用户名: 密码: 验证码:
基于标记点过程的机载激光扫描点云建筑物提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过近二十多年的发展,机载激光扫描系统(Airborne laser scanning system, ALS)已经从最初的实验室研究阶段发展成为成熟的商业产品,具备数据采集速度快、处理周期短、高精度、高密度、获取成本较低等优点,能够直接、快速的采集大面积区域的空间三维信息,正日益成为空间数据采集技术的一个新的发展方向。机载激光扫描数据被广泛的应用于3D城市建模、电力线走廊三维制图、数字高程模型生成、植被检测以及环境研究等领域。建筑物作为人们生活和工作的重要场所,是城市空间中的重要实体,其位置边界信息是地籍图生成、建筑物三维重建、地图更新以及变形监测等应用方面的宝贵数据源。因此,研究机载激光扫描数据中的建筑物目标提取具有非常重要的意义。
     从机载激光扫描数据中提取建筑物目标一直是摄影测量与遥感、计算机视觉等领域的研究热点。近年来,国内外对基于机载激光扫描数据的建筑物目标提取进行了广泛的研究。但是由于建筑物及其周围地形的多样性和复杂性,使建筑物的提取具有较多的困难,至今还没有一种适用于任何数据质量以及任何场景的建筑物提取方法。同时由于机载激光扫描数据具有离散随机性以及分布不均匀性等特性,对建筑物的提取也带来了一定的困难。针对上述问题,本文研究了利用标记点过程从机载激光扫描数据中直接提取建筑物的方法。该方法是一种基于目标的、稳健的且能准确从点云数据中提取建筑物目标的方法。该方法首先构建出面向建筑物提取的Gibbs能量模型,然后对该能量模型进行优化求解以获取初步的建筑物区域,最后对初步获取的建筑物区域进行精细处理,从而得到精确的建筑物轮廓。本文的主要研究内容如下:
     1、介绍了本文的研究背景和意义以及机载激光扫描系统及其应用。针对机载激光扫描数据的特点以及目前建筑物提取的难点,提出了本文的研究目标。针对机载激光扫描数据中建筑物目标的提取以及标记点过程方法用于几何目标提取这两个方面的研究现状进行了综述,总结了目前从机载激光扫描数据中进行建筑物目标提取的难点和不足及其可能的发展趋势。
     2、介绍了利用标记点过程方法进行几何目标提取的研究背景,并简要叙述了点过程和标记点过程的理论。根据建筑物在机载激光扫描数据中的几何形状特点,确定了将长方体作为建筑物的几何标记模型。根据建筑物在散乱点云中的结构特征以及建筑物目标之间的相互关系构建了能直接从点云数据中提取建筑物目标的Gibbs能量模型,有效的将建筑物目标的空间信息和空间关系引入到新构建的Gibbs能量模型中,为建筑物目标的准确提取奠定了基础。
     3、针对构建出的Gibbs能量模型的函数属于非线性函数,难以从理论上进行分析并获取对应的解析解的情况,本文采用RJMCMC方法与模拟退火算法相结合的方法获取Gibbs能量模型的全局最优解。虽然该求解方法能够从任何的初始状态下收敛到全局最优解,但运行效率却比较低,故本文对该求解方法进行了优化,以有效的提高算法的运行效率,节省运行时间。
     4、求解Gibbs能量模型后可以初步的获取建筑物区域。但是这些区域的边界可能并不精确,也不完整,同一个建筑物可能由多个区域构成,同时其中也可能存在一些错误提取的区域。因此本文对初步获取的建筑物区域进行精细化处理。利用建筑物目标的几何属性特征结合区域生长算法剔除错误提取的地面点、树冠点、噪声点以及树冠等非建筑物目标;然后对邻接区域进行合并并利用改进的凸包算法求取每个建筑物目标的精确轮廓。
     5、采用ISPRS机构提供的基准测试数据验证本文提出的算法的准确性和有效性。对本文提出的算法中用到的参数进行分析和探讨,并对实验结果进行精度评价与分析。最后以F1Measure作为度量建筑物目标提取的精度评价标准,将本文提出的方法与其它的建筑物提取方法进行比较。详尽的实验结果及其评价数据证明了本文提出的算法的准确性和有效性。
At the developments of nearly twenty years, airborne laser scanning (ALS) systems have become an accepted means of capturing accurate spatial data in an efficient way because of directly obtain the3D coordinates of objects, short data acquisition and processing times, relatively high accuracy and point density, and reduction in acquisition costs. The ALS data is widely used in numerous applications such as3D city modeling,3D mapping of power lines corridors, digital elevation models generation (DEMs), and environmental studies. Building is an important place for people to live and work. And building is also an important entity in the city space. Data of building outlines are an invaluable data source for automatic generation of cadastral maps,3D building reconstruction, change detection, and so on. Therefore, it is very significant to extract building from ALS data.
