用户名: 密码: 验证码:
电动汽车充电对电网的影响及有序充电研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
发展高效、清洁的电动汽车,是降低化石能源依赖性和缓解大气污染的有效途径。近几年,美国、日本、西欧的电动汽车市场增长势头强劲,进入快速发展通道的迹象愈发明显。2013年以来,国内私人购车补贴政策逐渐落地,市场可选择电动汽车产品逐渐增多,未来几年国内外可能出现电动汽车市场爆发式增长局面,势必会对电网规划运行产生巨大影响。随着电动汽车规模化应用,电网原有装机和输变电容量是否能够应对新增充电负荷需求将成为重要的研究课题。在不扩大电网建设规模的情况下,如何提高原有电网利用率,提高容纳能力,同时最大限度降低充电负荷对电网的负面影响,有必要提前研究电动汽车充电对电网各方面的影响,提出相应对策,对于推动电动汽车产业化进程具有重要意义。本文的研究内容主要包括以下几方面:
     (1)在谐波分析理论基础上,利用PSCAD软件,建立充电机/站仿真模型,研究充电机谐波电流幅值、相位随输出功率的变化关系,并与实际谐波测试结果对比,验证了模型的科学性、有效性。以此为基础,比较分析目前应用比较广泛的四种充电机在谐波抑制效果、功率因数、经济成本等方面的差异,为充电机的选型提供了参考依据。结合多台充电机的起始工作时间、电池初始充电状态等随机因素,建立N台充电机集中充电时的谐波电流概率分布及衰减特性模型,通过仿真分析多台充电机在不同情景下的谐波电流特性,验证该模型的有效性和实用性,并从工程建设实际出发提出谐波抑制方法。以临沂焦庄电动汽车充/换电站为实例进行了电动汽车充电站APF补偿容量计算分析,为电动汽车充换电站谐波治理提供了依据。
     (2)从分析电动汽车负荷建模的影响因素(电池特性、充电模式、用户行为习惯等)入手,建立电动汽车充电负荷模型,提出基于优化电网负荷波动方差以降低网损的方法。充电负荷模型中以美国2009NHTS调研报告和焦庄充电站实测数据为基础研究用户行为习惯,运用概率分布理论建立了电动汽车日行驶里程及电动汽车充电时刻的概率密度函数,确保了模型的准确性。以山东某城市10kV双辐射线路为实例进行仿真验证,仿真结果表明不同渗透率情况下,电动汽车无序充电对电网负荷、电压质量、网损等方面造成一定的负面影响,而提出的优化电网负荷波动方差的方法,可有效降低系统网损和电压偏移。
     (3)提出采用集中式与分布式结合的动态有序充电控制策略。首先,针对电动汽车规模化应用及无序充电对电网规划运行带来的负面影响,依据目前分时电价的划分原则及电动汽车行驶规律,建立电动汽车充电时段控制策略。该策略虽然在一定程度上改善了负荷曲线,但缺乏灵活性。在充分满足用户利益的前提下,进一步提出以平抑负荷、用户充电成本最小化为目标,通过构建中间管理者运行架构模式,采用集中式与分布式结合的优化控制策略,建立了协调控制模型。集中式控制以电网负荷波动最小化作为优化目标。分布式控制利用动态时间窗实时更新电动汽车充电的动态信息,以充电需求与集中式优化控制结果之间的偏差、用户充电成本最小化以及延长电池寿命为优化目标,实现电动汽车充放电的动态优化控制。以山东电网2015、2020、2030年夏季典型日负荷数据为算例,对比分析时段控制和有序充电控制策略对配电网负荷特性的影响,仿真结果表明有序充电控制策略平抑负荷波动、提高电网经济运行水平效果明显。
     (4)提出基于支持向量机(support vector machine, SVM)的迭代预测方法,对山东2015、2020、2030年的电动汽车保有量进行预测,并与常规预测法进行比较分析,为后续研究电动汽车规模化应用对山东电网负荷特性的影响及不同能源结构下的经济环境效益提供了量化依据。目前国内外研究大部分采用直接假设、弹性系数法或千人保有量法等较为粗略的预测方法,缺乏更为科学准确地预测,而研究电动汽车规模化应用对电网的影响及效益分析的前提是准确预测电动汽车规模数量。用近三年的汽车保有量数据进行验证,基于支持向量机的迭代预测方法预测误差在1.68%以内,具有较高的准确度。
     (5)充分考虑行业边际效应、能源结构演变等因素,建立经济环境效益模型,对不同能源结构、不同渗透率下电动汽车充电的经济、环境效益进行了量化研究。针对目前社会各界讨论的电动汽车应用能否真正实现低碳的热点,本文全面计算分析了有序充电的短期和长期可以避免的边际供电成本,量化分析了有序充电的经济效益。调研分析山东能源结构发展变化趋势,将能源结构发展趋势划分为三种不同情景:传统能源结构、过渡能源结构和新能源结构。在此基础上,建立电动汽车碳排放模型,计算分析不同能源结构、不同渗透率下2015年、2020年、2030年传统燃油汽车、电动汽车无序充电、电动汽车有序充电的碳排放量,结果表明随着能源结构变化,新能源比例逐渐上升,电动汽车应用日趋规模化,电动汽车有序充电减少碳排放量的效果显著增加。
To develop the efficient, clean electric vehicles, is an effective way to reduce fossil fuel and alleviate air pollution. In recent years, in the United States, Japan and Western Europe, electric vehicle market grows strongly and apparently, which enters into a rapid development period. In2013, with the implementation of domestic private EV subsidies, electric vehicle products will gradually increase in the next few years and there would be an explosive growth of EV market at home and abroad. The popularity of EVs will bring a negative impact on planning and operation of the grid. It's not clear whether the existing installed capacity and the power transmission and transformation system capacity would be able to cope with new demand of charging load, with the large-scale integration of EVs. How we can improve the existing grid utilization and improve carrying capacity and minimize the negative effect brought by the charging load, without expanding the construction scale of power grid? It is necessary for us to study the negative effect and to take appropriate measures in advance, which will have an important significance in the promotion of EVs industrialization process. This thesis mainly includes the following aspects:
     (1) Based on the harmonic principle, three-phase bridge rectifier charger is analyzed, and models for charger and charger station has been set up, by using PSCAD as a simulation tool. The paper mainly discussed the relationship between the amplitude and phase of charger harmonic, and the output power. Four popular kinds of chargers are analyzed, especially in the power factor, cost benefits and other aspects, which provide a reference for the selection of charger. From the aspects of charging time, initial state of charging, charger characteristics are analyzed to study the probability distribution of the harmonic current and attenuation characteristics while N chargers centrally charging. Harmonic current characteristics of N chargers are simulated by simulation software PSCAD, considering charging time, initial SOC of battery. Finally, take Linyi Jiaozhuang electric vehicle charging/battery swapping station for example, APF compensation capacity has been calculated and analyzed.
