用户名: 密码: 验证码:
电网理论线损的准在线计算问题研究与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电网理论线损计算是电网公司对电力系统进行分析决策采用的重要技术手段之一。通过理论线损计算,找出电网网架结构和系统运行存在的不足,为实现节能降损提供理论依据。随着我国智能电网和电力自动化的发展,电网公司的电网理论线损计算正向在线计算迈进。电网理论线损在线计算的基础数据来自国际电工委员会(International Electrotechnical Commission,IEC)制定的61970标准(IEC61970标准)中的公共信息模型(Common information model,CIM),但我国实施IEC61970标准较晚,CIM模型和数据有待完善,因此目前一些电网公司的电网理论线损计算仍处于离线计算向在线计算过渡的准在线计算模式。正是由于满足在线计算条件的缺失,电网理论线损准在线计算面临许多亟待解决的问题,同时节能减排作为国家“十二五”规划目标之一,也为电网理论线损的分析带来了新的挑战。为此,本论文深入研究了电网理论线损准在线计算中存在的问题,提出了相应的解决方法,并分析了节能减排对电网理论线损的影响,同时通过算例验证了所提方法的有效性。本论文的主要研究内容如下:
     首先,提出了一种适合电网理论线损准在线计算的拾遗网格平台。采用InternetCommunications Engine(ICE)技术建立电网理论线损网格计算平台,充分利用电网公司的空闲计算资源和计算机CPU的多核计算能力,使计算的并行能力大大提高并减轻服务器的负担;充分考虑了集中计算和分布式计算的特点,通过备用网格,实现了两种计算方式的兼容;采用蚁群算法和2-opt优化相结合,研究了根据负载状况进行任务分配的作业调度问题。
     其次,为实现输电网潮流计算的自动计算、提高结果准确度,给出了一种潮流计算的平衡节点选取方法。在分析平衡节点选取条件的基础上,根据复杂网络理论建立了适合常规潮流计算平衡节点选取的节点重要度模型,通过节点凝聚度、注入功率和节点度数综合判断节点重要度。仿真表明,根据节点重要度选取的平衡节点能够得到较准确的计算结果。
     接着,针对IEC61970中可缩放矢量图形(Scalable Vector Graphics,SVG)与CIM信息不一致或者SVG文件缺失的情况,提出一种输电网单线图自动布局的方法。将电网布局转化为二次分配问题并采用蚁群算法求解,实现了输电网单线图自动布局,同时结合3-opt优化克服蚁群算法易陷入局部最优的问题。通过图形分块固定变电站位置,使生成的电网结构布局更接近实际结构。仿真表明生成的单线图布局清晰、求解时间短,能够满足实际要求。
     然后,建立电网理论线损准在线计算框架。通过对CIM标准的详细研究,确定电网理论线损计算与CIM的映射关系;在研究电网理论线损的计算平台、平衡节点选取、单线图布局和IEC61970标准的基础上,提出了基于CIM的电网理论线损准在线计算框架;针对CIM应用于电网理论线损准在线计算存在部分数据缺失的情况,对CIM进行了模型扩展。
     最后,在碳减排日指标约束下,建立了碳捕集减排模型,分析了电厂和电网协调(厂网协调)减排对网损的影响。考虑碳减排日指标,建立具有碳捕集设备的厂内减排模型和厂网协调减排模型,并将多代理应用于调度策略。在厂网协调减排中,分析了不同碳减排量以及碳捕集装置在电网中的位置对网损的影响,为电网理论线损在碳捕集减排方面的分析提供了理论基础。
Power grid theoretical line loss calculation is one of the technical means adopted bypower grid corporation analyzing and making a strategic decision in power system. It canprovide theoretical basis for saving energy and reducing loss by finding currentshortcoming in power grid structure and system operation. With the development of smartgrid and electric power automation in our country, power grid theoretical line losscalculation trends to online calculation in power grid corporation. Basic data in onlinecalculation is from Common Information Mode(CIM) of61970standard(IEC61970standard) drawn up by International Electrotechnical Commission(ICE), to be late forimplementation of IEC61970standard in our country, model and data of CIM need to beimproved, hence, power grid theoretical line loss calculation which is going to be online insome power grid corporation is in the mode of quasi-online. Power grid theoretical lineloss quasi-online calculation faces many problems to solve urgently now because of thelack of online calculation condition. Moreover, energy-saving and emission-reducing putforward in national “12th five-year” plan also make analysis of power grid theoretical lineloss facing new challenges. Hence, at the basis of delving into the existing problems inpower grid theoretical line loss quasi-online calculation, this paper provides thecorresponding methods and analyses the effection of energy-saving and emission-reducingon theoretical line loss. At the same time, illustrative numerical results are presented toprove the effectiveness of the proposed methods. The major contents of this paper arepresented as follows:
     Firstly, a scavenging grid computing platform fitting for power grid theoretical lineloss quasi-online calculation is offered. Adopting the Internet CommunicationsEngine(ICE) technology, a power grid theoretical line loss scavenging grid computingplatform making full use of idle processor resources and idle multi-core CPU isestablished to enhance parallel computing ability and lighten the burden of server.Centralized computing and distributed computing are compatible by standby grid.Combining ant colony algorithm and2-opt optimization, job scheduling allocating the taskaccording to load condition is researched.
