用户名: 密码: 验证码:
考虑支座相关性的基础隔震结构地震响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基础隔震技术因其良好的减震效果、经济性、耐久性和适用性,得到了国内外学术界和工程界的普遍认可。据统计,我国基础隔震结构的建筑面积已超过了200万平方米。基础隔震技术的应用和发展与隔震系统力学性能的研究及基础隔震结构地震响应分析理论的研究进程息息相关。然而在目前的设计中,通常没有考虑橡胶铅芯支座相关性的影响,从而忽略许多影响结构实际地震响应的客观因素。在橡胶铅芯支座的众多相关性中,温度相关性和竖向力相关性对支座力学性能的影响最为明显。为进一步完善基础隔震技术的理论研究,本文以支座拟静力实验及基础隔震结构非线性地震响应分析为基础,对橡胶铅芯支座的温度相关性和竖向力相关性及考虑支座的相关性影响的基础隔震结构地震响应展开了以下几个方面的研究工作:
     (1)系统的研究了橡胶铅芯支座的温度相关性和竖向力相关性,进行了橡胶铅芯支座的温度相关性和竖向力相关性的拟静力实验,得到了在不同温度环境中和不同竖向力作用下支座的滞回曲线。从橡胶铅芯支座的温度相关性实验结果可发现,环境温度对支座的力学性能有明显影响,支座的屈服剪力、屈后刚度和屈前刚度随温度的降低而增大,且在低温环境中,支座力学性能的变化尤为明显。通过竖向力相关性实验发现橡胶铅芯支座的屈服剪力和屈前刚度随竖向压力的增加而增大,屈后刚度随竖向力的增加而减小,当支座的竖向力达到6MPa时,支座的力学性能趋于稳定。
     (2)推导了基于序贯非线性最小二乘的支座参数识别方法,并对橡胶铅芯支座的拟静力实验结果进行了参数识别。根据参数识别的结果,拟合出支座的力学特性(屈前刚度、屈后刚度和屈服剪力)随温度和竖向力的变化影响系数函数。
     (3)研究了橡胶铅芯支座温度相关性对有偏心和无偏心基础隔震结构的地震响应的影响,编制了无偏心和有偏心基础隔震结构的非线性时程分析程序NBIS和NBIS Torsion,分析了橡胶铅芯支座温度相关性对无偏心和有偏心基础隔震结构地震响应的影响。对于无偏心基础隔震结构,考虑橡胶铅芯支座温度相关性后,支座的相对位移随温度的增高而增大,而支座的恢复力的变化趋势与地震激励的加速大小有关。在较低的环境温度中,基础隔震结构的隔震效果会降低,甚至可能达不到预期的减震目标。对于偏心基础隔震结构,考虑支座的温度相关性后,虽然隔震层和上部结构的位移的变化趋势相同,但不同温度环境的计算结果仍存在较大误差;温度相关性对上部结构转动加速度有较为明显的影响,但是其对隔震层转动加速影响较小,可以忽略不计。
     (4)为研究橡胶铅芯支座竖向力相关性对基础隔震结构地震响应的影响,建立了基础隔震结构多维地震激励的分析模型,并将橡胶铅芯支座的竖向力相关性力学模型嵌入其中,编制了相应的计算程序NBIS_Dimension,分析了在水平向和竖向地震同时作用下基础隔震结构的地震响应。考虑了支座竖向力相关性后,支座的计算滞回曲线不再光滑,出现了上凸和下凹,支座的相对位移和水平剪力均增大,隔震层位移增加;受隔震层位移增大的影响,上部结构有较大的整体偏移。支座的初始压力对支座的滞回性能及上部结构的地震响应有明显影响,初始压力越小,支座的滞回越不饱满,支座的竖向力相关性对上部结构的地震响应越明显。
     (5)研究了高层或高宽比较大的基础隔震结构的平摆耦联地震响应,建立了考虑橡胶铅芯支座竖向力相关性的基础隔震结构平摆耦联分析模型,编制了计算程序NBIS_Oscillation,分析了基础隔震结构的平摆耦联地震响应。受结构平摆耦联运动的影响,即使结构仅考虑水平向地震激励,支座的竖向力也会随结构的摆动不断变化。因此,支座的计算滞回曲线也会凸凹不平,上部结构的加速峰值增大,结构高阶振型的影响更为显著。
Base-isolated technology has won the common acknowledgement by both domestic and foreign academia and engineering industries because of its excellent shock absorption effect, economic strengths, durability and applicability. According to statistics, the area of constructions of the base-isolated buildings in China has exceeded 2 million square meters. The application and development of base-isolated technologies are closely related to the study of mechanical property of vibration isolation system and study process of earthquake response and analytical theories of base-isolated building. In the current studies, however, many objective factors affecting the actual earthquake response of the building are ignored because of the failure in considering the influence of effect of lead rubber bearings. In the various relativities of lead rubber bearings, temperature effect and axial load effect have the most significant influence on the physical property of the bearings. To further optimize the theoretical study of base-isolated technology, this article conducts the researches concerning the temperature effect and axial effect of lead rubber bearings and earthquake response of base-isolated buildings as follows on the basis of bearing quasi-static testing and non-linear time history analyses:
     (1) Studied the temperature effect and axial load effect of lead rubber bearings systematically, conducted the quasi-static testing of temperature effect and axial load effect of lead rubber bearings and got the bearing hysterical curves in different temperatures and axial loads. Analyzed from the results of the temperature effect tests of lead rubber bearing, environment temperature has significant effect on the physical property of the bearings. The yield-shearing force, yielded rigidity and rigidity before the yield-shearing of the bearings will increase with the decrease of temperature and the changes of bearing physical property are most significant in low temperatures. Analyzed the test of axial load effect, the yield-shearing force and rigidity before the force of the lead rubber bearings will enhance by the increase of axial load pressures while yielded rigidity will decrease with the increase of axial loads. The physical property of the bearings tends to be stable when the axial load of the bearings reaches 6MPa.
     (2) Deduced the bearing parameter identification methods based on sequential non-linear LS (Least Squares) and identified the parameters of the results of quasi-static testing of the lead rubber bearings. In accordance with the parameter identification results, create the influence coefficient function of changes of physical properties of the bearings (rigidity before the yield shearing force, yielded rigidity and yield-shearing force) with the variations of temperatures and axial loads.
     (3) Studied the influence of temperature effects of lead rubber bearings on the earthquake response of eccentric and non-eccentric base-isolated buildings. As for the non-eccentric base-isolated buildings, after considering the temperature effects of the lead rubber bearings, the relative displacement will increase with the rise of the temperatures while the variation trends of bearing recoverability is related to the speed acceleration of earthquake stimulation. In low temperature environment, the vibration effect of the base-isolated building will be reduced or even cannot achieve the expected objective for vibration absorption. As for eccentric base-isolated buildings, after considering the temperature effects of the lead rubber bearings, though the isolation layer and the displacement of upper building are similar, calculation results under different temperature environment still has noticeable errors. Temperature effect has significant influence on the speed acceleration of the turning of the upper building. But it has only minute influence on the speed acceleration of the turning of the isolation layer, which is tiny enough to be ignored.
     (4) To study the influence of axial load effect of lead rubber bearings on the base-isolated building, provide the physical model of axial load effect of lead rubber bearings, implant it into the motion formula of base-isolated building and analyze the earthquake response of base-isolated building in simultaneous horizontal and axial loads. After considering the axial load effects of the lead rubber bearings, the hysterical curve of the bearing is no longer smooth, but appears uneven spots. The relative displacement and horizontal shearing force increase. By the influence of displacement, the upper building shifts entirely. The initial pressure of the bearings has significant impacts of hysterical property of bearings and earthquake response of upper building. The less the initial pressure is, the less will the hysterical force of bearing be filled, the more significant of the axial load effect of the bearings on the earthquake response of the upper building.