     (2) Beginning with the analysis of influencing factors, such as battery characteristics, charge modes, driver behavior, the probability density functions of total daily trip length and charging time are deduced. The charging model is established and the optimal charging method under minimizing load variance is proposed, based on2009NHTS data and measurement results from Jiaozhuang charging station. The relationship between feeder losses and load variance is deduced, and results are presented to verify that electric vehicle charging under minimizing load variance on the grid can effectively reduce net loss. Take the10kV dual radial line of a city in Shandong for example, the impact of EVs charging on the load, voltage quality and network loss, is analyzed, under different scenarios. Results are presented to verify that electric vehicle charging under minimizing load variance on the grid can effectively reduce net loss, improve power quality and so on.
     (3) In this paper, a smart charging control strategy is presented, combining centralized and distributed control strategy by an aggregator. According to the negative impact on planning and operation of the power system, as is brought by the popularity of EVs, especially when implemented without control, time-of-use scheduling for EV charging has been put forward, by combining time-delay charging control and valley charging scheduling, especially considering the driver's behavior. To some extent, the load curve can be improved, but the shortcoming of this method lies in lack of flexibility. On the premise of users'interest, intelligent charging control strategy is proposed and compared with time-of-use control strategy in this paper. The optimal scheduling scheme takes the network load variance and charging cost minimization as the optimization objective. An aggregator framework model is proposed as the means to organize charging, which combining centralized and distributed control strategy by an aggregator. The centralized optimal scheduling scheme takes the network load variance minimization as the optimization objective. The optimization goal of distributed scheduling scheme is to minimize the deviation between charging load demand and the centralized optimization results, within each dynamic sliding window, considering the actual battery constraints and EV owners' benefits. Therefore, the dynamic control for EV charging and discharging is fulfilled. Then taking Shandong load in2015,2020,2030for example, intelligent charging control strategy, which is compared with time-of-use scheduling, is proved to be effective in reducing net loss, improving power performance.
     (4) An improved support vector machines prediction method is proposed and compared with conventional prediction method in this paper. The EV holdings of Shandong in2015,2020,2030are predicted by support vector machine method, providing as a quantitative basis of cost-effective analysis under different energy structure of power system. The impact and benefit brought by EV is analyzed on the premise that EV quantity is predicted accurately. Most studies at home and abroad are based on assumption or some rough prediction methods, such as the elastic coefficient method or thousand holdings method, so a more scientific and accurate prediction method is necessary. The improved support vector machines prediction method with1.68%accuracy, through the recent three years comparing data.