     Extracting buildings from ALS data has been an active topic in the field of photogrammetry, remote sensing, and computer vision. Different approaches for extracting buildings have been reported in the last decade. But due to the diversity and complexity of building and its surrounding terrain, there are still a lot of difficulties in building extraction. So far there is not a good building extraction method which is suitable for any quality data and any scene. On the other hand, due to the discrete randomness and inhomogeneous distribution of ALS data, building extraction is become more difficult. Aiming at these problems, this paper investigates the method of building extraction directly from ALS data based on marked point process. This method is an object-oriented and robust method. Firstly, the Gibbs energy model of building objects is modeled. Then, an optimized solution strategy was put forward to find a maximum a posteriori estimate of the Gibbs energy model. Finally, a refinement operator is performed to extract building roof outlines. The main research context of this paper as follows:
     1. The research background and significance of this paper as well as ALS system and its application are introduced. After the discussion of characteristics of ALS data and existing problems of building extraction, the research objectives and contents of this paper are proposed. Then the related works of building extraction from ALS data and geometric feature extraction by marked point process are reviewed. Moreover, the difficulties and possible prospects of building extraction from ALS data are pointed out.
     2. The background and theory of point process and marked point process are introduced. According to the geometric characteristics of buildings, the marked space consists of marked point process of cuboids are defined to describe buildings. Then the Gibbs energy model which can extract building directly from ALS data is build according to the geometric feature and relationship of the objects in the point cloud data. This model contains both a data coherence term which fits the objects to the data and a prior term which incorporates the prior knowledge of the object geometric properties. Spatial relationship and information of buildings are introduced to Gibbs energy model effectively. It laid a foundation for building extraction.
     3. For the function of Gibbs energy model is a nonlinear function, it is difficult to analysis and obtain analytical solution in theory. Therefore, Reverse Jump Markov Chain Monte Carlo (RJMCMC) coupled with simulated annealing is used to find a maximum a posteriori estimate of the number, the locations and sizes of building objects described by the Gibbs energy model. This solving algorithm can converging to global optimal solution from any initial state. But just as all the sampling-based approaches, the proposed method has also a heavy time cost because of huge computing burden. To improve the efficiency of method, the solving algorithm has been optimized and improved.
     4. Once the optimal solution of the Gibbs energy U(x) is obtained by RJMCMC coupled with simulated annealing, the building objects of ALS data are detected. However, a lot of objects with the similar shapes of cuboid or with low heights might be detected as buildings as well. On the other hand, one building may have attachments or different levels, resulting in incomplete detection. The above cases lead to bad qualities of building footprints extraction. Hence, a refinement operator is performed to extract building roof outlines from the extracted building objects by filtering false buildings and merging the connecting parts of buildings. Finally, the modified convex hull method is applied to extract the outlines of detected building objects,.
     5. The proposed model was tested with the ALS dataset of Vaihingen, Germany and Toronto (5datasets in total), in the context of the 'ISPRS Test Project on Urban Classification and3D Building Reconstruction'. This paper analysis and discuss the parameters which were used in the proposed algorithm. And the comprehensive evaluation and comparison on the detected outlines of buildings were performed by ISPRS Workgroup III/4based on the completeness, the correctness, and the quality of the results both on a per-object and on a per-area level. On the other hand, F1measure is used to compare the results of building extraction from the proposed method and other methods. The experimental results show the proposed building extraction method can get good extraction performance in terms of pixel based and object based completeness, correctness, and RMSEs. It also shows that the proposed method provides a functional and effective solution for directly extracting building objects from ALS data of a variety of scenes without resampling or gridding the input data.
引文
[1]Ackermann, F.,1999. Airborne laser scanning-present status and future expectation. ISPRS Journal of Photogrammetry and Remote Sensing,54(2-3):64-67.
    [2]Akel, N.A., Kremeike, K., Filin, S., Sester, M., Doytsher, Y.,2005. Dense DTM Generalization Aided by Roads Extracted from LiDAR Data. International Archives of Photogrammetry and Remote Sensing.36:54-60.
    [3]Alexander, C., Tansey, K., Kaduk, J., Holland, D., Tate, N.J.,2011. An approach to classification of airborne laser scanning point cloud data in an urban environment. International Journal of Remote Sensing,32(24).
    [4]Alharthy, A., Bethel, B.,2002. Heuristic Filtering and 3D Feature Extraction from LIDAR Data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, vol. XXIV part 3, pp.212-223, Graz, Austria.
    [5]Arefi, H., Hahn, M., Samadzadegan, F., Lindenberger, J.,2004. Comparison of clustering techniques applied to laser data. Geo-imagery Bridging continents xxth ISPRS congress.
    [6]Axelsson, P.,1999. Processing of laser scanner data-algorithm and applications. ISPRS Journal of Photogrammetry and Remote Sensing,54(2-3):138-147.
    [7]Baddeley, A., Van Lieshout, M.,1993. Stochastic geometry models in high-level vision. Journal of Applied Statistics,20(5):231-256.
