用户名: 密码: 验证码:
分布式电源和电动汽车对配电系统规划和运行的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着可用的输电走廊越来越少以及全球气温的逐步变暖,分布式电源正在全世界的电力系统中发挥着越来越重要的角色。分布式电源在结合了新能源技术后,不但能够有效地减少能源损失、污染气体排放和投资风险,而且能够提高电力系统的稳定和安全、改善电能质量和增加能源利用效率,但分布式电源在电力系统中的大量渗透也给电力系统的安全与经济运行带来了挑战。
     另一方面,随着化石能源的逐步枯竭和公众对环境保护关注程度的不断提高,电动汽车受到了越来越普遍的重视。然而,电动汽车充电站的选址和定容非常重要,处理不当就有可能影响城市交通网络的规划布局、电动汽车用户的出行便利,进而影响电动汽车的广泛应用,也可能导致电能损耗显著增加、某些节点电压明显下降。
     在这些背景下,本论文旨在对分布式电源和电动汽车对配电系统规划和运行的影响问题进行系统而深入的研究,使得分布式电源和电动汽车能够合理和平稳地接入电力系统的实际运行中,同时,能够发挥其本身蕴含的巨大潜力,更好地为系统提供改善电能质量,提高供电可靠性和增加运行灵活性等诸多辅助性服务。
     本论文的主要研究内容如下:
     (1)采用了配电系统的网损对各节点电压的灵敏度,来确定分布式电源的最优选址。然后,以配电系统中各节点电压质量最优为目标函数,考虑了各种约束条件,构造了分布式电源最优容量的数学模型。最后,采用改进的原对偶内点法来求解出分布式电源的最优容量。算例结果表明,所提出的方法不但确定了最优的分布式电源定址和选容,而且优化了各节点的电压质量,同时大幅度地减少了网损。
     (2)基于机会约束规划框架,构造了以分布式电源的总成本(包括投资、运行和维护成本)和网损费用最小为目标函数,以系统安全运行要求为约束,以分布式电源的安装位置和容量为优化变量的数学模型。之后,采用了基于蒙特卡罗模拟嵌入遗传算法的方法来求解所发展的优化问题。最后,用IEEE37节点配电系统说明了所发展的模型与方法是可行和有效的。
     (3)提出了能够计及地理因素和服务半径的两步筛选法来确定电动汽车充电站的候选站址。根据地理信息系统中广泛应用的伏罗诺伊图,对充电站的充电服务区域进行划分,从而指导车主根据电池状态选择适当的充电站进行充电。
     然后,以规划期内充电站的总成本(包括投资、运行和维护成本)和网损费用最小为目标函数,考虑了相关的约束条件,从而构造了电动汽车充电站最优规划的数学模型。最后,采用改进的原对偶内点法来求解所发展的优化问题。最后,用修改的IEEE123节点配电系统来说明所发展的模型与算法的基本特征。算例结果表明,所提出的方法可以得到合理的充电站规划方案,电压质量和负荷曲线均得到优化,从而提高了系统运行的安全性和可靠性。
     (4)提出了一种计及分布式电源和负荷静态特性的最优低频减载策略。以频率及频率变化率为执行依据,并由基本轮和特殊轮组成。在基本轮中,分轮次快速切除负荷,以保证频率摆脱紧急状态。而在特殊轮中,构建了以切负荷成本最小、节点电压质量指标最优和频率波动指标最小这三项指标的组合作为目标函数,考虑了各种约束条件的数学模型。从而,优化分布式电源的出力和调整部分负荷,以保证频率恢复到安全状态并使系统运行参数最优。最后,在MATLAB/SIMULINK仿真环境下以修改的IEEE37节点配电系统为例来验证所提出的最优低频减载策略的有效性。
With the limitation of available transmission corridors and the gradual increase in theglobal temperature, rapid development of Distributed Generators (DGs) has been observedaround the world. DGs combined with distributed energy resource (DER), not only can reduceenergy loss, lessen emission and decrease investment risk, but also can enhance the stabilityand security of power system, improve the power quality and increase energy utilization.However, the extensive penetrations of DGs could lead to some risks to the secure andeconomic operation of power systems
     Otherwise, with the progressive exhaustion of fossil energy and the enhanced awarenessof environmental protection, electric vehicles (EVs) have been paid more and more attention.Inappropriate siting and sizing of EV charging stations could affect the development of EVs,the layout of the city traffic network and the convenience of the EV drivers, as well as lead toan increase in network losses and a drop of voltage quality at some buses.