     (5) Fully considering the marginal electricity resulted from generation industry and power structure and other factors, carbon emission model for EV is established. Quantitative analysis of the environmental benefits are conducted and compared between conventional vehicle and EV considering different power structures and various levels of EV penetration. The research whether the EVs is helpful in reducing carbon emission is hot recently. In this paper, the effect of coordinated charging is analyzed from two aspects, which are short-term and long-term marginal operational cost of power supply. Based on energy structure development trends of Shandong, the energy structure is divided into three different scenarios:the traditional energy structure, the transition energy structure and new energy structure. Based on benefits analysis model, quantitative analysis of the enviroment benefits between conventional vehicle and EVs, are compared, under different charging scenarios and charging control strategies, in2015,2020,2030. The results are proved to be effective in reducing carbon emission, with energy structure transition and large-scale intergration of EVs.
引文
[1]M.De Nigris, I.Gianinoni, S.Grillo, S.Massucco, F.Silvestro. Impact Evaluation of Plug-in Electric Vehicles (PEV) on Electric Distribution Networks[C]//Harmonics and Quality of Power (ICHQP),2010 14th International Conference,2010, Sept., Bergamo. IEEE:2010:1-6.
    [2]Energy Information Administration. Short-Term Energy Outlook 2013-08-14.http://www.eia. doe.gov/emeu/steo/pub/steo_charts.pdf.
    [3]M.Radler. Global reserves, oil Production show small increases for 2005. Oil Gas Journal. 2005.103 (47):20-22.
    [4]IEA. Oil Market Report[R].Imitational Energy Association.2004.
    [5]K. Clement-Nyns, E. Haesen, and J. Driesen.The impact of charging plug-in hybrid electric vehicles on a residential distribution grid [J].IEEE Trans. Power System,2010.2,25(1):371-380
    [6]高赐威,张亮.电动汽车充电对电网影响的综述[J].电网技术,2011.2,35(2):127-131.
    [7]曹秉刚.中国电动汽车技术新发展[J].西安交通大学学报,2007,41(1):114-118.
    [8]黄玉春.电力谐波对电能计量影响的分析与探讨[J].电力系统保护与控制,2009,37(10):123-125.
    [9]黄梅,黄少芳,姜久春.电动汽车充电机(站)接入电力系统的谐波分析[J].北京交通大学学报,2008,32(5):85-88.
    [10]J. Taylor, A. Maitra, M. Alexander, D. Brooks, M. Duvall.Evaluation of the impact of plug-in electric vehicle loading on distribution system operations. Power & Energy Society General Meeting,2009. PES'09. IEEE,2009:1-6.
    [11]A. Maitra, et al. Integrating plug-in electric vehicles with the distribution system.20th International Conference and Exhibition on Electricity Distribution (CIRED 2009),8-11 June 2009, Steven age, UK,2009:1029-1034.
    [12]罗卓伟,胡泽春,宋永华,杨霞,占恺峤,吴俊阳.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42.
    [13]Kempton W, Kubo T. Electric-drive vehicles for peak power in Japan. Energy Policy 2000:28(1):9-18.
    [14]Kempton W, Tomic J. Vehicle-to-grid power fundamentals:calculating capacity and net revenue. Journal of Power Sources 2005:144(1):268-79.
    [15]Kempton W, Tomic J. Using fleets of electric-drive vehicles for grid support. Journal of Power Sources 2007:168(2):459-69.
    [16]HADLEY S W. Evaluating the impact of plug-in hybrid electric vehicles on regional electricity supplies [C]//Proceedings of Bulk Power System Dynamics and Control:Ⅶ Revitalizing Operational Reliability,2007 iREP Symposium, August:19-24,2007, Charleston, SC,USA:1-12.00.
    [17]Adornato B, Patil R, Filipi Z. Characterizing naturalistic driving patterns for plug-in hybrid electric vehicle analysis[C]//IEEE Vehicle Power and Propulsion Conference. Michigan:IEEE, 2009:655-660.
    [18]Ashtari A, Bibeau E, Shahidinejad S, et al. PEV Charging profile prediction and analysis based on vehicle usage data[J]. IEEE Trans. on Smart Grid,2011 (Available online, Digital Object Identifier:10.1109/TSG.2011.2162009).
    [19]张明霞,庄童.小区电动汽车充电负荷实测分析[J].电力需求侧管理,2012.5,14(3):44-46.
    [20]L. Kelly, A. Rowe, P. Wild. Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. Proc. IEEE Electr. Power Energy Conf. (EPEC), Oct.2009:1-6.