     Secondly, a selection method of slack bus for power flow calculation is provided torealize the automation of power flow calculation and improve the accuracy of power flowcalculation. On the basis of research of slack bus selection condition, a node importantdegree model including node cohesion degree, injection power and node degree is offeredto select a slack bus according to the complex network theory. The actual power systemsimulation results show that a slack bus can be selected more accurately by the offerednode important degree model in conventional power flow calculation.
     Thirdly, in the light of the lack of Scalable Vector Graphics(SVG) or theinconsistency between SVG and CIM, an automatic plating method of single-linediagrams for power transmission networks is offered. The plating of single-line diagramstransformed into quadratic assignment problem adopts ant colony algorithm whose localoptimum is solved by3-opt optimization. Graphic block fixing substation position makespower grid layout more close to the actual. Simulation results show that clear layout andshort solving-time of the plating of single-line diagrams meet the demands of power gridcorporation.
     Fourthly, the frame of power grid theoretical line loss quasi-online calculation isestablished. Mapping relation between power grid theoretical line loss calculation andCIM is provided through studying the CIM carefully; the frame of power grid theoreticalline loss quasi-online calculation based on CIM is offered by researching computingplatform and selection method of slack bus and plating method of single-line diagrams intheoretical line loss calculation and IEC61970standard; in the light of the lack some dataof CIM applied to power grid theoretical line loss quasi-online calculation, model of CIMis extended to meet power grid theoretical line loss quasi-online calculation.
     Finally, under carbon emission reduction day index constraints, carbon captureemission reduction model is established, and the effection of power plants and power gridcoordination(plant-grid coordination) emission reduction on line loss is analysed.Considering the carbon emission reduction day index constraints, model of power plantsand plant-grid emission reduction with carbon capture is created, and Multi-Agent Systemis applied to dispatch strategy. The effection of various carbon emission reduction on lineloss and the effection of position of carbon capture device in power grid on line loss are researched in plant-grid coordination. It provides theoretical basis for analysis of powergrid theoretical line loss on carbon capture emission reduction.
引文
[1]杨秀台.电力网线损的理论计算和分析[M].北京:水利电力出版社,1987:246-252
    [2]国务院.国家“十二五”规划纲要[R].北京:国务院,2011
    [3] IEC61970-301. Energy Management System Application Program Interface (EMS-API): Part301Common Information Model(CIM)Base.2004