     Given these backgrounds, many systematic and in-depth investigations on impacts ofdistributed generators and electric vehicles on distribution system planning and operationhave been done in this dissertation for the reasonable and stable penetrations of them intopower system. Meanwhile, the huge potentials can be explored and a lot of auxiliary services,such as the improvement of power quality, the enhancement of power supply reliability andthe increasement of operation flexibility can be achieved.
     Specifically, the contents of this dissertation are as follows:
     (1) A sensitivity based approach is presented to identify the optimal siting of DGs. Onthe other hand, the optimal sizing of DGs is determined by the Modified Primal-Dual InteriorPoint Algorithm with an objective of maintaining the voltage profile at the optimal level.IEEE123-node test feeder is employed to verify the effectiveness of the proposed method.The results demonstrate that the proposed approach is able to search for the optimal solutionsquickly. At the same time, the voltage profiles are obviously improved and the network loss isdecreased dramatically
     (2) Under the chance constrained programming (CCP) framework, a new method ispresented to handle these uncertainties in the optimal siting and sizing of DGs. First, amathematical model of CCP is developed with the minimization of the DGs’ investment cost,operating cost, maintenance cost, network loss cost as well as the capacity adequacy cost asthe objective, security limitations as constraints, the siting and sizing of DGs as optimization variables. Then, a Monte Carlo simulation embedded genetic algorithm based approach isemployed to solve the developed CCP model. Finally, the IEEE37-node test feeder is used toverify the feasibility and effectiveness of the developed model and method, and the test resultshave demonstrated that the voltage profile and power supply reliability for customers can besignificantly improved and the network loss substantially reduced.
     (3) A two-step screening method with the environment factors and the service radius ofEV charging stations considered is first presented to identify the candidate sites of EVcharging stations. The charging service area of each EV charging station is divided in terms ofthe Voronoi diagram (also called Thiessen polygons), which has been extensively applied togeographic information system (GIS). The EVs’ owners can choose the proper EV chargingstations for charging on basis of the SOC in battery packs.
     Then, a mathematical model for optimizing the siting and sizing of EV charging stationsis developed and solved by a Modified Primal-Dual Interior Point Algorithm with theminimization of the sum of the EV charging stations’ investment costs, operation costs andmaintenance costs, as well as the network loss costs as the objective function, and someoperating limitations as constraints to be respected. Finally, the IEEE123-node test feeder isemployed to illustrate the essential features of the developed model and method. The testresults demonstrate that the proposed model and method not only can obtain the reasonableplanning schemes of EV charging stations, but also optimize the load curve and voltagequality, as well as enhance the security and reliability of power systems.
     (4) An optimal under-frequency load shedding strategy for a distribution system withDGs and load static characteristics taken into consideration is developed. Based on thefrequency and the rate of change of frequency (ROCOF), the presented strategy consists ofseveral basic rounds and a special round. In the basic round, the frequency emergency can bealleviated by quickly shedding some loads in a certain orders.
     In the special round, a mathematical model is developed with the minimization of threeindexes including the load shedding cost, the total sum of the squared voltage deviations at allnodes, and the total sum of the squared frequency deviations as the multi-objective function,and some constraints considered. As a result, the frequency security can be maintained andthe operating parameters of the distribution system can be optimized by adjusting the outputpowers of DGs and some loads. The modified IEEE37-node test feeder is employed todemonstrate the essential features of the developed optimal UFLS strategy in theMATLAB/SIMULINK environment.