     (5) Analyzed the horizontal hunting earthquake response of base-isolated buildings of high-rise or more spacious buildings by integration of axial load effects of lead rubber bearings. Influenced by structural horizontal hunting motions, the axial load of the bearings will not change with the vibration of the building even though the building only considers the horizontal earthquake stimulation. Therefore, the calculation hysterical curve of the bearings will not become uneven; the peak of speed acceleration of the upper building and the influence of high order mode of the building will become more significant.
引文
[1]EERI. Loma Prieta Earthquake Reconnaissance. Earthquake Spectra,1990,6: 261-280
    [2]李杰.生命线工程抗震基础理论与应用.北京:科学出版社,2005
    [3]叶昆.近断层脉冲型地震作用下LRB基础隔震结构地震响应研究[博士论文].武汉:华中科技大学,2008
    [4]周福霖.工程结构减震控制.北京:地震出版社,1997
    [5]周云,徐彤,俞公华.耗能减震技术研究及应用的新进展.地震工程与工程振动,1999,19(2):122—131
    [6]朱杰.可调TMD阻尼器在大跨度钢结构中的震动控制应用.土木工程学报,2010,43:317—322
    [7]张春巍,欧进萍.结构振动AMD控制系统主动控制力特征指标与分析.工程力学,2007,24(5):1—9
    [8]Ricciardelli F, Pizziment A D. Passive and active mass damper control of the response of tall buildings to wind gustiness. Engineering Structures,2003,25(9): 1199-1209
    [9]Tieneng G, Qiuhai L, Junfeng L. PI force feedback control for large flexible structure vibration with active tendons. Acta Mechanica Sinica/Lixue Xuebao, 2008,24(6):721-725
    [10]Bossens F. Active tendon control of cable-stayed bridges:A large-scale demonstration. Earthquake Engineering and Structural Dynamics,2001,30(7): 961-979
    [11]Fujita T, Sakaki K, Hora H. Fundamental study of structural response control by friction controllable active brace using piezoelectric actuator. Transactions of the Japan Society of Mechanical Engineers,1997,63(614):3467-3471
    [12]ChinHsiung L, Pay Yang L, NanHau C. Experimental verification of building control using active bracing system. Earthquake Engineering and Structural Dynamics,1999,28(10):1099-1119
    [13]Nasu T, Kobori T, Takahashi M. Active variable stiffness system with non-resonant control. Earthquake Engineering and Structural Dynamics,2010, 30(11):1597-1614
    [14]Tanaka T, Watanabe T, Seto K. Semi-active control strategy with nonlinear predictive control and development of MR damper with expanded variable damping region. Transactions of the Japan Society of Mechanical Engineers,2006, 72(2):340-346
    [15]Kobori T, Takahashi M, Nasu T, et al. Seismic response controlled structure with active variable stiffness system. Earthquake Engineering and Structural Dynamics, 1993,22(11):925-941
    [16]Xu Y L, Ng C L. Seismic protection of a building complex using variable friction damper:Experimental investigation. Journal of Engineering Mechanics,2008, 134(8):637-649