    [8]Bartels, M., Wei, H.,2006. Maximum likelihood classification of LIDAR data incorporating multiple co-registered bands. In:4th International Workshop on Pattern Recognition in Remote Sensing in Conjunction with the 18th International Conference on Pattern Recognition, Hong Kong,20 August 2006, pp.17-20.
    [9]Belair F.,2008. http://cgm.cs.mcgill.ca/-godfried/teaching/projects97/belair/alpha.html. (Accessed January,2008).
    [10]Beitzel, S.M.,2006. On Understanding and Classifying Web Queries. PhD, Illinois Institute of Technology. In Chicago, Illinois.
    [11]Benedek, C., Descombes, X., Zerubia, J.,2009. Building Extraction and Change Detection in Multitemporal Remotely Sensed Images with Multiple Birth and Death Dynamics. In IEEE Workshop on Applications of Computer Vision (WACV), pages 100-105, Snowbird, Utah, USA.
    [12]Benedek, C., Descombes, X., Zerubia, J.,2010. Building Detection in a Single Remotely Sensed Image with a Point Process of Rectangles. In Proc. International Conference on Pattern Recognition (ICPR), Istanbul, Turkey.
    [13]Bigone, F., Henricsson, O., Fua, P., Stricker, M.,1996. Automatic extraction of generic house roofs from high resolution aerial imagery. European Conference on Computer Vision (ECCV), Cambridge, UK,85-96.
    [14]Brennan, R., Webster, T.L.,2006. Object-oriented land cover classification of lidar-derived surfaces. Canadian Journal of Remote Sensing,32, pp.162-172.
    [15]Brenner, C.,2000. Towards fully automatic generation of city models. International Archives of Photogrammetry and Remote Sensing,85-92.
    [16]Brown, M.Z., Burschka, D., Hager, D.,2003. Advances in computational stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence,25(8):993-1008.
    [17]Brunn, A., Weidner, U.,1997. Extraction buildings from digital surface models. International Archives of Photogrammetry and Remote Sensing:27-34.
    [18]Brunn, A., Weidner, U.,1998. Hierarchical bayesian nets for building extraction using dense digital surface models. ISPRS Journal of Photogrammetry & Remote Sensing,53(5):296-307.
    [19]Butler, D.,2006. Virtual globes:the web-wide world. Nature,439(7078):776-778.
    [20]Cheng, L., Gong, J.Y., LI, M.C., Liu, Y.X.,2011.3D building model reconstruction from multi-view aerial images and LiDAR data. Photogrammetric Engineering & Remote Sensing,77(2):125-139.
    [21]Clode, S., Rottensteiner, F., Kootsookos, P., Zelniker, E.,2007, Detection and Vectorisation of roads from LiDAR data. Photogrammetric Engineering and Remote Sensing,73(5):17-35.
    [22]Cramer, M.,2010. The DGPF-test on digital airborne camera evaluation-Overview and test design. Photogrammetrie-Fernerkundung-Geoinformation, vol.2010, no.2, pp.73-82.
    [23]Descombes, X., Zerubia, J.,2002. Marked Point Process in Image Analysis. IEEE Signal Processing Magazine,19(5):77-84.
    [24]Descombes, X., Pechersky, E.,2006. Tree Crown Extraction using a Three States Markov Random Field. Research Report, vol.5982, INRIA, France.
    [25]Dick, A., Torr, P., Cipolla, R.,2004. Modelling and interpretation of architecture from several images. International Journal of Computer Vision,60(2):111-134.
    [26]Eriksson, M., Perrin, G., Descombes, X., Zerubia, J.,2006. A comparative study of three methods for identifying individual tree crowns in aerial images covering different types of forests. International Society for Photogrammetry and Remote Sensing (ISPRS), Marne La Vallee, France.
    [27]Filin, S.,2002. Surface clustering from airborne laser scanning data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences,34, Part 3 A, pp.117-124.
    [28]Fixsen, D., Mahle, R.P.S.,1997. The Modified Dempster-Shafer Approach to Classification. IEEE Transactions on Systems, Man and Cybernetics, Part A:Systems and Humans,27(1):96-104.
    [29]Gamal-Eldin, A., Descombes, X., Zerubia, J.,2010. Multiple Birth and Cut Algorithm for Point Process Optimization. Sixth IEEE International Conference on Signal-Image Technologies and Internet-Based System,pp.35-42.
    [30]Gamal-Eldin, A., Descombes, X.,Charpiat, G., Zerubia, J.,2011. A fast Multiple Birth and Cut algorithm using belief propagation.18th IEEE International Conference on Image Processing, pp. 2813-2816.
    [31]Gamal-Eldin, A., Descombes, X., Charpiat, G., Zerubia, J.,2012. Multiple Birth and Cut algorithm for Multiple Object Detection. Journal of Multimedia Processing and Technologies.