    [4]辛耀中.新世纪电网调度自动化技术发展趋势[J].电网技术,2001,25(12):1-10
    [5]孙宏斌,吴文传,张伯明,等. IEC61970标准的扩展在调度控制中心集成化中的应用[J].电网技术,2005,29(16):21-25
    [6] IEC61970-453. Energy Management System Application Program Interface (EMS-API): Part453CIM Based Graphics Exchange,2006
    [7]余虎,姚建刚,罗滇生,等.数字电力系统基础架构平台的设计与实现[J].电力系统自动化,2006,30(18):94-98
    [8]畅广辉,镐俊杰,刘涤尘,等.基于多代理技术的电力控制中心综合数据平台设计[J].电力系统自动化,2008,32(9):85-89
    [9]董树锋,何光宇,梅生伟,等.上海AEMS中数据共享平台的设计与实现[J].电力系统自动化,2008,32(9):16-18
    [10] Zhang Wei, Yuan Anfu, Xiong Jiefeng. Design of Integration Data and Information Platform forPower System[C].1st International Conference on Information Science and Engineering,2009:2905-2907
    [11]赵文恺,房鑫炎,严正.电力系统并行计算的嵌套分块对角加边形式划分算法[J].中国电机工程学报,2010,30(25):66-73
    [12]王德文.基于云计算的电力数据中心基础架构及其关键技术[J].电力系统自动化,2012,36(11):67-71
    [13]赵俊华,文福拴,薛禹胜,等.云计算:构建未来电力系统的核心计算平台[J].电力系统自动化,2010,34(15):1-8
    [14] Madhuri D, Shrikant N Pradhan. Scavenging Idle CPU Cycles for Creation of InexpensiveSupercomputing Power. International Journal of Computer Theory and Engineering[J],2009,1(5):602-604
    [15] Wikipedia. SETI@home[EB/OL].(2011-7-10)[2011-11-15]. http://en.wikipedia.org/wiki/SETI@home
    [16]王继业.基于网格技术的电力信息资源整合方案[J].电力系统自动化,2006,30(20):84-87
    [17]周华锋,吴复立,倪以信,等.基于网格服务的未来电力系统控制中心概念设计[J].电力系统自动化,2006,30(11):1-6
    [18] Henning Michi. A New Approach to Object-oriented Middleware[J]. IEEE Internet Computing,2004,8(1):66-75
    [19]刘裕,吴坚.中间件技术与ICE[J].微机发展,2004,14(1):37-39
    [20]汤晓燕,刘同华. ICE与CORBA的比较及应用分析[J].工矿自动化,2008,(4):139-142
    [21]周克强,张保山.基于ICE中间件的战术信息管理[J].东南大学学报(自然科学版),2008,38(II):208-212
    [22] Chongyen Lee, Wuyee Chen, Tsangyean Lee. Optimization of Job Schedule Model Based onGrid Environment[J]. Journal of Networks,2008,3(3):27-33
    [23]丁敏敏,贾永库.基于插件机制的网格作业调度研究[J].计算机工程,2010,36(21):286-287
    [24] Kim J. S, Nam B, Keleher P, et al. Trade-offs in Matching Jobs and Balancing Load forDistributed Desktop Grids [J]. Future Generation Computer Systems,2008,24(5):415-424
    [25] Kousalya K, Balasubramanie P. Ant Algorithm for Grid scheduling Powered by Local Search[J].Int J Open Problems Compt Math,2008,1(3):222-240
    [26]舒在提,陈蕾,苗峰显.电力系统平衡节点的物理与数学机理[J].中国电力教育,2010,(4):263-264
    [27] Stoot. B. Review of Load-Flow Calculation Methods[J]. Proc. IEEE,1974,62(7):916-929
    [28]陈珩.电力系统稳态分析[M].北京:中国电力出版社,1995:154-155
    [29] Freris L L. Sasson M. Investigation of the Load-Flow Problem[J]. Proc. Inst. Elect. Eng.,1968,115(10):1459-1470
    [30]李钦,孙宏斌,赵晋泉,等.静态电压稳定分析模块在江苏电网的在线应用[J].电网技术,2006,30(6):11-17
    [31] Exposito A G, Romos J L M, Santos J R. Slack Bus Selection to Minimize the System PowerImbalance in Load-Flow Studies[J]. IEEE Trans. Power Syst.,2004,19(2):987-995
    [32]于尔铿,潘毅,王宪荣,等.电力系统潮流收敛性的实用性改进[J].电网技术,1995,19(1):23-26
    [33]黄滔,张辉,卢建刚.改善调度员潮流计算收敛性的措施[J].广东电力,2004,17(2):19-24
    [34]王耀喻,张伯明,孙宏斌,等.一种基于专家知识的电力系统电压/无功分级分布式优化控制分区方法[J].中国电机工程学报,1998,18(3):221-224
