用户名: 密码: 验证码:
冷等离子体氢还原金属氧化物的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢代替碳还原金属氧化物的主要优点在于其反应产物H_2O不对环境产生任何负面影响,是一种符合人类社会可持续发展战略的绿色冶金过程。但是,要使氢还原真正成为传统碳还原过程强有力的挑战者,除了解决廉价的氢源、氢的安全储运等技术问题之外,还必须寻找出一种低温高效强化还原反应的新方法和新技术。本文研究了施加外场条件下的冷等离子体氢强化氧化物还原的效果和机理,从热力学上比较了等离子体氢和分子氢还原氧化物的差别,揭示了冷等离子体在还原过程中的作用,并分析了冷等离子体氢还原动力学,为将来的应用提供了理论和实践指导依据。
     本文在综述了相关的研究进展情况和分析了低温等离子体及其化学特性基础上,选择具有不同还原难易程度的CuO、Fe_2O_3和TiO_2进行了实验,利用直流脉冲电场产生辉光冷等离子体氢对金属氧化物进行还原。
     冷等离子体氢还原Fe_2O_3实验研究发现,在分子氢不能还原的条件下(1500Pa,490℃),利用冷等离子氢实现了Fe_2O_3的低温还原。冷等离子体氢还原Fe_2O_3符合逐级还原规律:Fe_2O_3→Fe_3O_4→Fe。随着还原时间的增长,还原过程出现一个加速阶段,这可能是由于试样表面等离子体鞘层的变化导致更多高能量、具有更强还原势的离子氢参加还原过程引起的。进一步的实验结果验证了这一推断。这表明等离子体相中带正电的离子氢和中性的原子氢一样都参加了还原反应,过程中氧化物在反应系统中的电位变化会影响还原的进程,这个结论对工业装置和工艺过程的设计具指导意义。在390℃~530℃范围内,温度变化对还原层厚度影响不大。在680℃的较高温条件下,利用分子氢还原Fe_2O_3仅得到少量的金属Fe和部分FeO,而利用等离子体氢(气体压力为1850Pa,等离子体的输入电压为500V、放电电流为0.3A,还原时间为15min)还原后的试样表面检测全部为金属铁相,这表明等离子体氢的还原能力比单纯的分子氢大得多。随着放电电压、气压、脉冲占空比的增加,还原层的厚度增大,增大的趋势与等离子体中产生的活性氢粒子浓度的大小密切相关。实验证明,把试样放置在活性氢粒子浓度较大的阴极区才能实现氧化物的有效还原。
     容易还原的CuO可以在更低的放电气压和电压下得到还原。在体系压力为450Pa、温度为200℃下,与分子态的氢不同,等离子体氢可以还原CuO为Cu,还原过程按CuO→Cu_2O→Cu的规律逐级进行。与Fe_2O_3还原相似,随着还原时间
Reduction of oxides with hydrogen in place of carbon is considered as a green process, which is in accord with the continuable development policy. If hydrogen is applied as a reductant in metallurgical process, besides a solution to low-cast hydrogen source and its safe storage, it's necessary to find out a novel way to enhance the reduction of oxides with hydrogen at low temperature. In this paper, the reduction of oxides with hydrogen cold plasma was investigated. In terms of thermodynamics, the comparative research on reduction with plasma hydrogen and molecular one had been carried out. The effects of cold plasma on the reduction with hydrogen were explored. All done in this work are directive for the application of hydrogen reduction.On the basis of brief review of previous research work and the analysis of the chemical characteristics of cold plasma, a wide range of oxides with different reducibility, CuO, Fe_2O_3 and TiO_2, were used to be reduced in this study. The cold plasma hydrogen was generated by a DC pulsed electric field.The reduction of metal oxide Fe_2O_3 to metal Fe with cold hydrogen plasma was realized under 1500Pa ,490℃, but this reduction did not happen for using molecular hydrogen. The reaction path was as follows: Fe_2O_3→Fe_3O_4→Fe. As the reduction proceeded, the reaction started to accelerate. The reason might be that more active hydrogen species, which are of better reducing potential, participated in the reduction with the modification of the plasma sheath on the sample surface. The results of an additional experiment with a sample placed on a small insulting flake confirmed the above explanation. From this, it could be assumed that ionic and atomic hydrogen species were all involved in reduction and the sample potential was important. This provides a base for the design of the industrial equipments and technologic process. Between 390℃ and 530℃, the reaction temperature had no obvious influence on the reduction. At a high temperature of 680℃,a pressure of 1850Pa and the treatment time of 15min, Fe_2O_3 to Fe with hydrogen cold plasma(the discharge conditions are voltage-500V and current-0.3A.) was realized and only a few of Fe and FeO were detected when using molecular hydrogen. The plasma hydrogen is obviously more reactive than molecular one. With the increase of discharge voltage, gas pressure and the ratio of pulse duty, the thickness of reduced layer also increased. This