    [32]Garcin, L., Descombes, X., Zerubia, J., Le Men, H.,2001. Building detection by Markov object processes. International Conference on Image Processing, vol.2:565-568.
    [33]Grabler, F., Agrawala, M., Sumner, R.W., Pauly, M.,2005. Automatic generation of tourist maps. ACM Transactions on Graphics (TOG),24(3):659-666.
    [34]Geman, S., Geman, D.,1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,6(6):721-741.
    [35]Gelfand, A.E., Smith, A.F.M.,1990. Sampling based approach to calculating marginal densities. Journal of the American Statistical Association,85(410):398-409.
    [36]Geyer, C.J., MOler, J.,1994. Simulation and Likelihood Inference for Spatial Point Process. Scandinavian J. Statistics, Series B,21:359-373.
    [37]Geyer, C.,1998. Likelihood inference for spatial point processes. In Stochastic Geometry:Likelihood and Computation (O. E. Barndorff-Nielsen, W. S. Kendall and M. N. M. van Lieshout, eds.), pages. 359-373. CRC Press/Chapman and Hall, London.
    [38]Geyer, C.J.,2003. The Metropolis-Hastings-Green algorithm, mimeo.
    [39]Green, P.,1995. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika,82(4):711-732.
    [40]Gruen, A.w.,1985. Adaptive least squares correlation:A powerful image matching technique. South African Journal of Photogrammetry, Remote Sensing, and Cartography,14(3):175-187.
    [41]Guo, T., Yasuoka, Y.,2002. Combining high resolution satellite imagery and airborne laser scanning data for generating bareland and DEM in urban areas. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol.XXX IV part No.:5/W3. In CD-ROM.
    [42]Haala, N., Anders, K.H.,1997. Acquisition of 3D urban models by analysis of aerial images, digital surface models and existing 2-D building information. SPIE Conference on Integrating Photogrammetric Techniques with Scene Analysis and Machine Vision, Orlando, pp:212-222.
    [43]Haala, N., Brenner, C.,1999. Extraction of buildings and trees in urban environments. ISPRS Journal of Photogrammetry and Remote Sensing, vol.54, no.(2-3),pp.130-137.
    [44]Henn, A., Groger, G., Stroh, V., Plumer, L.,2013. Model driven reconstruction of roofs from sparse LIDAR point clouds. ISPRS Journal of Photogrammetry and Remote Sensing,76(2013),17-29.
    [45]Horn, B.K.P., Sehunk, B.G.,1981. Determining optical flow. Artificial Intelligence, vol.17:185-204.
    [46]Huang. H., Brenner, C., Sester, M.,2013. A generative statistical approach to automatic 3D building roof reconstruction from laser scanning data. ISPRS Journal of Photogrammetry and Remote Sensing, 79(2013),29-43.
    [47]Huber, M., Schickler, W., Hinz, S., Baumgartner, A.,2003. Fusion of LIDAR data and aerial imagery for automatic reconstruction of building surface.2nd GRSS/ISPRS Joint Workshop on Remote Sensing and Data Fusion over Urban Areas, pp.82-86.
    [48]ISPRS benchmark test,2013. Results of'ISPRS Test Project on Urban Classification and 3D Building Reconstruction', http://www2.isprs.org/commissions/comm3/wg4/results.html. (accessed October 14, 2013).
    [49]Kim, K., Shan, J.,2011. Building roof modeling from airborne laser scanning data based on level set approach. ISPRS Journal of Photogrammetry and Remote Sensing, vol.66, no.4, pp.484-497.
    [50]Kwak, E.,2013. Automatic 3D building model generation by integrating LiDAR and aerial images using a hybrid approach. Ph.D. thesis, University of Calgary, in Canada.
    [51]Lacoste, C., Descombes, X., Zerubia, J.,2005. Point processes for unsupervised line network extraction in remote sensing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10):1568-1579.
    [52]Lafarge, F., Descombes, X., Zerubia, J., Pierrotdeseilligny, M.,2008. Automatic building extraction from DEMs using an object approach and application to the 3D-city modeling. ISPRS Journal of Photogrammetry and Remote Sensing,63(3):365-381.
    [53]Lafarge, F., Gimelfarb, G., Descombes, X.,2010. Geometric feature extraction by a multi-marked point process. IEEE Transactions on Pattern Analysis and Machine Intelligence,32(9):1597-1609.
    [54]Lafarge, F., Mallet, C.,2012. Creating Large-Scale City Models from 3D-Point Clouds:A Robust Approach with Hybrid Representation. International Journal of Computer Vision,99(1):69-85.
    [55]Lahamy, H.,2008. Outlining buildings using airborne laser scanner data. M.Sc. thesis, International Institute for Geo-Information Science and Earth Observation (ITC), the Netherlands.
    [56]Lam, J.,1988. An Efficient Simulated Annealing Schedule. PhD, Yale University.