    [35]徐林,王秀丽,王锡凡.使用等值导纳进行电力系统小世界特性识别[J].中国电机工程学报,2009,29(19):20-26
    [36]沙树名,林峰.一种基于CIM的厂站接线图自动生成技术[J].电力系统自动化,2008,32(21):68-71
    [37] Walker J Q. A Node-position Algorithm for General Tree[J]. Software Practice and Experience,1990,20(7):685-705
    [38] One Y S, Gooi H B, Chan C K. Automatic Generation of One-line Diagrams[J]. IEE ProceedingsGeneration, Transmission and Distribution,2000,147(5):292-298
    [39]陈勇,邓其君,周洪.无重叠交叉的配电网单线图自动生成算法[J].电力自动化设备,2010,30(11):90-93
    [40] Klump R, Schooley D, Overbye T. Advanced Visualization Platform for Real-time PowerSystem[C]. Operations Proceedings of14th Power Systems Computation Conference,2002:24-28
    [41]徐彭亮,何光宇,梅生伟,等.基于地理信息的输电网单线图自动生成新算法[J].电网技术,2008,32(21):9-12
    [42]章坚民,叶琳,孙维真,等.基于地理相对位置的省级输电网均匀接线图自动生成[J].电力系统自动化,2010,34(24):55-59
    [43]宋适宇,何光宇,徐彭亮,等.输电网单线图的自动生成算法[J].电力系统自动化,2007,31(24):12-15
    [44]章坚民,王云,谷炜,等.调度大屏输电网潮流图自动生成(一)自动布局[J].电力系统自动化,2009,33(24):43-48
    [45]章坚民,方文道,胡冰,等.基于分区和变电站内外模型的区域电网单线图自动生成[J].电力系统自动化,2012,36(5):72-76
    [46]沈伟,吴文传,张伯明,等.能量管理系统中电网潮流单线图自动生成算法[J].电力系统自动化,2010,34(6):48-53
    [47] St utzle T, Dorigo M. ACO Algorithms for the Quadratic Assignment Problem[M]. In D. Corne,M. Dorigo, and F. Glover, editors, New Ideas in Optimization. McGraw-Hill,1999:33-50
    [48] Talbi E G, Roux O, Fonlupt C, Robillard D. Parallel Ant Colonies for CombinatorialOptimization Problems[M]. Lecture Notes in Computer Science,1999:239-247
    [49] Gambardella L M,Taillard E D,Dorigo M. Ant colonies for the QAP[J]. Journal of theOperational Research Society.1999,50(2):1167-1176
    [50]张翠军,邹慧,张有华.基于二次分配问题的混合蚁群算法[J].计算机工程与应用,2008,44(10):37-39
    [51]吕聪颖,于哲舟,周春光,等.动态自适应蚁群算法在二次分配问题中的应用[J].吉林大学学报(理学版),2005,43(4):477-481
    [52]曹阳,姚建国,杨胜春,等.智能电网核心标准IEC61970最新进展[J].电力系统自动化,2011,35(17):1-4
    [53]潘毅,周京阳,李强,等.基于公共信息模型的电力系统模型的拆分与合并[J].电力系统自动化,2003,27(15):45-48
    [54]刘崇茹,孙宏斌,张伯明,等.公共信息模型拆分与合并应用研究[J].电力系统自动化,2004,28(12):51-55
    [55]谢善益,梁成辉,高新华,等. CIM/CIS互操作细则在多级电网调度中的应用[J].电力系统自动化,2009,33(1):103-107
    [56] Chaoming Wang, Qian Chen, Rui Bo, et al. A New CIM-Based Cross-Platform Graphic Systemfor Power System Applications[C].3rd International Conference on Deregulation andRestructuring and Power Technologies,2008:846-851
    [57]曹晋彰,朱传柏,刘波,等.基于公共信息模型的电网智能调度编码体系研究与实现[J].电力系统自动化,2011,35(2):43-47
    [58]白日昶,李颖,帅玲玲,等.高度互操作性的电力系统数据平台设计与实现[J].电力系统自动化,2011,35(19):58-62
    [59] Lijun Qin, Cuijuan Hao, Huawei Jin, et al. Information Model for Power Grid Fault DiagnosisBased on CIM[C].4th International Conference on Electric Utility Deregulation andRestructuring and Power Technologies,2011:866-870
    [60]郭庆来,孙宏斌,张伯明,等.自动电压控制系统的公共信息模型扩展[J].电力系统自动化,2006,30(21):11-15
    [61] Popovic Dragan S, Varga Ervin, Perlic Zvezdana. Extension of the Common Information Modelwith A Catalog of Topologies[J]. IEEE Trans. Power Syst.,2007,22(2):770-777