    [17]ChinHsiung L, MingJin M. Control of seismically excited building structures using variable damper systems. Engineering Structures,1996,18(4):279-287
    [18]李芦枉,宋钢兵,欧进萍.结构非线性振动智能控制试验与分析.力学学报,2010,42(1):115—121
    [19]郭鹏飞.基于磁激励智能材料阻尼器的设计与研究[硕士论文].哈尔滨:哈尔滨工业大学,2006
    [20]Yang J N, Danielians A, Liu S C. Aseismic hybrid control system for building structures under strong earthquake. Journal of Intelligent Material Systems and Structures,1990,1(4):432-461
    [21]Yang J N, Agrawal A K. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Engineering Structures,2002,24(3): 271-280
    [22]Kim H, Adeli H. Hybrid control of irregular steel highrise building structures under seismic excitations. International Journal for Numerical Methods in Engineering, 2005,63(12):1757-1774
    [23]Ahlawat A S, Ramaswamy A. Multiobjective optimal fuzzy logic controller driven active and hybrid control systems for seismically excited nonlinear buildings. Journal of Engineering Mechanics,2004,130(4):416-423
    [24]GB50011—2010.建筑抗震设计规范.2010
    [25]Euro code 8. Design of struetures for earthquake resistance-Part2:Bridges.2006
    [26]AASHTO. Guide Specifications for Seismie Isolation Design.1999
    [27]Polance J. Near-suorce effect on base Isolation building.[Phd.Dessertation]. Logan,Utah:Utah state university,2007
    [28]日本建筑学会,刘文光.隔震结构设计.北京:地震出版社,2006
    [29]唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993
    [30]Gent A N, Lindley P B. The compression of bonded rubber blocks. Mechnical Engneerings,1959,176(111-122)
    [31]加藤隆一,岡研二郎.天然橡胶隔震支座压缩界限相关试验研究.日本建筑梗概,2001,20(1):617—620
    [32]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究[博士论文].北京:北京工业大学,2003
    [33]藤田隆史,藤田聪,铃木重信.建筑隔震用橡胶隔震支座相关试验研究.日本建筑梗概,1988,54(507):2618—2623
    [34]刘文光,周福霖.铅芯夹层橡胶隔震垫基本力学性能研究.地震工程与工程振动,1999,19(1):93—99
    [35]可见长英,岩部直征,高山峰夫.天然橡胶、高阻尼橡胶、铅芯橡胶的剪切拉伸特性.日本建筑学会学术讲演梗概集,1999,B-2(559—566)
    [36]近滕俊成,乔村宏彦,瓜生满.天然橡胶的拉伸特性试验.日本建筑梗概,2001,20(1):625—630
    [37]金建敏,谭平,周福霖.天然橡胶支座(LNR)的等效阻尼比试验研究.西安建筑科技大学学报,2009,41(5):663—667
    [38]Robinson W H. Lead-rubber hysteretic bearing suitable for protecting structures during earthquake. Earthquake Engineering and Structural Dynamics,1982,10: 359-604
    [39]李黎,聂肃非,孔德怡.桥梁隔震支座静力性能试验分析.工程抗震与加固改造,2009,31(3):21—25
    [40]江宜城,聂肃非,叶志雄,et a1.多铅芯橡胶隔震支座非线性力学性能试验研究及其显式有限元分析..工程力学,2008,25(7):11—17
    [41]江宜城,聂肃非,叶志雄,et al.四铅芯橡胶支座显式有限元分析及试验研究.中国市政工程,2007,3:41-43
    [42]程桂胜.桥梁天然橡胶支座老化特性的预测.世界桥梁,2009,1:63—68
    [43]Itoh Y, Gu H S. Prediction of Aging Characteristics in Natural Rubber Bearings Used in Bridges. Journal of Bridge Engineering,2009,14(2):122-128
    [44]周福林.工程结构减震控制.北京:地震出版社,1997
    [45]刘文光,庄学真,周福霖.中国铅芯夹层橡胶隔震支座各种相关性能及长期性能研究.地震工程与工程振动,2002,22(1):114—120