    [57]Lodha, S. K., Fitzpatrick, D. M., Helmbold, D. P.,2007. Aerial LiDAR data classification using adaboost. International Conference on 3D Digital Imaging and Modeling, Montreal, USA, pp. 413-420.
    [58]Li, Q., Li, B., Chen, J.,2001. Research on laser range scanning and its application. Geo-spatial Information Science,4(1):37-42.
    [59]Lu, Y.H., Trinder, J.C., Kubik, K.,2006. Automatic building detection using the Dempster-Shafer algorithm. Photogrammetric Engineering and Remote Sensing,72(4),395-403.
    [60]Maas, H.G., Vosselman, G.,1999. Two algorithms for extraction building models from raw laser altimetry data. ISPRS Journal of Photogrammetry and Remote Sensing,54(2-3):153-163.
    [61]Mallet, C., Soergel, U., Bretar, F.,2008. Analysis of full-waveform LIDAR data for an accurate classification of urban areas. In ISPRS Congress, Proceedings of Commission Ⅲ, Beijing 2008, 37-B3a, pp.85-91.
    [62]Miliaresis, G., Kokkas, N.,2007. Segmentation and object-based classification for the extraction of the building class from LIDAR DEMs. Computers & Geosciences,33, pp.1076-1087.
    [63]M(?)ller, J.,1998. Markov chain Monte Carlo and spatial point process. In D. Stoyan, W. Kendall, and J. Mecke, editors, Stochastic Geometry and its Applications, chapter 4, pages 141-172. John Willey and Sons.
    [64]Moller, J., Waagepetersen, R.P.,2007. Modern Statistics for Spatial Point Processes. Scandinavian Journal of Statistics,34(4):643-684.
    [65]Mongus,D., Lukac,N., Obrul, D., and Zalik, B.,2013. Detection of Planar Points for Building Extraction From Lidar Data Based on Differential Morphological and Attribute Profiles. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. ScL, Ⅱ-3/W1,21-26, doi:10.5194/isprsannals-II-3-W1-21-2013.
    [66]Morgan, M., Tempeli, K.,2000. Automatic building extraction from airborne laser scanning data. Proceeding of the 19th ISPRS Congress. Book 3B, pp:616-623, Amsterdan.
    [67]Morgan, M., Habib, A.,2001.3D TIN for Automatic Building Extraction from Airborne Laser Scanning Data. ASPRS Annual meeting, Gateway to The New Millenium. St. Louis, MO, USA, CD ROOM.
    [68]Morgan, M., Habib, A.,2002. Interpolation of Lidar Data for Automatic Building Extraction. In: Proceedings of the ASPRS/ACSM Conference, Washington, D. C.
    [69]Moussa, A., El-Sheimy,2012. A new object based method for automated extraction of urban objects from airborne sensors data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, ⅩⅫ ISPRS Congress, Vol. ⅩⅩⅩⅨ-B3, Melbourne, Australia,25 August-01 September 2012, (CD-ROM).
    [70]Niemeyer, J., Wegner, J.D., Mallet, C., Rottensteiner, F., Soergel, U.,2011. Conditional random fields for urban scene classification with full waveform LiDAR data. U. Stilla et al. (Eds.):PIA 2011, LNCS 6952, pp.233-244.
    [71]Niemeyer, J., Rottensteiner, F., Soergel, U.,2012. Conditional random fields for Lidar point cloud classification in complex urban areas. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume 1-3, ⅩⅫ ISPRS Congress,25 August-01 September,2012, Melbourne, Australia.
    [72]Niemeyer, J., Rottensteiner, F., Soergel, U.,2013. Classification of Urban LiDAR data using Conditional Random Field and Random Forests, Proceedings of the JURSE 2013, April 21-23,2013-Sao Paulo-Brazil (CD-ROM).
    [73]Ortner, M., Descombes, X., Zerubia, J.,2002. Building extraction from digital elevation model. Research Report, vol.4517, INRIA, France.
    [74]Ortner, M., Descombes, X., Zerubia, J.,2003a. Building extraction from digital elevation models. In Proc. of ICASSP'03, Honk Kong.
    [75]Ortner, M., Descombes, X., Zerubia, J.,2003b. Improved RJMCMC Point Process Sampler for Object Detection by Simulated Annealing. Research Report, vol.4900, INRIA, France.
    [76]Ortner, M., Descombes, X., Zerubia, J.,2003c. Automatic 3D Land Register Extraction from Altimetric Data in Dense Urban Areas. Research Report, vol.4919, INRIA, France.
    [77]Ortner, M., Descombes, X., Zerubia, J.,2005. A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models. Research Report, vol.5712, INRIA, France.
    [78]Ortner, M., Descombes, X., Zerubia, J.,2007. Building outline extraction from digital elevation models using marked point processes. International Journal ofComputer Vision,72(2):107-132.