    [62]丁明,张征凯,毕锐.面向分布式发电系统的CIM扩展[J].电力系统自动化,2008,32(20):83-87
    [63]罗毅,施琳,涂光瑜.适应分布式源即插即用特性需求的微网公共信息模型[J].电力系统自动化,2010,34(8):97-100
    [64]邓显达,何光宇,陈颖,等.上海电网基于Java反射机制的CIM导入[J].电力系统自动化,2007,31(18):21-25
    [65]邢佳磊,杨洪耕.一种面向应用系统的CIM数据处理方法[J].电力系统自动化,2010,34(18):46-50
    [66] Lijun Qin, Qing Guo, Cuijuan Hao, et al. A New Wide Area Measurement System Model Basedon Common Information Model[C].4th International Conference on Electric Utility Deregulationand Restructuring and Power Technologies,2011:1061-1066
    [67] Grubb M, Jamasb T, Pollitt M G. Delivering a Low-carbon Electricity System[M]. Cambridge:Cambridge University Press,2008:133-180
    [68]洪芦诚,石立宝,姚良忠,等.计及风电场发电功率不确定性的电力系统模糊潮流[J].电工技术学报,2010,25(8):116-130
    [69]何禹清,彭建春,文明,等.含风电的配电网重构场景模型及算法[J].中国电机工程学报,2010,30(28):12-18
    [70] IEA. World Energy Outlook2007China and India Insight[M]. Pairs: Iea Publications,2008:13
    [71]国办发[2007]53号文件:国务院办公厅关于转发发展改革委等部门节能发电调度办法(试行)的通知[EB/OL].(2007-08-07)[2011-12-15]. http://www.china.com.cn/policy/txt/2007-08/07/content_8642683.htm
    [72]康重庆,陈启鑫,夏清.低碳电力技术的研究展望[J].电网技术,2009,33(2):1-7
    [73] Chen Q X, Kang C Q, Xia Q, et al. Power Generation Expansion Planning Model towardsLow-carbon Economy and Its Application in China[J]. IEEE Trans. Power Syst.,2010,25(2):1117-1125
    [74]万文军,周克毅,胥建群,等.动态系统实现火电厂机组负荷优化分配[J].中国电机工程学报,2005,25(2):126-129
    [75] Swarup K S, Yamashiro S. Unit Commitment Solution Methodology Using Genetic Algorithm[J].IEEE Trans. on Power Systems,2002,17(1):87-91
    [76] Dang C Y, Li M Q. Floating-point Genetic Algorithm for Solving the Unit CommitmentProblem[J]. European Journal of Operational Research,2007,181(3):1370-1395
    [77]陈启鑫,周天睿,康重庆,等.节能发电调度的低碳化效益评估模型及其应用[J].电力系统自动化,2009,33(16):24-29
    [78]张晓花,赵晋泉,陈星莺.节能减排多目标机组组合问题的模糊建模及优化[J].中国电机工程学报,2010,30(22):71-76
    [79] IPCC. Special Report on Carbon Dioxide Capture and Storage[M]. Cambridge: CambridgeUniversity Press,2005:106-171
    [80]刘练波,黄斌,郜时旺,等.燃煤电站3000~5000t/a CO2捕集示范装置工艺及关键设备[J].电力设备,2008,9(5):21-24
    [81] Chen Qinxin, Kang Chongqing, Xia Qing. Modeling Flexible Operation Mechanism of CO2Capture Power Plant and Its Effects on Power-system Operation[J]. IEEE Transactions on EnergyConversion,2010,25(3):853-861
    [82]陈启鑫,康重庆,夏清.碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28
    [83]卢志刚,祁艳君,杨俊强,等.碳捕集系统在火电厂中的优化配置[J].电力系统自动化,2011,35(7):34-37
    [84]卢志刚,夏明昭,张晓辉.基于多阶段减排规划的发电厂碳捕集系统优化配置[J].中国电机工程学报,2011,31(35):65-71
    [85]陈启鑫,康重庆,夏清,等.低碳电力调度方式及其决策模型[J].电力系统自动化,2010,34(12):18-22
    [86]丁云亮,谷利泽,杨榆.基于分布式中间件ICE应用架构研究[J].计算机应用,2009,29(z2):27-31
    [87]曾志勇,陆鑫达,邬延辉.考虑系统特征的异构计算负载平衡[J].上海交通大学学报,2003,37(3):458-460
    [88]张灏龙,廖馨,郑宏涛,等.基于桌面网格的分布交互仿真平台[J].计算机集成制造系统,2010,16(7):1383-1389
    [89]张飞,陈涛,黄景廉.基于可信度策略的校园网格作业调度算法[J].东南大学学报(自然科学版),2008,38(I):181-184
    [90]张晓杰,孟庆,曲卫芬.基于蚁群优化算法的服务网格的作业调度[J].计算机工程,2006,32(8):215-218