    [21]K. Clement-Nyns, E. Haesen, and J. Driesen, Stochastic analysis of the impact of plug-in hybrid electric vehicles on the distribution grid, in Proc.20th Int. Conf. Electricity Distribution (CIRED), Prague, Czech Republic, Jun.8-11,2009.
    [22]HUBNER M, ZHAO L, MIRBACH T, et al. Impact of large-scale electric vehicle application on the power supply[C]//IEEE Electrical Power & Energy Conference, Oct 22-23,2009, Montreal, Canada:1-6.
    [23]DENHOLM P, SHORT W. An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles[R]. USA:National Renewable Energy Laboratory, 2006.
    [24]KINTNER-MEYER M, SCHNEIDER K, PRATT R. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional U.S. power grids part 1:technical analysis[R].USA: Pacific Northwest National Laboratory,2007.
    [25]Shuang G, Chau K T, Chan C C, et al. Loss analysis of vehicle-to-grid operation[C]//2010 IEEE Vehicle Power and Propulsion Conference. United States:IEEE Computer Society,2010: 1-6.
    [26]Jenkins S D, Rossmaier J, Ferdowsi M. Utilization and effect of plug-in hybrid electric vehicles in the united states power grid[C]//IEEE Vehicle and Propulsion Conference (VPPC), 2008.
    [27]赵俊华,文福拴,薛禹胜.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):22-29.
    [28]田立亭,史双龙,贾卓.电动汽车充电功率需求的统计学建模方法[J].电网技术,2010,34(11):126-130.
    [29]Electrical Power Research Institute (EPRI). Comparing the benefits and impacts of hybrid vehicle options. Report 1000349, EPRI, Palo Alto, California; July2001.
    [30]Markel T, Simpson A. Energy storage systems considerations for grid-charged hybrid electric vehicles. In:Presented at SAE future transportation technology and IEEE vehicle power and propulsion joint conferences, Chicago, Illinois, September 7-9.2005 (NREL/CP-540-38538).
    [31]Bradley TH, Frank AA. Design, demonstrations and sustainability impact assessments fro plug-in hybrid electric vehicles. Renew Sustain Energy Rev,2007 doi:10.1016/j.rser.2007.05. 003.
    [32]An F, Sauer A. Comparison of passenger vehicle fuel economy and greenhouse gas emission standards around the world. Prepared for the pew centre on global climate change; December 2004.
    [33]R. Cossent, T. Gomez, L. Olmos, C. Mateo, and P. Frias. Assessing the impact of distributed generation on distribution network costs, in Proc.6th Int. Conf. European Energy Market, Leuven, Belgium,2009:586-593.
    [34]Kintner-Meyer M, Schneider K, Pratt R. Impacts assessment of PHEV on electric utilities and regional U.S. power grids, part 1:Technical analysis [EB/OL].2012.
    [35]HUBNER M, ZHAO L, MIRBACH T, et al. Impact of large-scale electric vehicle application on the power supply[C]//IEEE Electrical Power & Energy Conference, Oct 22-23,2009, Montreal, Canada:1-6.
    [36]KINTNER-MEYER M, SCHNEIDER K, PRATT R. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional U.S. power grids part 1:technical analysis[R].USA: Pacific Northwest National Laboratory,2007.
    [37]C. Camus, C.M. Silva, T. L. Farias, J. Esteves. Impact of Plug-in Hybrid Electric Vehicles in the Portuguese Electric Utility System., POWERENG 2009, Lisbon, Portugal, March 18-20, 2009:285-290.
    [38]Michael Kintner-Meyer, Kevin Schneider, Robert Pratt. Impacts assessment of plug-in hybrid vehicles on electric utilities and regional us. power grids, Part 1:technical analysis, Pacific Northwest National Laboratory(a), November,2007.
    [39]Denholm P, Short W.An evaluation of utility system impacts and benefits of optimally dispatched plug-in hybrid electric vehicles [EB/OL].Golden:Midwest Research Institute,2006[2011-12-03].http://www.nrel.gov/docs/fy07osti/40293.pdf.
    [40]Mahalik M,Poch L,Botterud A,et al. Impacts of plug-in hybrid electric vehicles on the electric power system in Illinois[C]//IEEE Conference on Innovative Technologies for an Efficient and Reliable Electricity Supply. Boston:IEEE,2010:341-348.
    [41]Carthy D M,Wolfs P. The HV system impacts of large scale electric vehicle deployments in a metropolitan area [C]//20th Australasian Universities Power Engineering Conference. Christchurch:IEEE,2010:1-6.
    [42]MCCARTHY D, WOLFS P. The HV System Impacts of large scale electric vehicle deployments in a metropolitan area[C]//20th Australasian Universities Power Engineering Conference, Dec 5-8,2010, Christchurch, Australia:1-6.