    had a close relation to the density of active plasma hydrogen species. Only could oxides placed on the cathode be reduced with cold plasma hydrogen generated by DC glow discharge.The reduction of CuO to metallic Cu with cold hydrogen plasma produced by a DC pulsed glow discharge was investigated under a pressure of 450Pa and a reduction temperature of 200 °C. The same reduction had not been achieved when using molecular hydrogen. The reaction proceeded by the sequential reduction of CuO(CuO-^Cu2O~* Cu). Similar to the reduction of ferric oxide, the thickness of the reduced layer increased with the reduction time and was influenced by the change of plasma sheath on the sample surface. Between 160"C and 300°C, the reduction of CuO with hydrogen cold plasma was independent of treatment temperature. It was also found that the inherent characteristics of the product metal had significant influence on the reductions.The reduction of refractory oxide TiO2 to T12O3 with hydrogen cold plasma generated by a DC pulsed glow discharge was realized at 2500Pa, 960°C and 60min. Only a few of TiioOig and TigOn were detected for using molecular hydrogen. Through more experiments, it might be possible for Ti2O3 to be further reduced. The present experimental technique is not suited to producing metallic titanium. It might be related to the reaction kinetics and the concentration of active hydrogen species on the sample surface. Further investigations should be required for the complete reduction of TiO2.In cold hydrogen plasma with moderate pressures, the main chemically active species are H, H+,H+2 and H+3.The density of monatomic hydrogen is greater that of ionic one. The order of the reducibility for these species is H+>H2+>H3+ >H. Though the densities of ionic hydrogen species are less, their reducing potentials are much higher in terms of thermodynamics. More ionic species in plasma are highly advantageous to the reductions of refractory oxides. The reduction ability for monatomic hydrogen was also discussed. It could reduce stable oxides such as Cr2O3, MnO and SiO2 to produce metals at the reduced temperature. This chapter is instructive to reduce refractory oxides with plasma hydrogen and to understand the mechanism on oxides reduction at lower temperature.Based on the above experimental results and plasma chemistry, the steps involved in the reduction of oxides with cold plasma hydrogen and their mathematical descriptions were analyzed in detail. The rate-limiting step was also discussed. When
引文
[1] H. Tveit. Environmental Aspects of the Ferroally Industry[A]. Proceedings of INFCON 8 [C]. 1998.13-19.
    [2] 徐匡迪,蒋国昌,徐建伦,等.21世纪钢铁生产流程的理论解析[A].北京第125次香山科学会议文集[C].北京:香山科学会议中心,1999.31-44.
    [3] 丁伟中.高效氢还原金属氧化物过程的基础研究.上海市自然科学基金申请书.2000.
    [4] 徐匡迪.20世纪—钢铁冶金从技艺走向工程科学[J].上海金属,2002,24(1):1-10.
    [5] Lynch D. C., Bullard D. E., Cherne F. J., Osborn D. E. Use of electromagnetic radiation and quantized energy in enhancement of chemical reactions[A]. Proceedings of the 2nd International Symposium on Metallurgical Processes for the Year 2000 and Beyond and the 1994 TMS Extraction and Process Metallurgy Meeting[C]. H. Y. Sohn, The Minerals, Metals and Materials Society. Part 1 (of2): 1994 Sep 20-23.