引文
[1] National Rural Electric Cooperative Association. White paper on distributed generation[DB/OL]. http://www.nreca.org/Documents/PublicPolicy/DGWhitepaper.pdf,2009-12-2
    [2] CIGRE. International council on large electricity systems [DB/OL].http://www.cigre.org,2009-12-12
    [3] Wang C. S., Chen K., Xie Y. H, et al. Sitting and sizing of distributed generation indistribution network expansion planning [J]. Automation of Electric Power Systems, vol.30, no.3, pp.38-43, Feb.2006
    [4] Lisa Schwartz and Public Utility Commission Staff. Distributed generation in oregon:overview, regulatory barriers and recommendations [DB/OL].http://www.oregon.gov/PUC/electric_gas/dg_report.pdf,2009-12-10
    [5] Hansen J. C., Lundsager P., Nielsen L. H.. Distributed generation [DB/OL].http://www.risoe.dk/rispubl/energy-report4/ris-r-1534p21-27.pdf,2009-12-11
    [6] IEEE. Institute of Electrical and Electronics Engineers [DB/OL]. http://www.ieee.org,2009-12-11
    [7] Purchala K., Belmans R., KULeuven. Distributed generation and the grid integrationissues [DB/OL]. http://www.eusustel.be/public/documents_publ/WP/WP3/WP%203.4.1%20Distributed%20generation%20and%20grid%20integration%20issues.pdf,2009-12-23
    [8] EPCOR. Distributed generation [DB/OL]. http://www.epcor.ca/SiteCollectionDocuments/D%20and%20T/pdfs/Distributed%20Generation.pdf,2009-12-02
    [9] Daly P. A., Morrison J.. Understanding the potential benefits of distributed generationon power delivery systems [C]. Proceeding of2001IEEE Rural Electric PowerConference, May2001, Little Rock, AR, USA:1-13
    [10] Pe as Lopes J.A., Hatziargyriou N., Mutale J.. Integrating distributed generation intoelectric power systems: A review of drivers, challenges and opportunities [J]. ElectricPower Systems Research, vol.77, no.9, pp.1189-1203, July2007
    [11] Wang W, Pan Z. C., Cong W., et al. Impact of distributed generation on relay protectionand its improved measures [C]. Proceeding of China International Conference onElectricity Distribution, Dec.2008, Guangzhou, China:1-5
    [12] Méndez V. H., Rivier J., Fuente J. I., et al. Impact of distributed generation ondistribution investment deferral [J]. Electrical Power and Energy Systems, vol.28, no.4,pp.244-252, May2006
    [13] U.S. Department of Energy. The potential benefits of distributed generation andrate-related issues that may impede its expansion [DB/OL].http://www.ferc.gov/legal/fed-sta/exp-study.pdf,2009-12-25
    [14] Darrow K., Hedman B., Bourgeois T, et al. The role of distributed generation in powerquality and reliability [DB/OL]. http://www.icfi.com/Markets/Energy/doc_files/eea-dg-power-quality.pdf,2009-12-03
    [15] Momoh J. A., Yan X., Boswell G. D.. An approach to determine Distributed Generation(DG) benefits in power networks [C]. Proceeding of40th North American PowerSymposium, Sep.2008, Calgary, USA:1-7
    [16] Payyala S. L., Green T.C.. An estimation of economic benefit values of DG [C].Proceeding of2007IEEE Power Engineering Society General Meeting, June2007,Tampa, USA:1-8
    [17] Borges C. L.T., Falc o D. M.. Optimal distributed generation allocation for reliability,losses, and voltage improvement [J]. International Journal of Electrical Power andEnergy Systems, vol.28, no.6, pp.413-420, July2006