    [46]朱敏.橡胶化学与物理.北京:化学工业出版社,1982
    [47]Amerongen G J. Oxidative and nonoxidative thermal degradation of rubber. Industrial and Engineering Chemistry,1955,47(12):2564-2574
    [48]陈国栋,满敬国,钱伟国.硫化温度对橡胶与金属粘接强度的影响.现代橡胶技术,2008,34(4):28—29
    [49]刘文光,杨巧荣,周福林.建筑用铅芯橡胶隔震支座温度性能研究.世界地震工程,2003,19(2):39-44
    [50]Thomas B. Material mechanical property behavior of maintenance-free rubber-metal bearings. Materials Testing,1989,31:241-244
    [51]杨林,周锡元,苏幼坡,et al. FPS摩擦摆隔震体系振动台试验研究与理论分析.特种结构,2005,22(4):43—46
    [52]杨林,常永平,周锡元,et al. FPS隔震体系振动台试验与有限元模型对比分析.建筑结构学报,2008,29(4):66-72
    [53]姜婷,霍达,李大望.摩擦摆隔震结构地震反应的计算分析.河南科学,2007,9(5):10—16
    [54]姜婷,王俊峰,李大望.摩擦摆隔震结构振动台试验及结果分析.华南港工 2009,116(3):39-43
    [55]黄襄云,周福霖,曹京源,et a1.纤维橡胶隔震结构模拟地震振动台试验研究及仿真分析.广州大学学报(自然科学版),2010,9(5):21—26
    [56]赵亚敏,苏经宇,周锡元,et a1.碟形弹簧竖向隔震结构振动台试验及数值模拟研究.建筑结构学报,2008,29(6):99—106
    [57]颜学渊,张永山,工焕定,et a1.三维隔震抗倾覆结构振动台试验.工程力学,2010,27(5):91—96
    [58]范夕森,张鑫,苏小卒,et al.滚轴-橡胶垫支座组合隔震体系的模型振动台试验研究.工程抗震与加固改造,2009,31(2):43—48
    [59]杨树标,李旭光,马裕超,et a1.复合隔震摩擦承压比的振动台试验研究.地震工程与工程振动,2010,26(2):141—145
    [60]杨树标,马裕超,李旭光,et a1.复合隔震结构模型振动台试验研究.地震工程与工程振动,2010,30(1):142—146
    [61]杜修力,廖维张,杜义欣,et a1.智能隔震系统的冲击振动台试验.解放军理工大学报(自然科学版),2007,8(6):689—694
    [62]吕西林,朱玉华,施卫星,et a1.组合基础隔震房屋模型振动台试验研究.土木工程学报,2001,34(2):43—49
    [63]汪新明.橡胶隔震支座的非线性建模及参数识别研究[硕士论文].南京:南京航空航天大学,2008
    [64]Furukawa T, Ito M, Izawa K. System identification of base-isolation building using seismic response. Journal of Engineering Mechanics,2005,131(3):268-275
    [65]Hwang J S, Wu J D, Pan T C. A mathematical hysteretic model for elastomeric isolation bearings. Earthquake Engineering and Structural Dynamics,2002, 31(771-789)
    [66]Wen Y K. Method for random vibration of hysteretic systems. Journal of Engineering Mechanics,1976,12(3):119-126
    [67]Ma F, Zhang H. Parameter Analysis of the Differential Model of Hysteresis. Journal of Applied Mechanics,2004,11(3):1507-1520
    [68]Kelly J M. A seismic Base Isolation. Shock and Viberation Digest,1985,17(7): 3-14
    [69]许宏洲.隔震结构体系的地震反应和热震可靠度研究[硕士论文].泉州:华侨大学,2004
    [70]李黎,孔德怡,聂肃非,et al.双层连续梁桥等效线性化方法隔震分析.公路交通科技,2008,25(7):43-48
    [71]周锡元,阎维明,杨润林.建筑结构的隔震、减振和振动控制.建筑结构学报,2002,23(2):2—12
    [72]朱宏平,唐家祥.叠层橡胶隔震支座的振动传递特性.工程力学,1995,12(4):109-113
    [73]徐忠根,周福霖.多层钢结构基础隔震性能研究.地震工程与工程振动,1999,19(3):131—135
    [74]徐忠根,周福霖.我国首栋橡胶垫隔震住宅楼动力分析.世界地震工程,1996,12(1):38—42
    [75]王斌,蒋东红,刘之洋.橡胶垫减震结构的动力反应.东北大学学报,1999,20(4):418—421
    [76]王斌,工庆利,刘之洋.双向地震影响下抗震和减震结构变形的比较.东北大学学报,1999,20(5):540—543
    [77]杨迪雄.空间非对称框架结构的控振研究[硕士论文].西安:西安理工大学,2001
    [78]张玉良,汪洋,张铜生.橡胶垫隔震结构杆系一层模型地震反应分析.工程力学,2000,20(1):51—57
    [79]张玉良,汪洋,张铜生.考虑橡胶垫弹塑性性能及结构阻尼比变化的隔震结构动力分析.工程力学,2002,19(2):58—63