    [43]A. Ramos, L. Olmos, J. M. Latorre, and I. J. Perez-Arriaga. Modeling medium term hydroelectric system operation with large-scale penetration of intermittent generation, Proc. XIV Latin and Iberian Conf. Operations Research (CLAIO 2008), Cartagena de Indias, Colombia, Sep.9-12,2008.
    [44]J. Peco and T. Gomez. A model for planning large scale MV networks considering uncertainty in reliability modeling, Proc.6th Int. Conf.Probabilistic Methods Applied to Power Systems, Madeira, Portugal, Sep.25-28,2000.
    [45]C. Mateo, T. Gomez, A. Sanchez, J. Peco, and A. Candela. A reference network model for large-scale distribution planning with automatic street map generation, IEEE Trans. Power Syst., submitted for publication.
    [46]Vyas A, Santini D. Use of national surveys for estimating'full'PHEV potential for oil use reduction[EB/OL].2008-07-21.http://www.transportation.anl.gov/pdfs/HV/525.pdf.
    [47]L. Pieltain Fernandez, T. Gomez San Roman, R. Cossent, C. Mateo Domingo and P. Frias. Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks, IEEE Trans. on Power Systems,2010:99-102.
    [48]Sikai Huang, David Infield. The Impact of Domestic Plug-in Hybrid Electric Vehicles on Power Distribution System Loads. International Conference on Power System Technology, 2010:1-7.
    [49]Harris A. Charge of the Electric Car. IET. Engineering and Technology,2009.6,4(10):52-53.
    [50]Kempton W, Kubo T. Electric-drive vehicles for peak power in Japan [J].Energy Policy,2000(28):9-18.
    [51]K. Clement-Nyns, E. Haesen, and J. Driesen. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Trans. Power Syst., vol.25(1):371-380, 2010.
    [52]L. Kelly, A. Rowe, P.Wild. Analyzing the impacts of plug-in electric vehicles on distribution networks in British Columbia. Proc.EEE Electr. Power Energy Conf. (EPEC), Oct.2009:1-6.
    [53]Ochoa L F,Padilha F A,Harrison G P.Evaluating,2006,21(3):1452-1458.
    [54]Ramteen Sioshansi, Riccardo Fagiani, Vincenzo Marano. Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system[J]. Energy Policy.2010,38:6703-6712.
    [55]Samaras C, Masterling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles:implications for policy. J Environ Sci Tech 2008,42:3170-3176.
    [56]Hubner M,Zhao L,Mirbach T,et al. Impact of large-scale electric vehicle application on the power supply[C]//Electrical Power & Energy Conference.Montreal:IEEE,2009:1-6.
    [57]葛少云,黄鏐,刘洪.电动汽车有序充电的峰谷电价时段优化[J].电力系统保护与控制,2012.5,40(10):1-5.
    [58]Sara Deilami, Amir S. Masoum, Paul S. Moses and Mohammad. Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improvement Voltage Profile[J]. IEEE Transactions on Smart Grid,2011.9,2(3):456-467.
    [59]K. Clement-Nyns, E. Haesen, and J. Driesen, Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids, Proc. IEEE/PES Power Systems Conf. Exhib., Seattle, WA, Mar.15-18,2009.
    [60]Di Wu, Dionysios C.Aliprantis, Lei Ying. Load scheduling and dispatch for aggregators of plug-in electric vehicles[J].IEEE Transactions on smart grid,2010.3,3(1):368-376.
    [61]HE Yi-feng, Bala Venkatesh, GUAN Ling. Optimal scheduling for charging anddischarging of electric vehicles[J]. IEEE Transactions on smart grid,2012.9,3(3):1095-1105.
    [62]P. Denholm and W. Short. An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-in Hybrid Electric Vehicles, NREL National Renewable Energy Lab.,2006.
    [63]R. Sioshansi and P. Denholm. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services [J]. Environ. Sci. Technol.,43:1199-2004,2009.
    [64]Saber A Y, Venayagamoorthy G K. Unit commitment with vehicle-to-grid using article swarm optimization[C]//IEEE Power Technology.Bucharest, Romania:IEEE,2009:1-8.
    [65]Hutson C, Venayagamoorthy G K, Corzine K A. Intelligent scheduling of hybrid and electric vehicle storage capacity in a parking lot for profit maximization in grid power transactions[C]//Energy 2030 Conference.Atlanta,GA,US:IEEE,2008:1-8.
    [66]W. Kempton and J. Tomic. Vehicle-to-grid power implementation:From stabilizing the grid to supporting large-scale renewable energy. Power Sources,2005,144:280-294.
