammerstein cascade models Biolog, Cyhern, 1986, 55: 135~144
    [114] RampoJ G, Sicuranza G L, Decision directed nonlinear filters for image processing. Electron Lett, 1987, 23(23): 1218~1219
    [115] Chen L J, Narendra K S, On a new approach to the design of tracking controllers for nonlinear dynamical systems, Zhu J, Proc 1999 Amer Contr Conf, San Diego, American Automatic control council, 1999: 3534~3528
    [116] 戴先中,刘国海. 两变频调速电机系统的神经网络逆同步控制. 自动化学报,2005, 31(6): 890~900
    [117] 戴先中,刘国海,张兴华. 恒压频比变频调速系统的神经网络逆控制. 中国电机工程学报,2005, 25(7): 109~114
    [118] 戴先中,张兴华,刘国海. 感应电机的神经网络逆系统线性化解耦控制. 中国电机工程学报,2004, 24(1): 112~117
    [119] 刘国海,张浩,戴先中. 神经网络逆系统在电机变频调速系统中的应用. 电工技术学报,2003, 18(3): 67~71, 80
    [120] 陆翔,戴先中. 多目标励磁控制的神经网络逆系统方法. 电力系统自动化,2002, 26(12): 35~39, 53
    [121] 何丹,戴先中. 神经网络广义逆系统控制. 控制理论与应用, 2002, 19(1): 34~40
    [122] 戴先中,张腾. 发电机励磁与汽门系统解耦控制的神经网络逆系统方法. 中国电机工程学报,2002, 22(11): 75~80
    [123] 张兴华,戴先中. 基于逆系统方法的感应电机调速控制系统. 控制与决策,2000, 15(6): 708~711
    [124] 李春文,冯元琨. 多变量非线性控制的逆系统方法. 北京:清华大学出版社,1991
    [125] 沈毅力. 逆控制方法及其在地震模拟系统中的应用研究:[博士学位论文],西安交通大学,2003
    [126] B. Widrow, J. M. McCool, M.G. Larimore, etc. Stationary and nonstationary learning characteristics of the LMS adaptive filter, Proc. IEEE, Vol. 64, No.8, 1976: 1151~1162
    [127] 王巍,王汪,强文义,于双和,一种智能控制算法的应用研究,中国电机工程学报,2000, 11(20): 81~84.
    [128] 赵日晖,边立秀,杨建蒙,Fuzzy自调整PID的Smith预估主汽温控制系统, 电力科学与工程,2003,3 : 39~41.
    [129] 秦志明,张栾英,谷俊杰,基于Smith预估器的单神经元PSD自适应主汽温控制, 华北电力大学学报, 2004, 5(31): 43~47
    [130] 于湘涛,刘红军,王晓慧,李锋,基于内模PID控制的火电厂主汽温控制系统,自动化技术与应用,2003, 7(22): 50~52
    [131] 谷俊杰,李健,内模自适应PSD控制器在主汽温控制中的应用,热力发电,2003, 5
    [132] 辛开远,金秀章,杨玉华,自回归神经网络在主汽温控制中的应用, 华北电力大学学报, 2001, 1(28): 43~48
    [133] 马平,朱燕飞,牛征,基于神经网络的主气温控制系统, 华北电力大学学报, 2001, 4(28): 52~55
    [134] 王国玉,韩璞,王东风,周黎辉.PFC-PID串级控制在主汽温控制系统中的应用研究,中国电机工程学报,2002, 12(22): 50~55
    [135] 韩璞,王东风,王国玉,董泽,多模型预测函数控制及其应用研究, 控制与决策,2003, 5(18): 375~381
    [136] 王国玉,梅华,韩璞,王东风.主汽温系统模糊自适应预测函数控制,中国电机工程学报, 2003, 10(23): 230~235
    [137] 范水胜,徐治皋,陈来九.基于动态机理分析的锅炉过热汽温自适应模糊控制系统研究,中国电机工程学报,1997, 17(1): 23~28
    [138] 卢志刚,吴士昌,于灵慧,非线性自适应逆控制及其应用,北京:国防工业出版社,2004
    [139] 张贤达. 信号处理中的线性代数. 北京:科学出版社,1997
    [140] Funahashi K I. On the proximate realization of continuous mappings by neural networks. Neural networks, 1989, 2: 183~192.