    [91] Euchi J., Chabchoub H., YASSINE A. Ant Colony System Based on2-opt Local Search toSolve the Dynamic Vehicle Routing Problem[C]. Proceeding of The9th International Conferencein Multiple Objective Programming and Goal Programming,2010:60
    [92] Callaway D S, Newman M E J, Strogatez S H, et al. Network Robustness and FragilityPercolation on Random Graphs[J]. Phys. Rev. Lett.,2000,85(25):5468-5471
    [93] Freeman L C. Centrality in Social Networks: Conceptual Clarification[J]. Social Networks,1979,1(3):215-239
    [94] Freeman L C. Centrality in Social Networks: ii. Experimental Results[J]. Social Networks,1979,2(2):119-141
    [95]王林,张婧婧.复杂网络的中心化[J].复杂系统与复杂性科学,2006,3(1):13-20
    [96]张君,赵海,杨波,等. AS级Internet网络拓扑的中心性测量[J].东北大学学报(自然科学版),2012,33(3):340-343
    [97]刘艳,顾雪平.基于节点重要度评价的骨架网络重构[J].中国电机工程学报,2007,27(10):20-27
    [98]王亮,刘艳,顾雪平,等.综合考虑节点重要度和线路介数的网络重构[J].电力系统自动化,2010,34(12):29-33
    [99]陈运坤,吕飞鹏,陈新,等.基于节点重要度估计的多组同基最小断点集选取方法[J].电力系统自动化,2010,34(12):58-60
    [100]解可新,韩立兴,林友联.最优化方法[M].天津:天津大学出版社,1997:238-241
    [101]段海滨.蚁群算法原理及其应用[M].北京:科学出版社,2005:106-108
    [102] IEC61970-401. Energy Management System Application Program Interface (EMS-API): Part401Common Information Model(CIM)Base,2004
    [103] IEC61970-302. Energy Management System Application Program Interface (EMS-API): Part302Common Information Model(CIM) Financial, Energy Scheduling, and Reservation.2004
    [104]姚玉斌,刘仲尧,陈勇.基于CIM的电力变压器模型分析[J].电力系统自动化,2005,29(18):57-61
    [105]方烁,梁成辉,徐庆平,等. IEC61970标准中CIS的Web服务定义与实现.电力系统自动化,2006,30(15):81-84
    [106]李亚平,姚建国,黄海峰,等. SVG技术在电网调度自动化系统中的应用[J].电力系统自动化,2005,29(23):80-82
    [107]冒宇清,唐晓莉,姜彬.基于SVG/Web Service的Web监控技术在EMS中的应用[J].电力系统自动化,2007,31(4):91-96
    [108]宋依群.电力市场的多代理模型[J].中国电机工程学报,2005,25(8):80-83
    [109] Tsai R, Chen J L. Design of A Distributed Problem-Solving System for Short-term LoadForecasting[C]. Proceedings of the35th Midwest Symposium on Circuits and Systems,1992:395-399
    [110]李振坤,陈星莺,赵波,等.配电网动态重构的多代理协调优化方法[J].中国电机工程学报,2008,28(34):72-79
    [111]黎恒烜,孙海顺,文劲宇,等.用于舰船电力系统重构的多代理系统设计[J].中国电机工程学报,2011,31(10):81-87
    [112] Ren Fenghui, Zhang Minjie, Soetanto Danny2, et al. Conceptual Design of A Multi-agent Systemfor Interconnected Power Systems Restoration[J].2011,27(2):732-740
    [113]朱永利,宋少群.基于广域网和多智能体的自适应协调保护系统的研究[J].中国电机工程学报,2006,26(16):15-20
    [114]章健,艾芊,王新刚.多代理系统在微电网中的应用[J].电力系统自动化,2008,32(24):80-82
    [115]陈启鑫,康重庆,夏清.碳捕集电厂的运行机制研究与调峰效益分析[J].中国电机工程学报,2010,30(7):22-28
    [116] Martens P, Delarue E, D'haeseleer W. A Mixed Integer Linear Programming Model for APulverized Coal Plant with Post-combustion Carbon Capture[J]. IEEE Trans. Power Syst., DOI:10.1109/TPWRS.2011.2173506
    [117]张景瑞,龙健,岳超源,等.水火电力系统短期优化调度的一种改进粒子群算法[J].控制与决策,2011,26(3):407-412
    [118]侯云鹤,鲁丽娟,熊信良,等.改进粒子群算法及其在电力系统经济负荷分配中的应用[J].中国电机工程学报,2004,24(7):95-100
    [119]孙静,于继来.节能发电调度问题的多目标期望控制模型及解法[J].电力系统自动化,2010,34(11):23-27

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700