    [18] Allison J. E., Lents J.. Encouraging distributed generation of power that improves airquality: Can we have our cake and eat it too?[J]. Energy Policy, vol.30, no.9, pp.737-752, July2002
    [19] Asia-Pacific Partnership on Clean Development and Climate. Renewable energy anddistributed generation task force [DB/OL]. http://www.asiapacificpartnership.org/Pdf/Projects/REDGTF_Action_Plan_Final_Version_4.pdf,2009-12-05
    [20] Azemi A., Sadeghi M.. Distributed generation allocation for loss reduction and voltageimprovement [C]. Proceeding of2009Asia-Pacific Power and Energy EngineeringConference, Mar.2009, Wuhan, China:1-6
    [21] Kuiava R., Ramos R.A., Oliveira R.V.. An analysis of the potential impacts ofelectromechanical oscillations on the stability and power quality of distributedgeneration systems [C]. Proceeding of2008IEEE Power and Energy Society GeneralMeeting-Conversion and Delivery of Electrical Energy in the21st Century, July2008,Pittsburgh, USA:1-7
    [22] Slootweg J. G., Kling W. L.. Impacts of distributed generation on power systemtransient stability [C]. Proceeding of2002IEEE Power Engineering Society SummerMeeting, July2002, Chicago, USA:862-867
    [23] Condon J. C.. Distributed generation as a potential solution to united states electricitytransmission bottlenecks [DB/OL]. http://www.wise-intern.org/journal/2004/WISE2004.ClayCondon.CompleteDraft.pdf,2009-12-24
    [24] Wang S. X., Wei Z., Chen Y. Y.. Distribution system reliability evaluation consideringDG impacts [C]. Proceeding of2008Third International Conference on Electric UtilityDeregulation and Restructuring and Power Technologies, April2008, Nanjing, China:2603-2607
    [25] Neto A. C., Da Silva M. G., Rodrigues A. B.. Impact of distributed generation onreliability evaluation of radial distribution systems under network constraints [C].Proceeding of2006International Conference on Probabilistic Methods Applied toPower Systems,11-15June2006, Stockholm, Sweden:1-6
    [26] Alanne K, Saari A.. Distributed energy generation and sustainable development [J].Renewable and Sustainable Energy Reviews, no.6, vol.10, pp.539–558,2006
    [27] Waseem I., Pipattanasomporn M., and Rahman, S.. Reliability benefits of distributedgeneration as a backup source [C]. Proceeding of2009IEEE Power&Energy SocietyGeneral Meeting, July2009, Arlington, VA, USA:1-8
    [28] Deng W., Pei W., Qi Z. P.. Impact and improvement of distributed generation on voltagequality in micro-grid [C]. Proceeding of2008Third International Conference on ElectricUtility Deregulation and Restructuring and Power Technologies, April2008, Nanjing,China,:1737-1741
    [29] Martinez-Velasco J.A., Martin-Arneclo J.. Distributed generation impact on voltage sagsin distribution networks [C]. Proceeding of9th International Conference on ElectricalPower Quality and Utilisation, Oct.2007, Barcelona, Spain:1-6
    [30] Chiradeja P.. Benefit of distributed generation: a line loss reduction analysis [C].Proceeding of2005IEEE/PES Transmission and Distribution Conference andExhibition: Asia and Pacific, Aug.2005, Dalian, China:1-5