    [80]Nagarajaiah S, Andrei M. Nonlinear Dynamic Analysis of 3-D-Base-Isolated Structures. Journal of Structural Engineering,1991,117(7):2035-2054
    [81]Lee, D. M. Base isolation for torsion reduction in asymmetric structures under earthquake loading.. Earthquake Engineering and Structural Dynamics,1980,8(4): 349-359
    [82]Nagarajaiah S, Reinhorn A M, Constantinou M C. Torsional Coupling in Sliding Base Isolated Structures. Journal of Structure Engineering,1993,119:130-149
    [83]Nagarajaiah S, Reinhorn A M., Constantinou M C. Torsion in base-isolated structures with elastomeric isolation systems. Journal of Structure Engineering, 1993,119(12):2932-2951
    [84]Jangid R S, Datta T K. Nonlinear response to torsionally coupled base isolated structure. Journal of Structural Engineering,1994,120(1):1-22
    [85]Jangid R S, Datta T K. Seismic response of torsionally coupled structure with elasto-plastic base isolation. Structural Engineering,1994,16(4):256-262
    [86]Ryan K L, Chopra A K. Estimation of seismic demands on isolators based on nonlinear analysis. Journal of Structural Engineering,2004,130(3):392-402
    [87]Ryan K L, Chopra A K. Estimation of seismic demands on isolators in asymmetric buildings using non-linear analysis. Earthquake Engineering and Structural Dynamics,2004,33(3):395-418
    [88]Ryan K L, Chopra A K. Estimating seismic demands for isolation bearings with building overturning effects. Journal of Structural Engineering,2006,132(7): 1118-1128
    [89]Ryan K L, Chopra A K. Estimating bearing response in symmetric and asymmetric-plan isolated buildings with rocking and torsion. Earthquake Engineering and Structural Dynamics,2006,35(8):1009-1036
    [90]Tena C A, Escamilla J L. Torsional amplifications in asymmetric base-isolated structures. Engineering Structures,2007,29(2):237-247
    [91]Tena C A, Gomez L. Torsional response of base-isolated structures due to asymmetries in the superstructure. Engineering Structures,2002,24(12): 1587-1599
    [92]Tena C, A, Gomez, L. Dynamic torsional amplifications of base-isolated structures with an eccentric isolation system. Engineering Structures,2006,28(1):72-83
    [93]王建强,姚谦峰.基础隔震单层偏心结构扭转地震反应分析.世界地震工程,2004,2(1):35—38
    [94]王建强,姚谦峰.基础隔震偏心结构扭转振动反应分析.四川建筑科学研究,2004,30(1):103-104
    [95]江宜城,唐家祥.单轴偏心的基础隔震结构扭转反应分析.华中理工大学学报,1999,27(6):80-82
    [96]江宜城,唐家祥.单轴偏心的单层隔震框架结构地震扭转反应分析.世界地震工程,1999,15(4):57-61
    [97]江宜城,唐家祥,李媛萍.基础隔震结构扭转振动反应分析.噪声与振动控制,2000,1:12-14
    [98]江宜城,唐家祥,李媛萍.多层框架隔震结构的地震扭转反应分析.工程抗震,2000,2:12-14
    [99]Li H N, Li Y, Wu X. Simplified calculation approach of torsionally coupled seismic response for base-isolated eccentric structures. Advances in Structural Engineering Structures,2007,10(3):245-257
    [100]吴香香,李宏男.结构偏心对基础隔震结构地震反应的影响.地震工程与工程振动,2003,23(1):145-151.