    [79]Ortner, M., Descombes, X., Zerubia, J.,2008. A marked point process of rectangles and segments for automatic analysis of Digital Elevation Models. IEEE Transactions on Pattern Analysis and Machine Intelligence,30(1):105-119.
    [80]Pauly, M.,2003. Point primitives for interactive modeling and processing of 3d geometry. PhD, ETH, Zurich.
    [81]Pereira, L.M.G., Janssen, L.L.F.,1999. Suitability of Laser Data for DTM Generation:A Case Study in the Context of Road Planning and Design. ISPRS Journal of Photogrammetry and Remote Sensing, 54(4):244-253.
    [82]Perrin, G., Descombes, X., Zerubia, J.,2004. Tree crown extraction using marked point processes. Proc. European Signal Processing Conference (EUSIPCO), University of Technology, Vienna, Austria.
    [83]Perrin, G., Descombes, X., Zerubia, J.,2005a. Point processes in forestry:an application to tree crown detection, Research Report, vol.5544, INRIA, France.
    [84]Perrin, G., Descombes, X., Zerubia, J.,2005b. A marked point process model for tree crown extraction in plantations. IEEE International Conference on Image Processing, pp.661-664.
    [85]Perrin, G., Descombes, X., Zerubia, J.,2006. A non-Bayesian model for tree crown extraction using marked point processes. Research Report, vol.5846, INRIA, France.
    [86]Poullis, C., You S.,2009. Automatic reconstruction of cities from remote sensor data. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009),20-25 June 2009, Miami, Florida, USA, pp.2775-2782.
    [87]Rijsbergen, C. J. Van,1979. Information retrieval. Second edition, Butterworths, London.
    [88]Rottensteiner, F., Briese, C.,2002. A new method for building extraction in urban areas from high-resolution LiDAR data. International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences, Graz, Austria, vol. XXIV part 3, pp.295-301.
    [89]Rottensteiner, F., Trinder, J., Clode, S., Kubik, K.,2003. Detecting buildings and roof segments by combining LIDAR data and multispectral images. Proceedings of Image and Vision Computing New Zealand (IVCNZ), Palmerston North (New Zealand), pp.60-65.
    [90]Rottensteiner, F., Trinder, J., Clode, S., Kubik, K.,2004a. Fusing airborne laser scanner data and aerial imagery for the automatic extraction of buildings in densely built-up areas. The ISPRS Twentieth Annual Congress, Istanbul, Turkey, pp.512-517.
    [91]Rottensteiner, F., Trinder, J., Clode, S., Kubik, K., Lovell, B.,2004b. Building detection by Dempster-Shafer fusion of LIDAR data and multispectral aerial imagery. In:Proc.17th International Conference on Pattern Recognition, ICPR'04, Cambridge, United Kingdom,23-26 August 2004, pp.339-342.
    [92]Rutzinger, M., Rottensteiner, F., Pfeifer, N.,2009. A comparison of evaluation techniques for building extraction from airborne laser scanning. IEEE Selected Topics in Applied Earth Observations and Remote Sensing, vol.2, no.1, pp.11-20.
    [93]Sahar, L., Muthukumar, S., French, S. P.,2010. Using aerial imagery and GIS in automated building footprint extraction and shape recognition for earthquake risk assessment of urban inventories. IEEE Transactions on Geoscience and Remote Sensing,48(9), pp.3511-3520.
    [94]Samadzadegan, F.,2004. Object Extraction and Recognition from Lidar Data Based on Fuzzy Reasoning and Information Fusion. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences,35(7):921-926.
    [95]Sampath, A., Shan, J.,2007. Building boundary tracing and regularization from airborne LiDAR point clouds. Photogrammetric Engineering & Remote Sensing,73(7),805-812.
    [96]Snyder, D. L.,1975. Random point processes. New York:John Wiley & Sons.
    [97]Sohn, G., Dowman, I.,2007. Data fusion of high-resolution satellite imagery and LiDAR data for automatic building extraction. ISPRS Journal of Photogrammetry and Remote Sensing,62(1):43-63.
    [98]Song, G., Dowman, I.,2003. Building extraction using LIDAR DEMs and IKONOS images. Proceedings of the ISPRS working group Ⅲ/3 workshop.
    [99]Stoica, R., Descombes, X., Zerubia, J.,2004. A Gibbs point process for road extraction from remotely sensed images. International Journal of Computer Vision,57(2):121-136.
    [100]Sun, K., Sang, N., Zhang, T.,2007. Marked point process for vascular tree extraction on angiogram. EMMCVPR'07 Proceedings of the 6th international conference on Energy minimization methods in computer vision and pattern recognition, pp.467:478.
    [101]Tournaire, O., Paparoditis, N., Lafarge, F.,2007. Rectangular Road Marking Detection with Marked Point Processes. In ISPRS Conference Photogrammetric Image Analysis (PIA), Vol.36, pages 149--154, Org. IAPRS, Munich, Germany.