    [31] Pepermans G., Driesen J., Haeseldonckx D., et al. Distributed generation: definition,benefits and issues [DB/OL]. http://www.kuleuven.be/ei/Public/publications/EIWP05-03.pdf,2009-12-11
    [32] Bluestein J.. Environmental benefits of distributed generation [DB/OL].http://www.raponline.org/docs/EEA_Bluestein_EnvironmentalBenefitsOfDistributedGeneration_2000_12_18.pdf,2010-01-12
    [33] Bastiao F., Cruz P., Fiteiro R.. Impact of distributed generation on distributionnetworks[C]. Proceeding of5th International Conference on European ElectricityMarket, May2008, Lisboa, Portugal:1-6
    [34] Rawson M.. Distributed generation costs and benefits issue paper [DB/OL].http://www.energy.ca.gov/papers/2004-08-30_RAWSON.PDF,2009-12-04
    [35] U.S. Department of Energy Office of Energy Efficiency and Renewable Energy.Distributed generation interconnection manual [DB/OL]. http://www.puc.state.tx.us/electric/business/dg/dgmanual.pdf,2009-12-23
    [36]刘峰.最优潮流问题浅析[J].华中电力.2007,5(19):10-19
    [37]万黎,袁荣湘.最优潮流算法综述[J].继电器.2005,33(11):80-85
    [38]陈国良,王熙法,庄镇泉.遗传算法及其应用[M].北京:人民邮电出版社,1996:1-433
    [39]乐秀,覃振成,尹峰.基于自适应模拟退火遗传算法的多目标最优潮流[J].继电器,2005,33(7):10-15
    [40] Kennedy J., Eberhart R.. Particle swarm opimization [J]. Proceedings of IEEEConference on Neural Networks,1995, Perth, Australia:1942-1948
    [41] Acharya N., Mahat P., Mithulananthan N.. An analytical approach for distributedgeneration allocation in primary distribution network [J]. Electric Power and EnergySystems,2006,28(2):669-678
    [42] Gandomkar M., Vakilian M., Ehsan M.. A genetic based tabu search algorithm foroptimal distributed generation allocation in distribution networks [J]. Electrical PowerComponents and Systems,2005,33(11):1351-1362
    [43] Singh D., Singh D., Verma K.S.. GA based optimal sizing and placement of distributedgeneration for loss minimization [J]. International Journal of Intelligent Technology,2005,2(4):263-269
    [44] Ghosh S., Ghoshal S. P., Ghosh S.. Optimal sizing and placement of distributedgeneration in a network system [J]. Electrical Power and Energy Systems,2010,32(8):849-856
    [45] G zel T., Hocaoglu M. H.. An analytical method for the sizing and siting of distributedgenerators in radial systems [J]. Electric Power Systems Research,2009,79(6):912-918
    [46] Elnashar M. M., Shatshat R. E., Salama M. A.. Optimum siting and sizing of a largedistributed generator in a mesh connected system [J]. Electric Power Systems Research,2010,80(6):670-697
    [47]康继光,卫振林,程丹明.电动汽车充电模式与充电站建设研究[J].电力需求侧管理,2009,11(5):64-66
    [48]徐凡,俞国勤,顾临峰,等.电动汽车充电站布局规划浅析[J].华东电力,2009,37(10):1677-1682
    [49]吴春阳,黎灿兵,杜力,等.电动汽车充电设施规划方法[J].电力系统自动化,2010,34(24):36-39
    [50]寇凌峰,刘自发,周欢.区域电动汽车充电站规划的模型与算法[J].现代电力,2010,27(4):44-48
    [51]薛禹胜,任先成, Wu Q H,等.关于低频低压切负荷决策优化协调的评述[J].电力系统自动化,2009,33(9):100-107
    [52]薛禹胜,王达, Wu Q H,等.关于紧急控制与校正控制优化和协调的评述[J].电力系统自动化,2009,33(12):1-7
    [53]任先成,薛禹胜, Wu Q H,等.低频低压切负荷布点及轮次的优化与协调[J].电力系统自动化,2009,33(11):1-7
    [54]佘庆媛,沈沉,乔颖,等.电力系统低压减载和低频减载协调控制策略[J].电力系统自动化,2008,32(23):23-27
    [55]熊小伏,周永忠,周家启.计及负荷频率特性的低频减载方案研究[J].中国电机工程学报,2005,25(19):48-51
    [56] Terzija V. V., Koglin H. J.. Adaptive underfrequency load shedding integrated with afrequency estimation numerical algorithm [J]. IEE Proceedings: Generation,Transmission and Distribution,2002,149(6):713-718