    [6] 徐匡迪.中国钢铁工业的任务、现状和发展[J].自然杂志,2000,22(4):187-193.
    [7] N. Standish and H. Worner. Microwave Application in the Reduction of Metal Oxides with Carbon[J]. J. Microwave Power and Electromagnetic Energy, 1990, 25(9): 177-108.
    [8] N. Standish and Pramusanto. Reduction of Microwave Irradiated Iron Ore Particles in CO[J]. ISIJ Int., 1991, 31(11):11-16.
    [9] 金欣汉.微波化学[M].北京:科学出版社,1999.1-318.
    [10] A. Roine. Outokumpu HSC Chemistry for Windows: Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Pori, Finland: Outokumpu (1999).
    [11] Terkel Rosenqvist. Principles of extractive metallurgy(second edition)[M]. New York: McGraw-Hill Book company, 1983. 1-506.
    [12] 文光远.铁冶金学[M].重庆:重庆大学出版社,1993.10.
    [13] 王雅蓉,李继光,赵国军,等.磁铁矿在H_2/Ar气氛中还原产物显微结构与形貌变化的原位观测[J].金属学报,1998,34(6):571-578.
    [14] 刘建华,张家芸,周土平.氢气还原铁氧化物反应表观活化能的评估[J].钢铁研究学报,1999,11(6):9-13.
    [15] Y. Zhao, F. Shadman. Reduction of ilmenite with hydrogen[J]. Ind. Eng. Chem. Res., 1991, 30(9):2080-2087.
    [16] Bardi G., Goaai D., Stranges S.. High temperature reduction kinetics of ilmenite by hydrogen[J]. Mater. Chem. Phys., 1987, 17:325-341.
    [17] Werner V. Schulmeyer, Hugo M. Ortner. Mechanisms of the hydrogen reduction of molybdenum oxides[J]. International Journal of Refractory Metals & Hard Materials., 2002, (20):261-269.
    [18] Jerzy Sloczynski. Kinetics and mechanism of molybdenum(Ⅵ) oxide reduction. Journal of solid state chemistry[J], 1995, 118:84-92.
    [19] Dean S. V., Michaei E. B.. Reduction of tungsten oxides with hydrogen and with hydrogen and carbon[J]. Thermochimica Acta, 1996, 285:361-382.
    [20] Andreas Lackner, Andreas Filzwieser, Peter Paschen, et al. On the reduction of Tungsten Blue oxide in a stream of hydrogen[J]. Int. J. of Refractory Metals and Hard Materials, 1996, 14:383-391.
    [21] Zeiler B., Schubert W. D., Lux B.. On the reduction of tungsten blue oxide-Part Ⅰ: Literature review[J]. Int. J. Refr. Metals Hard Mater., 1991, 10:83-90.
    [22] Zhiqiang Z.. Formation of tungsten blue oxide and its phase constitution[J]. Modern Developments in Powder Metallurgy, 1985, 17:3-6.
    [23] Yuping N.. The reduction mechanism of blue tungsten oxide by hydrogen[J]. Modern Developments in Powder Metallurgy, 1985, 17:15-19.
    [24] Zhengji T.. Investigation of hydrogen reduction process for blue tungsten oxide[J]. J. Refr. Metals Hard Mater., 1989, 8:179-184.
    [25] Schubert W. D.. Kinetics of the hydrogen reduction of tungsten oxides[J]. J. Refr. Metals Hard Mater., 1990, 9:178-191.
    [26] Fouad N. B., Attiya K. M. E.. Thermogravimetry of WO_3 reduction in hydrogen:kinetic characterization of autocatalytic effects[J]. Powder Technol., 1993, 74:31-39.
    [27] Bustnes J. A., Sichen D., Scctharaman S.. Application of nonisothermal thermogravimetric method to the kinetic study of the reduction of metallic oxides[J]. Metal. Trans., 1993, 24B: 475-480.
    [28] Savin A. V.. On the practice and theory of reduction of tungsten oxides[J]. Izvestiya Rossiiskai Akademii Nauk Metally, 1993, 4:22-26.