    [67]Byrne-Finley J, Johnson B K, Hess H, et al. Harmonic Distortion Mitigation for Electric Vehicle Recharging Scheme[C]. North American Power Symposium (NAPS),2011:1-7.
    [68]Trovao J P, Pereirinha P G, Trovao L, et al. Electric Vehicles Chargers Characterization:Load Demand and Harmonic Distortion[C]. Electrical Power Quality and Utilization (EPQU), 2011:1-7.
    [69]卢艳霞,张秀敏,蒲孝文.电动汽车充电站谐波分析[J].电力系统及其自动化学报,2006,18(3):51-54.
    [70]李娜,黄梅.不同类型电动汽车充电机接入后电力系统的谐波分析[J].电网技术,2011,35(1):170-174.
    [71]王兆安,杨君,等.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2006.
    [72]中华人民共和国国家标准:电能质量公用电网谐波GB/T 14549-1993,1993.
    [73]牛利勇,姜久春,张维戈.纯电动公交充电站谐波分析的模型方法[J].高技术通讯,2008,18(9):953-957.
    [74]雍静,陈亮,陈双燕.台式计算机负荷频域谐波模型及衰减特性研究[J].中国电机工程学报,2010,30(25):122-128.
    [75]杜学龙,刘志珍,王建,等.电动汽车充电站谐波抑制方法的对比分析[J].电力系统保护与控制,2012,40(19):139-143.
    [76]孟凡刚,杨世彦,杨威.多脉波整流技术综述[J].电力自动化设备,2012,32(2):9-22.
    [77]郑竞宏,戴梦婷,张曼,王文倬,朱守真.住宅区式电动汽车充电站负荷集聚特性及其建模[J].中国电机工程学报,2012,32(22):32-38.
    [78]Moses P S, Deilami S, Masoum A S, et al. Power Quality of Smart Grids with Plug-in Electric Vehicles Considering Battery Charging Profile[C]. Innovative Smart Grid Technologies Conference Europe (ISGT Europe),2010:1-7.
    [79]A. Mansoor, W. M. Grady, A. H. Chowdhury, and M. J. Samotyj. An investigation of harmonic attenuation and diversity among distributed single-phase power electronic loads [J]. IEEE Trans.on Power Delivery,1995,10(1):467-473.
    [80]刘志珍,杜学龙,薛亮,等.电动汽车充电站中谐波相互抑制的研究[J].徐州工程学院学报,2012,27(3):1-5.
    [81]林建钦,杜永宏.电力系统谐波危害及防止对策[J].电网与清洁能源,2009,25(2):28-31.
    [82]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2005.
    [83]胡铭,陈珩.有源滤波技术及其应用[J].电力系统自动化,2000,24(3):66-70.
    [84]张秉良,孙玉田,李建祥,孙勇.电动汽车充/换电设施的谐波特性及治理措施[J].低压电器.2012,15:44-49.
    [85]胡泽春,宋永华,徐智威,罗卓伟,占恺峤,贾龙.电动汽车接入电网的影响与利用[J].中国电机工程学报.2012(04):1-10
    [86]Papadopoulos P,Cipcigan L M,Jenkins N,et al. Distribution networks with electric vehicles[C]//Universities Power Engineering Conference.Glasgow:IEEE,2009:1-5.
    [87]Richardson P, Flynn D, Keane A. Impact assessment of varying penetrations of electric vehicles on low voltage distribution systems[C]//IEEE Power and Energy Society General Meeting.Minneapolis:IEEE,201:1-6.
    [88]Gomez J C, Morcos M M. Impact of EV battery chargers on the power quality of distribution systems[J].IEEE Trans. on Power Delivery,2003,18 (3):975-981.
    [89]Chan M S W, Chau K T, Chan C C. Modeling of electric vehicle chargers[C]//Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society.Aachen:IEE,1998:433-438.
    [90]Singh M, Kar I, Kumar P. Influence of EV on grid power quality and optimizing the charging schedule to mitigate voltage imbalance and reduce power loss[C]//Power Electronics and Motion Control Conference.Ohrid:IEEE,2010:196-203.
    [91]Putrus G A, Suwanaping karl P, et al. Impact of electric vehicles on power distribution networks[C]//IEEE Vehicle Power and Propulsion Conference.Michigan:IEEE,2009:827-831.
    [92]徐立中,杨光亚,许昭,F.MARRA, C.TRAEHOLT,电动汽车充电负荷对丹麦配电系统的影响[J],电力系统自动化,2011,35(14):19-23.
    [93]牛利勇,纯电动公交充电系统关键技术研究[D],北京,北京交通大学,2008.12.