    [57] Chuvychin V. N., Gurov N. S. Venkata S. S., et al. An adaptive approach to loadshedding and spinning reserve control during underfrequency conditions [J]. IEEETransactions on Power Systems,1996,11(4):1805-1810
    [58] Girgis A. A., Mathure S.. Application of active power sensitivity to frequency andvoltage variations on load shedding [J]. Electric Power Systems Research,2010,80(3):306-310
    [59] El-sadek M. Z., Mahmoud G. A., Dessouky M. M., et al. Optimum load shedding foravoiding steady-state voltage instability [J]. Electric Power Systems Research,1999,50(2):119-123
    [60] Abou A. A., Zein Ei-din A., Spea S. R.. Optimal load shedding in power systems [C].Proceedings of11th International Middle East Power Systems Conference,2006, Elminia, Egypt:568–575
    [61] Palaniswamy K. A., Sharma J., Misra K. B.. Optimum load shedding taking into accountof voltage and frequency characteristics of loads [J]. IEEE Transactions on PowerApparatus and Systems,1985,104(6):1342-1348
    [62] Sanaye-pasand M., Davarpanah M.. A new adaptive multidimensioanal load sheddingscheme using genetic algorithm [C]. Proceedings of2005Canadian Conference onElectrical and Computer Engineering,2005, Saskatoon, SK, Canada:174–1977
    [63] Nakawiro W., Erlich I.. Optimal load shedding for voltage stability enhancement by antcolony optimization [C]. Proceedings of15th International Conference on IntelligentSystem Applications to Power Systems,2009, Curitiba, Brazil:1-6
    [64] Terzija V.. Adaptive underfrequency load shedding based on the magnitude of thedisturbance estimation [J]. IEEE Transactions on Power Systems,2006,21(3):1260-1266
    [65] Prasetijo D., Lachs W. R., Sutanto D.. A new load shedding scheme for limitingunderfrequency [J]. IEEE Transactions on Power Systems,1994,9(3):1371–1378
    [66]王成山,陈恺,谢莹华,等.配电网扩展规划中分布式电源的选址和定容[J],电力系统自动化,2006,30(3):38-43
    [67]王志群,朱守真,周双喜,等.分布式电源接入位置和注入容量限制的研究[J].电力系统及其自动化学报,2005,17(1):53-58
    [68]王锡凡.电力系统优化规划[M].北京:水利电力出版社,1990:1-85
    [69]陈宝林.最优理论与算法[M].北京:清华大学出版社,2002:1-196
    [70] Sergio G.. Optimal reactive dispatch through interior point methods [J]. IEEETransactions on Power Systems,1994,9(1):136-146
    [71] WU Y. C., Debs A. S., Marsten R. E.. A direct nonlinear predictor-corrector primal-dualinterior point algorithm for optimal power flow [J]. IEEE Transactions on PowerSystems.1994,9(2):876-883
    [72]郝玉国,刘广一,于尔铿.一种基于Karmarkar内点法的最优潮流算法[J].中国电机工程学报.1996,6(16):409-412
    [73] Wei H., Sasaki H., Kubokawa J., et al. An interior point nonlinear programming foroptimal flow problems with a novel date structure [J]. IEEE Transactions on PowerSystems,1998,13(3):870-877
    [74] Torres G. L., Quintana V. H.. A nonlinear multiple-centrality-corrections interior-pointmethod for optimal power flow [J]. IEEE Transactions on Power Systems,2001,16(2):228-228
    [75] Wu Y. C.. Fuzzy second correction on complementarity condition for optimal powersystems [J]. IEEE Transactions on Power systems,2001,16(3):360-366
    [76]李彩华,郭志忠,樊爱军.原-对偶内点法最优潮流在电力系统中的应用[J].电力自动化设备,2002,22(8):4-7
    [77]王敏,刘胜松,侯志俭.内点法在电力系统最优潮流的应用简介[J].华东电力,2002,11(1):8-12
    [78] Capitanescu F., Glavic M., Ernst D., et al. Interior-point based algorithms for thesolution of optimal power flow problems [J]. Electric Power Systems Research,2007,77(2):508-517