    [29] James T. Richardson, Robert Scates, Martyn V. Twigg. X-ray diffraction study of nickel oxide reduction by hydrogen[J]. Applied Catalysis A: General, 2003, 246:137-150.
    [30] Bustness J. A., Sichen D. and Seetharaman. Matell. Mater. Trans., 1995, 26B:547.
    [31] 刘建华,张家芸,周土平,等.Co_3O_4的还原过程动力学研究[J].金属学报,2000,36(8):837-741.
    [32] Yagi S, Kunii D. Fifth Symposium on Combustion, Reinhold, New York 1955; Chem Eng (Japan), 1955; 231.
    [33] Park JY, Levenspiel O. The crackling core model for the reaction of solid particles[J]. Chem Eng Sci, 1975, 30:1207-1214.
    [34] 李正邦.钢铁冶金前沿技术[M].北京:冶金工业出版社,1997.1-96.
    [35] Dembovsky, V. Steel refining by chemically active plasma[J]. Journal of Materials Processing Technology, 1998, 78(1):34-42.
    [36] Alemany C., Trassy C., Pateyron B., et al. Refining of metallurgical-grade silicon by inductive plasma[J]. Solar Energy Materials and Solar Cells, 2002, 72(1)41-48.
    [37] Mimura, K., Lee, S.-W., Isshiki, M. Removal of alloying elements from zirconium alloys by hydrogen plasma-arc melting[J]. Journal of Alloys and Compounds, 1995, 221(4):267-273.
    [38] 朱凯荪.直接还原在当代冶金变革中的发展[J].宝钢技术,1997,(2):54-60.
    [39] 吴国元.戴永年.等离子技术在冶金中的应用[J].昆明理工大学学报,1998,23(3):108-115.
    [40] Koji Kamiya, Nobuyasu Kitahara, Isao Morinaka, et al. Reduction of molten iron oxide and FeO bearing slags by H_2-Ar plasma[J]. Transactions ISIJ, 1984, 24:7-16.
    [41] G. W. Long, K. Mura, K. Taniuchi, J. Japan Inst. Light Metals, 1981, 31:462-468.
    [42] D. Degout, F. Kassabji, P. Fauchais, Plasma Chem. Plasma Process, 1984, 4:179-180.
    [43] T. Kitamura, K. Shibata, K. Takeda. In-flight Reducti on of Fe_2O_3, Cr_2O_3, TiO_2 and Al_2O_3 by Ar-H_2 and Ar-CH_4 Plasma[J]. ISIJ International, 1993, 33(11): 1150-1158.
    [44] R. A. Palmer, T. M. Doan, P. G. Lloyd, et al. Reduction of TiO_2 with Hydrogen Plasma[J]. Plasma Chemistry and Plasma Processing, 2002, 22(3):335-350.
    [45] Watanabe Takayuki, Soyama Makoto, Kanzawa Atsushi, et al. Reduction and separation of silica-alumina mixture with argon-hydrogen thermal plasmas[J]. Thin solid film, 1999, 345(1):161-166.
    [46] I. Mohai, J. Szepvo lgyi, Z. Karoly, et al. Reduction of Metallurgical Wastes in an RF Thermal Plasma Reactor[J]. Plasma Chemistry and Plasma Processing, 2001, 21(4):547-563.
    [47] Dietmar Vogel, Eberhard Steinmetz, Herbert Wllhelmi. Experiments on the smelting reduction of oxides of iron, chromium and vanadium and their mixtures with argon/methane-plasma[J]. Steel research, 1989, 60(3): 177-181.
    [48] A. Huczko, P. Meubus. Vapor phase reduction of Chromic oxide in an Ar-H_2 Rf plasma[J]. Metallurgical Transactions B. 1988, 19(12):927-933.
    [49] Mozetic M, Drobnic M. Atomic hydrogen density along a continuously pumped glass tube[J]. Vacuum, 1998, 50(3):319-322.
    [50] Bullard D E, Lynch D C. Reduction of Ilmenite in a Nonequilibrium Hydrogen Plasma[J]. Metall Mater Trans B, 1997, 2813(6):517-519.