    [94]王震坡,孙逢春,林程,电动公交客车充电站容量需求预测与仿真[J],北京理工大学学报,2006,26(12):1061-1064.
    [95]Bauer, Pavol, Zhou, Y. Doppler, Jeremie, Stembridge, Neil. Charging of Electric Vehicles and Impact on the Grid[J],2010 13th International Symposium,2010(2):121-127.
    [96]郭亮,戢强,赵红荣,熊建斌,电动汽车充电技术探讨[J],第七届全国轻型电动车会议,上海,2009.6.
    [97]U.S. Department of Transportation, Federal Highway Administration.2009 national household travel survey [EB/OL]. [2011-06-01].http://nhts.ornl.gov.
    [98]Vyas A, SantiniD. Use of national surveys for estimating full PHEV potential for oil use reduction[EB/OL].2008-07-21.http://www.transportation.anl.gov/pdfs/HV/525.pdf.
    [99]穆云飞.含风电场及电动汽车的电力系统安全性评估与控制研究[D].天津,天津大学,2012,6.
    [100]李惠玲,白晓民.电动汽车充电对配电网的影响及对策[J].电力系统自动化,2011,35(17):38-43.
    [101]胡景生,胡国元.配电网经济运行[M].北京:中国标准出版社,2008.
    [102]中华人民共和国国家标准:电能质量供电电压允许偏差GB/T 12325-2008,2008.
    [103]中华人民共和国国家标准:电能质量三相电压不平衡GB/T 15543-2008,2008.
    [104]唐升卫,电动汽车有序充电研究[D].长沙,湖南大学,2012,4.
    [105]蔡文嘉,电动汽车充电站充电电能计量问题浅析[J].湖北电力,2011,35(1):26-27.
    [106]M. W. Gustafson and J. S. Baylor.The equivalent hours loss factor revisited, IEEE Trans. Power Syst., vol.3, no.4:1502-1508,1988.
    [107]O. M. Mikic, Variance-based loss computation in low voltage distribution networks, IEEE Trans. Power Syst., vol.22, no.1:179-187,2007.
    [108]Sortomme E, Hindi M M, Macpherson S D J, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J].IEEE Trans. On Smart Grid,2011,2(1):198-205.
    [109]王绵斌,谭忠富,张蓉,王成文,于喜海.发电侧峰谷分时电价设计及电量分配优化模型[J].电力自动化设备,2007.8,27(8):16-21.
    [110]Vyas A, Santini D. Use of national surveys for estimating 'full' PHEV potential for oil use reduction[EB/OL].2008-07-21.http://www.transportation.anl.gov/pdfs/HV/525.pdf.
    [111]Clement-Nyns K,Haesen E,Driesen J. The impact of charging plug-in hybrid electric vehicles on a residential distribution grid[J].IEEE Trans. on Power Systems,2010,25(1):371-380.
    [112]Sungwoo B. Spatial and temporal model of electric vehicle charging demand[J].IEEE Transactions on Smart Grid,2012,3(1):394-403.
    [113]Wang Lizhi. Potential impacts of plug-in hybrid electric vehicles on locational marginal prices[C]//IEEE Energy Conference.2008:1-7.
    [114]Grahn P, Soder L. The customer perspective of the electric vehicles role on the electricity market[C]//Energy Market(EEM),2011 8th International Conference on the European.2011:141-148.
    [115]Jose Joaquin Escudero-Garzas, Ana Garcia-Armada, and Gonzalo Seco-Granados. Fair Design of Plug-in Electric Vehicles Aggregator for V2G Regulation[J].IEEE TRANSACTIONS ON SMART GRID, VOL.3, NO.2,JUNE 2012:3406-3491.
    [116]Sullivan J. Implementation of Vehicle to Grid Infrastructure Using Fuzzy Logic Controller, IEEE TRANSACTIONS ON SMART GRID,2012.3,3(1).
    [117]Di Wu, Dionysios C.Aliprantis, Lei Ying. Load scheduling and dispatch for aggregators of plug-in electric vehicles[J].IEEE Transactions on smart grid,2010.3,3(1):368-376.
    [118]王秀云,任志强,楚冬青.用于降低网损的配电网网络优化重构方法研究[J].电力系统保护与控制,2008,36(12):21-24.
    [119]Eric S,Mohammad M H, James Mac Pherson S D, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J].IEEE Transactions on Smart Grid,2011,2(1):198-205.
    [120]Deilami S, Masoum A S, Moses P S, et al. Real-time coordination of plug-in electric vehicle charging in smart grids to minimize power losses and improve voltage profile[J].IEEE Trans. on Smart Grid,2011,2(3):456-467.