    [102]Tournaire, O., Paparoditis, N.,2009. A geometric stochastic approach based on marked point processes for road mark detection from high resolution aerial images. ISPRS Journal of Photogrammetry and Remote Sensing,64(6):621-631.
    [103]Tournaire, O., Bredif, M., Boldo, D., Durupt, M.,2010. An efficient stochastic approach for building footprint extraction from digital elevation models. ISPRS Journal of Photogrammetry and Remote Sensing,65(4):317-327.
    [104]Van Lieshout, M.,2000. Markov point processes and their applications. Imperial College Press, London.
    [105]Vosselman, G.,1999. Building reconstruction using planar faces in very high density height data. International Archives of Photogrammetry and Remote Sensing,87-92.
    [106]Vosselman, G., Dijkman, S.,2001.3D building model reconstruction from point clouds and ground plan. International Archives and Remote Sensing, vol. XXXIV-3/W4,37-43.
    [107]Vosselman, G., Kessels, P., Gorte, B.,2005. The utilisation of airborne laser scanning for mapping. International Journal of Applied Earth Observations and Geoinformation,6(3-4):177-186.
    [108]Wehr, A., Lohr, U.,1999. Airborne laser scanning-an introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing,54(2):68-82.
    [109]Wei,Y., Yao,W., Wu,J., Schmitt,M., and Stilla, U.,2012. Adaboost-Based Feature Relevance Assessment in Fusing Lidar and Image Data for Classification of Trees and Vehicles in Urban Scenes. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.,1-7,323-328, doi:10.5194/isprsannals-I-7-323-2012.
    [110]White, S.,1984. Concepts of scale in simulated annealing. In Proc. IEEE International Conference on Computer Design.
    [111]Winkler, G.,1995. Image analysis, random fields and dynamic monte carlo methods:a mathematical introduction. Springer-Verlag.
    [112]Wu, Y., Zhu, S., Guo, C.,2002. Statistical modeling of texture sketch. ECCV'02 Proceedings of the 7th European Conference on Computer Vision-Part Ⅲ:240-254.
    [113]Xuan, G.R., Chai, P.Q., Wu, M.H.,1996. Bhattacharyya distance feature selection. Proceedings of the 13th International Conference on Pattern Recognition,1996, vol 2, pp.195-199.
    [114]Yang, B., Li, Q., Shi, W.,2005. Constructing multi-resolution triangulated irregular network model for visualization. Computers & Geosciences,31(1):77-86.
    [115]Yang, B. S., Wei, Z., Li, Q. Q., Li, J.,2012. Automated extraction of street-scene objects from mobile lidar point clouds. International Journal of Remote Sensing,33(18),5839-5861.
    [116]Yang, B.S., Wei, Z., Li, Q.Q., Li, J.,2013a. Semiautomated building facade footprint extraction from mobile LiDAR point clouds. IEEE Geoscience and Remote Sensing Letters,10(4):766-770.
    [117]Yang, B. S., Xu, W. X., Dong, Z.,2013b. Automated extraction of building outlines from airborne laser scanning point clouds. IEEE Geoscience and Remote Sensing Letters,10(6),1399-1403.
    [118]Zabih, R., Woodfill, J.,1994. Non-parametric local transforms for computing visual correspondence. In:Proc, Third European Conf. Computer Vision. Stockholm, Sweden,150-158.
    [119]Zhan, Q.M.,2003. A Hierarchical Object-Based Approach for Urban Land-Use Classification from Remote Sensing Data. Ph.D. thesis, Wageningen University, in Netherlands.
    [120]Zhang, K., Yan, J., Chen, S. C.,2006. Automatic construction of building footprints from airborne LiDAR data. IEEE Transactions on Geoscience and Remote Sensing, vol.44, no.9, pp.2523-2533.
    [121]Zhang, J., Sohn, G.,2010. A Markov Random Field Model for Individual Tree Datection from Airborne Laser Scanning Data. International Archives of Photogrammetry and Remote Sensing, Vol. ⅩⅩⅩⅧ, Part 3A-Saint-Mande, France, pp.120-125.
    [122]Zhou, Q.Y., Neumann, U.,2008. Fast and extensible building modeling from airborne lidar data. 16th ACM SIGSPATIAL International Symposium on Advances in Geographic Information Systems, ACM-GIS, Irvine, California, USA.
    [123]Zhou, J., Proisy, C., Descombes, X., Hedhli, I., Barbier, N., Zerubia, J., Gastellu-Etchegorry, J.-P., Couteron, P.,2010. Tree crown detection in high resolution optical and LiDAR images of tropical forest. In Proc. SPIE Symposium on Remote Sensing, Toulouse, France.
    [124]Zlatanova, S., Prosperi, D.,2005. Large-scale 3D data integration:challenges and opportunities. London:CRC press, Tailor & Francis.
    [125]Bradley Efron著,朱钰,谢爱辉,郭晓烨译,2005.贝叶斯学派统计学家_频率学派统计学家和科学家.统计与信息论坛20(4):108-112.