    [79] Yan X. H., Victor H.. An infeasible interior-point algorithm for optimal power flowproblems [J]. Electrical Power and Energy Systems,1996,39(4),39-46
    [80] Dabbagchi I., Christie R. D..30bus power flow test case [DB/OL].http://www.ee.washington.edu/research/pstca/pf30/pg_tca30bus.htm,1993-08-05
    [81] Torres G. L., Quintana V. H.. An interior-point method for nonlinear optimal powerflow using voltage rectangular coordinates [J]. IEEE Transactions on Power Systems,1998,13(4):1211-1218
    [82]赵俊华,文福拴,薛禹胜,等.计及电动汽车和风电出力不确定性的随机经济调度[J].电力系统自动化,2010,34(20):1-8
    [83] Carpinelli G., Celli G., Pilo F., et al. Distributed generation siting and sizing underuncertainty [C]. Proceeding of IEEE Porto Power Tech Proceedings, September10-13,2001, Porto, Portugal:1-7
    [84] Atwa Y. M., El-saadany E. F., Seethapathy R., et al. Effect of wind-based DGseasonality and uncertainty on distribution system losses [C]. Proceeding of40th NorthAmerican Power Symposium, September28-30,2008, Calgary, AB, Canada:1-6
    [85]李安定.太阳能光伏发电系统[M].北京:北京工业大学出版社,2001:1-283
    [86] Mutoh N., Matuo T., Okada K., et al. Prediction-data-basedmaximum-power-point-tracking method for photovoltaic power generation systems [C].Proceeding of2002IEEE33rd Annual Power Electronics Specialists Conference, June23-27,2002, Cairns, Australia:1489-1494
    [87] Hadian A., Haghifam M. R., Zohrevand J., et al. Probabilistic approach for renewableDG placement in distribution systems with uncertain and time varying loads [C].Proceeding of IEEE PES General Meeting, July26-30,2009, Calgary, AB, Canada:1-8
    [88]刘国中,文福拴,薛禹胜.计及温室气体排放限制政策不确定性的发电投资决策[J].电力系统自动化,2009,33(18):17-22
    [89]杨宁,文福拴.基于机会约束规划的输电系统规划方法[J].电力系统自动化,2004,28(14):23-27
    [90]刘宝碇,赵瑞清,王纲.不确定规划及应用[M].北京:清华大学出版社,2003:1-301
    [91] Celli G., Ghiani E., Mocci S., et al. A multiobjective evolutionary algorithm for thesizing and siting of distributed generation [J]. IEEE Transactions on Power Systems,2005,20(2):750-757
    [92] Sahraei-ardakani M., Peydayesh M., Rahimi-kian A.. Multi attribute optimal DGplanning under uncertainty using AHP method [C]. Proceeding of IEEE PES GeneralMeeting on Conversion and Delivery of Electrical Energy in the21st Century, July20-24,2008, Pittsburgh, PA, USA:1-5
    [93]杨宁,文福拴.计及风险约束的多阶段输电系统规划方法.电力系统自动化[J],2005,29(4):28-33
    [94] IEEE Distribution System Analysis Subcommittee. IEEE37-node test feeders [DB/OL].http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html,2010-03-05
    [95] Schneider K., Gerkensmeyer C., Kintner-meyer M., et al. Impact assessment of plug-inhybrid vehicles on Pacific Northwest distribution systems [J]. IEEE Power EngineeringSociety General Meeting, July20-24,2008, Pittsburgh, PA, USA:1-6
    [96] Hajimiragha A., Caizares C. A., Fowler M. W., et al. Optimal transition to plug-in hybridelectric vehicles in Ontario, Canada, considering the electricity-grid limitations [J].IEEE Transactions on Industrial Electronics,2010,57(2):690-701
    [97] Etezadi-amoli M., Choma K., Stefani J.. Rapid-charge electric-vehicle stations [J]. IEEETransactions on Power Delivery,2010,25(3):1883-1887
    [98]杨永标,丁孝华,朱金大,等.物联网应用于电动汽车充电设施的设想[J].电力系统自动化,2010,34(21):95-98