    [121]Sortomme E, Hindi M M, MacPherson S D J, et al. Coordinated charging of plug-in hybrid electric vehicles to minimize distribution system losses[J].IEEE Trans. on Smart Grid,2011,2(1):198-205.
    [122]HE Yi-feng, Bala Venkatesh, GUAN Ling. Optimal scheduling for charging and discharging of electric vehicles[J]. IEEE Transactions on smart grid,2012.9,3(3):1095-1105.
    [123]顾洁,崔旻.电力系统中长期负荷预测的参数抗差估计研究[J].电力自动化设备,2003.6,23(6):13-15.
    [124]项目决策分析与评价[M].北京:中国计划出版社.2011.11:34.
    [125]王瑞妙,陈涛,刘永相.弹性系数法和千人保有量法预测电动汽车保有量[J].农业装备与车辆工程,2011.6:40-48.
    [126]Qian Kejun, Zhou Chengke. Load model for prediction of electric vehicle charging demand[C]//2010 International Conference on Power System Technology. Hangzhou, China: China Electric Power Research Institute (CEPRI),IEEE/PES and CSEE,2010:1-6.
    [127]杨志民,刘广利.不确定性支持向量机原理及应用[M].北京:科学出版社.2007.
    [128]国务院发展研究中心产业经济研究部.中国汽车工程学会,大众汽车集团(中国).中国汽车产业发展报告(2012)[R].北京:社会科学文献出版社,2012.
    [129]Denholm P, Short W. An evaluation of utility system impact and benefits of optimally dispatched plug-in hybrid electric vehicles[R].USA:National Renewable Energy Laboratory, 2006.
    [130]唐捷,任震,高志华等.峰谷分时电价的成本效益分析模型及其应用[J].电网技术,2007,31(6):61-66.
    [131]孙波,廖强强,谢品杰,周国定,施泉生,葛红花.车电互联削峰填谷的经济成本效益分析[J].2012.10,36(10):30-34.
    [132]Electric Power Research Institute and the Natural Resources Defense Council. Environmental assessment of plug-in hybrid electric vehicles; vol.1:Nationwide greenhouse gas emissions, final report 1015325, July 2007.
    [133]孙可.几种类型发电公司环境成本核算的分析研究[J].能源工程,2004(3):23-26.
    [134]MOTTO A, GALIANA F D, CONEJO A J, et al.Network-constrained multi-period auction for a pool-based electricity market[J].IEEE Trans on Power Systems,2002,17(3):646-653.
    [135]胡兆光,陈铁成,纪洪.在北京地区实施需求侧管理的效益分析[J].电力系统自动化,1999,23(13):22-25.
    [136]王锡凡.电力系统规划优化[M].北京:水利水电出版社,1990.
    [137]Reynolds M, Delgado. Demand-side management alternatives [J]. Proceedings of IEEE. 1985,73(10):1471-1483.
    [138]陈启鑫,周天睿,康重庆等.节能发电调度的低碳化效益评估模型及其应用[J].电力系统自动化,2009,33(16):24-29.
    [139]蔡泞.电动汽车电能需求引致的电力产业链碳排放计量研究.重庆大学经济与工商管理学院,2012.4.
    [140]Stephan CH, Sullivan J. Environmental and energy implications of plug-in hybrid-electric vehicles. Environmental Science Technology 2008; 42:1185-1190.
    [141]Ochoa L F, Padilha F A, Harrison G P. Evaluating distributed generation impacts with a multi-objective index[J].IEEE Trans on Power Delivery,2006,21(3):1452-1458.
    [142]Ramteen Sioshansi, Riccardo Fagiani, Vincenzo Marano. Cost and emissions impacts of plug-in hybrid vehicles on the Ohio power system [J]. Energy Policy.2010,38:6703-6712.
    [143]Samaras C, Master ling K. Life cycle assessment of greenhouse gas emissions from plug-in hybrid vehicles:implications for policy. J Environ Sci Tech 2008,42:3170-3176.
    [144]Gulli F. Small distributed generation versus centralized supply:a social cost-benefit analysis in the residential and service sectors[J].Energy Policy,2006,34(7):804-832.
    [145]Mark Rawson Public Interest Energy Research California Energy Commission. Distributed generation cost and benefits issue paper[R].California,2004.
    [146]IPCC. IPCC国家温室气体清单优良作法指南和不确定性管理[R].东京IGES,2000.
    [147]马忠海.中国几种主要能源温室气体排放系数的比较评价研究[D].中国原子能科学研究院,2002.
    [148]国家发展和改革委员会能源研究所.中国可持续发展能源暨碳排放情景分析[R].2003.
    [149]于大洋,黄海丽,雷鸣等.电动汽车充电与风电协同调度的碳减排效益分析[J].电力系统自动化,2012.5,36(10):14-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700