    [51] Bullard D E, Lynch D C. Reduction of Titanium Dioxide in a Nonequilibrium Hydrogen Plasma[J]. Metall Mater Trans B, 1997, 28B(6): 1069-1080.
    [52] P. P. Ward. Plasma cleaning techniques and future applications in environmentally conscious manufacturing[J]. SAMPE J., 1996, 32 (1):51-54.
    [53] S. Raoux, T. Tanaka, M. Bhan, et al. Remote microwave plasma source for cleaning chemical vapor deposition chambers: technology for reducing global warming gas emissions[J]. J. Vac. Sci. Technol. B 1999,17 (2): 477-485.
    [54] M. A. Lieberman, A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing[M]. New York: Wiley, 1994. 1-121.
    [55] A. Grill. Cold Plasma in Materials Fabrication: from Fundamentals to Applications[M]. New York: IEEE Press, 1994. 1-11.
    [56] 王敬义,王宇,尹盛,等.冷等离子体冶金效应研究[J].太阳能能学报,2000,21(1):35-39.
    [57] 陶甫廷,王敬义,王宇,等.Si-Ge粉粒在冷等离子体中沉降的提纯效应分析[J].半导体技术,2000,25(3):43-46.
    [58] 陶甫廷,王敬义,冯信华,等.冷等离子体对硅-锗纯化的实验研究[J].广西工学院学报.2000,11(4):26-28.
    [59] Miran Mozetic. Discharge cleaning with hydrogen plasma[J]. Vacuum, 2001, 61 (3):367-371.
    [60] Annemie Bogaerts, Erik Neyts, Renaat Gijbels, et al. Gas discharge plasmas and their applications[J]. Spectrochimica Acta Part B, 2002, 57:609-658.
    [61] Mozetic, M., Zalar, A., Drobnic, M.. Reduction of thin oxide layer on Fe_(60)Ni_(40) substrates in hydrogen plasmas[J]. Thin solid film, 1999, 52(2): 101-104.
    [62] Yasushi Sawada, Hiroshi Tamaru, Masuhiro Kogoma, et al. The reduction of copper oxide thin films with hydrogen plasma generated by an atmospheric-pressure glow discharge[J]. J. Phys. D:Appl. Phys., 1996, 29:2539-2544.
    [63] Yasushi Sawada, Noriyuki Taguchi, Kunihide Tachibana. Reduction of copper oxide thin films with hydrogen plasma generated by a dielectric-barrier glow discharge[J]. Jpn. J. Appl. Phys., 1999, 38(11):6506-6511.
    [64] Ron Kroon. Removal of oxygen from the Si(100) surface in a DC hydrogen plasma. Jpn[J]. J. Appl. Phys., 1997, 36(8):5068-5071.
    [65] F. Brecelj and M. Mozetic. Reduction of metal oxide thin layers by hydrogen plasma[J]. Vacuum, 1990, 40(1): 177-178.
    [66] Robine C V. Representation of Mixed Reactive Gases on Free Energy (Ellingham-Richardson)Diagrams[J]. Metall Mater Trans B, 1996, 27B(2):65-69.
    [67] Orvar Braaten, Arne Kjekshhus and Halvor Kvande. Possible reduction of alumina to aluminum using hydrogen[J]. JOM, 2000, 52(2):47-54.
    [68] 赵化桥.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.1-315.
    [69] 陈杰溶.低温等离子体及其应用[M].北京:科学出版社,2001.1-200
    [70] M. R. Baklanov, D. G. Shamiryan, Zs. Tokei, at el. Characterization of Cu surface cleaning by hydrogen plasma[J]. J. Vac. Sci. Technol., 2001, 19B(4): 1201-1211.
    [71] Petasch, W., Kegel, B. Schmid, H., Lendenmann, K. and Keller, H. U. Low-pressure plasma cleaning: a process for precision cleaning applications[J]. Surface and Coatings Technology, 1997, 97(1):176-181.
    [72] D. L. Flamm. In Introduction to Plasma Chemistry[M]. Boston, MA: Academic Press, 1989. 91-178.
    [73] 冯信华,何笑明,陈丽等.冷等离子体对硅粉薄层的提纯研究[J].半导体技术,1998,23(4):43-47.