    [99]中华人民共和国国家电网公司.国家电网公司指导性技术文件—电动汽车充电设施典型设计[DB/OL]. http://wenku.baidu.com/view/3f1f51150b4e767f5acfce53.html,2011-05-05
    [100]陈勇,孙逢春.电动汽车续驶里程及其影响因素的研究[J].北京理工大学学报.2001,21(5):578-582
    [101]徐贵宝,王震坡,张承宁.电动汽车续驶里程能量计算和影响因素分析[J].车辆与动力技术,2005,(2):53-56
    [102]吴立新,史文中.地理信息系统原理与算法[M].北京:科学出版社,2003:1-441
    [103]刘志鹏,文福拴,薛禹胜,等.计及可入网电动汽车的分布式电源的最优选址和定容[J].电力系统自动化,2011,35(18):11-16
    [104]Bass R, Harley R, Lambert F, et al. Residential harmonic loads and EV charging [C].Proceedings of IEEE Power Engineering Society Winter Meeting,2001, Atlanta, GA,USA:803-808
    [105]Staats P. T., Grady W. M., Arapostathis A., et al. A statistical analysis of the effect ofelectric vehicle battery charging on distribution system harmonic voltages [J]. IEEETransactions on Power Delivery,1998,13(2):640-646
    [106]Gomez J. C., Morcos M. M.. Impact of EV battery chargers on the power quality ofdistribution systems [J]. IEEE Transactions on Power Delivery,2003,18(3):975-981
    [107]Clement-nyns K., Haesen E., Driesen J.. The impact of charging plug-in hybrid electricvehicles on a residential distribution grid [J]. IEEE Transactions on Power Systems,2010,25(1):371-380
    [108]Rahman S., Shrestha G. B.. An investigation into the impact of electric vehicle load onthe electric utility distribution system [J]. IEEE Transactions on Power Delivery,1993,8(2):591-597
    [109]IEEE Distribution System Analysis Subcommittee. IEEE123-node test feeders [DB/OL].http://www.ewh.ieee.org/soc/pes/dsacom/testfeeders.html,2011-03-05
    [110]DL428-91.电力系统自动低频减负荷技术规定[S].北京:中国电力出版社,1991
    [111]任先成,薛禹胜, Wu Q H,等.低频低压切负荷的控制负效应及其机理[J].电力系统自动化,2009,33(10):1-5,53
    [112]Concordia C., Ihara S.. Load representation in power system stability studies [J]. IEEETransactions on Power Apparatus and Systems,1982,101(4):969-977
    [113]Anderson P. M., Mirheydar M.. An adaptive method for setting underfrequency loadshedding relays [J]. IEEE Transactions on Power Systems,1992,7(2):747-755
    [114]Seyedi H., Sanaye-pasand M.. New centralised adaptive load-shedding algorithms tomitigate power system blackouts [J]. IET Generation, Transmission&Distribution,2009,3(1):99-114
    [115]Ding X., Girgis A. A.. Optimal load shedding strategy in power systems with distributedgeneration [C]. Proceedings of2001IEEE Power Engineering Society Winter Meeting,2001, Columbus, OH, USA:788–793
    [116]Jeonghwan J., Rothrock L., Mcdermott P. L., et al. Using the analytic hierarchy processto examine judgment consistency in a complex multiattribute task [J]. IEEE Transactionson Systems, Man and Cybernetics, Part A: Systems and Humans,2010,40(5):1105-1115
    [117]Arini E. M.. Optimal dynamic load shedding policy for generation load imbalancesincluding characteristics of loads [J]. International Journal of Energy Research,1999,23(1):79-89
    [118]Halevi Y., Kottick D.. Optimization of load shedding system [J]. IEEE Transactions onEnergy Conversion,1993,8(2):207-213
    [119]Billinton R., Wang P.. Distribution system reliability cost/worth analysis using analyticaland sequential simulation techniques [J]. IEEE Transactions on Power Systems,1998,13(4):1245-1250

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700