    [126]曹晨,2007.基于MCMC方法的统计模型的参数估计.南京航空航天大学,硕士论文.
    [127]陈小驽,2007.基于切片抽样MCMC方法的比较分析.四川大学,硕士论文.
    [128]程亮,龚健雅,李满春,刘永学,宋小刚,2009.集成多视航空影像与LiDAR数据重建3维建筑 物模型.测绘学报,38(6):494-501.
    [129]邓非,2006.LIDAR数据与数字影像的配准和地物提取研究.武汉大学,博士论文.
    [130]D.L.斯奈德著,梁之舜,邓永录译,1982.随机点过程.北京:人民教育出版社.
    [131]福永圭之介著,陶笃纯译,1978.统计图形识别导论,科学出版社.
    [132]黄先锋,2006.利用机载LIDAR数据重建3D建筑物模型的关键技术研究.武汉大学,博士论文.
    [133]黄锐,2010.图像线结构提取与区域分割方法研究.华中科技大学,博士论文.
    [134]龚光鲁,钱敏平,2004.应用随机过程教程-及在算法和智能计算中的随机模型.清华大学出版社.
    [135]李峰,2003.基于随机场模型的遥感图像分割与压缩.华中科技大学,博士论文.
    [136]李宏伟,2009.一种综合先验信息的从自然图像中提取感兴趣物体的新方法.中国科学技术大学,硕士论文.
    [137]李云帆,马洪超,2011.从LiDAR数据中提取建筑物平面目标的新方法.计算机工程与应用,47(10):5-7.
    [138]廉师友,2007.人工智能技术导论.西安电子科技大学出版社,第3版.
    [139]刘纯平,刘伟强,孔玲,夏德深,2002.一种新的基于Dempster-Shafer理论的自适应遥感分类融合方法.国土资源遥感53(3):48-53.
    [140]刘琳琳,2007.标值点过程在道路提取中的应用.中国科学院研究生院,硕士论文.
    [141]罗伊萍,2010.LIDAR数据滤波和影像辅助提取建筑物.解放军信息工程大学,博士论文.
    [142]任自珍,2008.基于等高线特征分析的Lidar建筑物与道路提取.西南交通大学,博士论文.
    [143]沈蔚,李京,陈云浩,邓磊,彭光雄,2008.基于LiDAR数据的建筑物轮廓线提取及规则化算法研究.遥感学报,12(5),pp.692-698.
    [144]孙开琼,2008.血管造影图像分割.华中科技大学,博士论文.
    [145]王刃,2008.机载LiDAR数据滤波与建筑物提取技术研究.解放军信息工程大学,博士论文.
    [146]王静龙著,2008.多元统计分析.北京:科学出版社.
    [147]魏征,2012.车载LiDAR点云中建筑物的自动识别与立面几何重建.武汉大学,博士论文.
    [148]熊志伟,2006.贝叶斯原理与方法及其在中医证候识别中的应用研究.内蒙古大学,硕士论文.
    [149]徐姿奕,2008.基于MCMC抽样的贝叶斯因子的模型选择.苏州大学,硕士论文.
    [150]徐花芝,2008.基于航空LIDAR点云数据的建筑物提取研究.长安大学,硕士论文.
    [151]徐文学,2009.地面三维激光扫描数据分割方法研究.山东科技大学,硕士论文.
    [152]徐文学,杨必胜,魏征,方莉娜,2013.多标记点过程的LiDAR点云数据建筑物和树冠提取.测绘学报42(1):51-58.
    [153]尤红建,苏林,2005.基于机载激光扫描数据提取建筑物的研究现状.测绘科学,30(5):114-116.
    [154]曾齐红,2009.机载激光雷达点云数据处理与建筑物三维重建.上海大学,博士论文.
    [155]张小红,2002.机载激光扫描测高数据滤波及地物提取.武汉大学,博士论文.
    [156]张小红,2007.机载激光雷达测量技术理论与方法.武汉大学出版社.
    [157]张志超,2010.融合机载与地面LIDAR数据的建筑物三维重建研究.武汉大学,博士论文.
    [158]张志友,2008.基于LIDAR数据和航空影像的地形与建筑物提取及三维可视化.北京交通大学,硕士论文.
    [159]赵凌君,2009.高分辨率SAR图像建筑物提取方法研究.国防科学技术大学,博士论文.
    [160]赵影,2011.基于机载LIDAR数据的城市建筑物提取研究.吉林大学,硕士论文.
    [161]郑毅,2011.LIDAR数据的城区建筑物提取技术研究.华中科技大学,博士论文.
    [162]朱萍萍,杨艳飞,许捍卫,2007.基于LIDAR数据的建筑物提取和三维重建的研究进展.现代测绘,30(4):8-10.
    [163]朱庆,林珲,2004.数码城市地理信息系统--虚拟城市环境中的三维城市模型初探.武汉:武汉大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700