    [74] 李忠,王敬义,何笑明,等.等离子体提纯硅粉的实验研究[J].微细加工技术,1996,(1):44-47.
    [75] M. A. Lieberman. Plasma discharges for materials processing and display applications[A]. in: H. Schluter, A. Advanced Technologies Based on Wave and Beam Generated Plasmas[C]. Shivarova (Eds.). Kluwer, Dordrecht:, NATO Science Series, 1999.1-22.
    [76] J. L. Shohet. Plasma-aided manufacturing[J]. Phys. Fluids B., 1990, 2:1474-1477.
    [77] Kazutoshi Kiyokawa, Akihiko Ito, Hiroyuki Matsuoka, et al. Surface treatment of steel using non-equilibrium plasma at atmospheric pressure[J]. Thin solid film, 1999, 345(1):119-123.
    [78] 徐学基,褚定昌.气体放电物理[M].上海:复旦大学出版社,1996.121-158.
    [79] Raizer Y P. Gas Discharge Physics[M]. New York: Springer, 1991. 1-101.
    [80] L. S. Polak and Yu. A. Lebedev, Plasma Chemistry. Cambridge: Cambridge International Science Publishing, 1998. 1-390.
    [81] 国家自然科学基金委员会.等离子体物理学[M].北京:科学出版社,1994.114.
    [82] M. Nunogaki. Transformation of titanium surface to TiC-or TiN-ceramics by reactive plasma processing[J]. Materials and Design, 2001, 22(7): 601-604.
    [83] Xueji Xu. Dielectric barrier discharge-properties and pplications[J]. Thin Solid Films, 2001, 390(2): 237-242.
    [84] H.-E. Wagnera, R. Brandenburga, K. V. Kozlov, et al. The barrier discharge: basic properties and applications to surface treatment[J]. Vacuum, 2003, 71(3): 417-436.
    [85] R. Suchentrunk, G. Staudigl, D. Jonke, et al. Industrial applications for plasma processes—examples and trends[J]. Surface and Coatings Technology, 1997, 97 (1): 1-9.
    [86] Helmut Kaufmann. Industrial applications of plasma and ion surface engineering[J]. Surface and Coating Technology, 1995, 74(1):23-28.
    [87] Efstathios I. Meletis. Intensified plasma-assisted processing: science and engineering[J]. Surface and Coatings Technology, 2002, 149 (1):95-113.
    [88] Lieberman M A, Lichtenberg A J. Principles of Plasma Discharges for Materials Processing[M]. New York: Wiley Interscience, 1994.10-75.
    [89] J.R.罗思.工业等离子体工程(第一卷 基本原理)[M].吴坚强,季天仁.北京:科学出版社,1998.50-90.
    [90] J. Jurewicz, A. Huczko. New trends in plasma chemistry: neutralization of wastes and pollutants[J]. Przemysl Chemiczny (Polish), 1997, 76 (1):3-7.
    [91] A. Huczko. Plasma chemistry and environmental-protection-application of thermal and nonthermal plasmas[J]. Czech. J. Phys., 1995, 45 (12):1023-1033.
    [92] P. P. Ward. Plasma cleaning techniques and future applications in environmentally conscious manufacturing[J]. SAMPE J. 1996, 32 (1): 51-54.
    [93] Z. L. Petrovic, T. Makabe. Nonequilibrium plasmas for material processing in microelectronics[J]. Adv. Mater. Proc., 1998, 282 (2): 47-56.
    [94] A. Matsuda. Plasma and surface reactions for obtaining low defect density amorphous silicon at high growth rates[J]. J. Vac. Sci. Technol. A: Vac. Surf. Films, 1998, 16 (1):365-368.
    [95] C. G. Schwarzler, O. Schnabl, J. Laimer, et al. On the plasma chemistry of the C/H system relevant to diamond deposition processes[J]. Plasma Chem. Plasma Proc., 1996, 16 (2):173-185.
    [96] C. Benndorf, P. Joeris, R. Kroger, Mass and optical-emission spectroscopy of plasmas for diamond synthesis[J]. Pure Appl. Chem., 1994, 66 (6): 1195-1205.