    [141] Chang-Sun Hwang, etc. A design of robust two-degree-of-freedom boiler-turbine control system using H ∞ optimization method, SICE’95 July 26-28, Sapporo: 1263~1268
    [142] Tan Wen, Niu Yuguang, Liu Jizhen. Roubust control for a nonlinear boiler-turbine system . Control Theory and Applications, 1999, 12: 863~867
    [143] 刘金琨. 先进PID控制及其Matlab仿真. 北京:电子工业出版社,2003
    [144] G.Tao and P.V.Kokotovic, Adaptive control of plants with unknown dead-zones. IEEE Trans. Automat. Contr., 1994, vol.39(1): 59~68
    [145] G.Tao and P.V.Kokotovic, “Adaptive control of systems with unknown output backlash,” IEEE Trans. Automat. Contr, 1995, 40: 326~330
    [146] Adaptive Control of Systems with Actuator and Sensor Nonlinearities. NewYork: Wiley, 1996.
    [147] Continuous-time adaptive control of systems with unknown backlash. IEEE Trans. Automat. Contr., 1995.vol.40(6): 1083~1087
    [148] Discrete-time adaptive control of systems with unknown deadzones. Int. J. Contr. 1995, 61(1): 1~17
    [149] D. A. Recker, P. V. Kokotovic, D. Rhode, J. Winkelman. Adaptive nonlinear control of systems containing a dead-zone. In Proc. IEEE Conference. Decision & Control. 1991: 2111~2115.
    [150] 景韶光,宋子善. 一种克服不灵敏区的自适应控制方法. 北京航空航天大学学报,1999, 25(4): 431~433
    [151] 谷俊杰,李剑,张栾英. 执行机构含死区环节的自适应补偿控制. 中国电机工程学报,2003, 23(5): 153~155
    [152] Rastko R. Selmic , Frank L. Lewis, Deadzone compensation in motion control Systems using neural networks. IEEE Transactions on Automatic Control, 2000, 45(4):602~613
    [153] R. R. Selmic, F. L. Lewis. Neural network approximation of piecewise continuous functions: Application to friction compensation. In Soft Computing and Intelligent Systems: Theory and Applications, N.K. Sinha, Ed. New York: Academic.
    [154] B. Igelnik, Y. H. Pao. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Transactions Neural Networks, 1995, 6: 1320~1329
    [155] F. L. Lewis, A. Yesildirek, K. Liu. Multilayer neural-net robot controller with guaranteed tracking performance. IEEE Trans. Neural Networks, 1996, 7(3): 1~11
    [156] 郭鹏,韩璞等. 基于Hopfield网络的控制有约束MAC算法在主汽压力系统中的应用研究,中国电机工程学报,2002, l2(22): 62~65
    [157] Hua Den, Han Xiong Li. A Novel Neural Approximate Inverse Control for Unknown Nonlinear Discrete Dynamical Systems. IEEE Trans SMC, 2005, 35(1): 115~123
    [158] 杨锡运. 火电厂热工对象先进控制策略研究——多变量及键图控制:[博士学位论文]. 北京:华北电力大学,2003
    [159] Garcia C.E, Morari M. Internal model control-A unifying review and some new results, I&EC Process Des. 1982: 308~323
    [160] 刘晨晖. 多变量过程控制系统解耦理论. 北京:水利电力出版社,1984
    [161] 沈炯. 火电单元机组协调控制系统的自整定:[博士学位论文]. 南京:东南大学,1993
    [162] 韩璞,于萍,王国玉,等. 单元机组负荷系统预测函数控制. 电工技术学报,2004, 19(10): 47~52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700