    [97] C. H. Kruger, T. G. Owano, C. O. Laux, Experimental investigation of atmospheric pressure nonequilibrium plasma chemistry[J]. IEEE Trans. Plasma Sci., 1997, 15 (5):1042-1051.
    [98] H. Biederman, Y. Osada. Plasma chemistry of polymers[J]. Adv. Polym. Sci., 1990, 95:57-109.
    [99] J. E. Greene, A. Rockett, J. E. Sundgren, The role of low-energy ion/surface interactions during crystal growth from vapor phase[J]. Mater. Res. Soc. Symp. Proc., 1987, 74:59-73.
    [100] S. Veprek, F. A. Sarortt, S. Ramber, et al. Surface hydrogen content and passivation of silicon deposited by plasma-induced chemical vapor deposition from silane and the implications for the reaction mechanism[J]. J. Vac. Sci. Technol. A, 1989, 7:2614.
    [101] H. F. Winters, Phenomenon produced by ion bombardment in plasma-assisted etching environments[J]. J. Vac. Sci. Technol. A, 1988, 6 (3):1997.
    [102] 任兆杏,丁振峰.低温等离子体技术[J].自然杂志,1996,18(4):202-207.
    [103] H. V. Boenig. Fundamentals of Plasma[M]. Lancaster: Technomic Publishing Co., 1988. 417.
    [104] 菅井秀郎.等离子体电子工程学[M].张海波,张丹.北京:科学出版社(OHM社),2002.1-159.
    [105] N St J Braithwaite. Introduction to gas discharges[J]. Plasma Sources Sci. Technol, 2000, 9: 517-527.
    [106] 李学丹.低温等离子体化学[J].化学通报,1991(5):17-19.
    [107] J. R. Hollaban, A. T. Bell, John Wiley, et al. Techniques and Application of Plasma Chemistry[M]. New York. 1974.
    [108] 徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社.1985.1-180.
    [109] 金佑民,樊友兰.低温等离子体物理基础[M].北京:清华大学出版社.1983.1-74.
    [110] M. Y. A. Mollah, R. Schennach, J. Patscheider, et al. Plasma chemistry as a tool for green chemistry, environmental analysis and waste management[J]. Journal of Hazardous Materials B, 2000, 79 (3):301-320.
    [111] 张芝涛.鲜渔泽.白敏东等.强电离放电研究[J].东北大学学报,2002,23(5):507-51.
    [112] Annemie Bogaerts, Erik Neyts, Renaat Gijbels, et al. Gas discharge plasmas and their applications[J]. Spectrochemica Acta Part B, 2002, 57 (4): 609-658.
    [113] 胡征.等离子体化学基础[J].化工时刊,2000,4:43-46.
    [114] 韩立民.等离子热处理[M].天津:天津大学出版社.1997:25.
    [115] F. K. McTaggart. Plasma Chemistry in Electrical Discharges[M]. New York: Elsevier, 1967. 1.
    [116] D. L. Cocke, M. Jurcik-Rajman, S. Veprek, The surface properties and reactivities of plasma-nitrided iron and their relation to corrosion passivation[J]. J. Electrochem. Soc., 1989, 136 (12) 3655.
    [117] G. Bonizzoni, E. Vassallo. Plasma physics and technology; industrial applications[J]. Vacuum, 2002, 64 (2):327-336.
    [118] 孙铭山,丁伟中,杨松华等.在冶金熔体中产生直流辉光等离子体的控制电路[J].钢铁研究学报,2002,14(2):52-54.
    [119] W.-S. Lee, K.-W. Chae, K. Y. Eun. Generation pf pulsed direct-current plasma above 100 torr for large area diamond deposition[J]. Diamond and Related Materials, 2001, 10:2220-2224.
    [120] 孙康.宏观反应动力学及其解析方法[M].北京:冶金工业出版社,1998.46.
    [121] Tawara H., Itikawa Y.. Nishimura H, oshino M.. Cross Sections and Related Data for Electron Collisions with Hydrogen Molecules and Molecular

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700