    [101]Somerville P G, Smith N F and W G R. Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity. Seismological Research Letters,1997,68(1):199-222
    [102]Somerville P G. Characterizing near fault ground motion for the design and evaluation of bridges.3th National Seismic Conference and Workshop on Bridges and Highways, New York.2002
    [103]Bray J D and Rodriguez-Marek A. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering,2004, 24(11):815-828
    [104]李爽.近场脉冲型地震动对钢筋混凝土框架结构影响[博士论文].哈尔滨:哈尔滨工业大学,2005
    [105]李新乐,朱烯.近断层地震动等效速度脉冲研究.地震学报,2004,26(6):634-643
    [106]邬鑫,朱晞.近场地震动的脉冲效应及简化冲击回归公式的检验.北方交通大 学学报,2003,27(1):36—39
    [107]Somerville P G and W G R. Conditions that give rise to unusually large long period ground motions. Structural Design of Tall Buildings,1993,2(3):211-224
    [108]Heaton T H, Hall J F and Wald D J. Response of high-rise and base isolated buildings to a hypothetical MW> 7.0 blind thrust earthquake. Science,1995, 267(5195):206-211
    [109]Jangid R S and Kelly J M. Base isolation for near-fault motions. Earthquake Engineering and Structural Dynamics,2001,30(5):691-707
    [110]Kelly J M. Role of damping in seismic isolation. Earthquake Engineering and Structural Dynamics,1999,28(1):3-20
    [111]Bhasker R P and S J R. Performance of sliding systems under near-fault motions. Nuclear Engineering and Design,2001,203(2-3):259-272
    [112]Jangid R S. Optimum lead-rubber isolation bearings for near-fault motions. Engineering Structures,2007,29(10):2503-2513
    [113]Providakis C P. Effect of LRB isolators and supplemental viscous dampers on seismic isolated buildings under near-fault excitations. Engineering Structures, 2008,30(5):1187-1198
    [114]Makris N and Chang S P. Effect of viscous, viscoplastic and friction damping on the response of seismic isolated structures. Earthquake Engineering and Structural Dynamics,2000,29(1):85-107
    [115]Yang J N and A A K. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Engineering Structures,2002,24(3):271-280
    [116]Mavroeidis G P, Dong G and Papageorgiou A S. Near-fault ground motions, and the response of elastic and inelastic single-degree-of-freedom (SDOF) systems. Earthquake Engineering and Structural Dynamics,2004,33(9):1023-1049
    [117]Nagarajaiah S. Base-Isolated FCC Building Impact Response in Northridge Earthquake. Journal of Structural and Engineering,2001,127(9):1063-1075
    [118]Malhotra P K. Dynamics of seismic impacts in base-isolated buildings. Earthquake Engineering and Structural Dynamics,1997,26(8):797-813
    [119]Tsai H C. Dynamic analysis of base-isolated shear beams bumping against stops. Earthquake Engineering and Structural Dynamics,1997,26(5):515-528
    [120]Matsagar V A and Jangid R S. Seismic response of base-isolated structures during impact with adjacent structures.. Engineering Structures,2003,25(12):1311-1323
    [121]叶昆,李黎.改进的Kelvin碰撞分析模型.工程力学,2009,26(sup 2):245-248
    [122]Jankowski R. Non-linear viscoelastic modelling of earthquake-induced structural pounding. Earthquake Engineering and Structural Dynamics,2005,34(6):595-611
    [123]Ye K, Li L and Zhu H P. A modified Kelvin impact model for pounding simulation of base-isolated building with adjacent structures. Earthquake Engineering and Engineering Vibration,2009,8(3):433-446
    [124]Ye K, Li L and Zhu H P. A note on the Hertz contact model with nonlinear damping for pounding simulation. Earthquake Engineering and Structural Dynamics,2009,38(9):1135-1142
    [125]韩淼,许乐.建筑基础隔震层限位保护的研究进展.中国土木工程学会.低碳经济与土木工程科技创-2010 中国(北京)国际建筑科技大会论文集.北京.2010.北京:中国土木工程学会,2010.273—279
    [126]韩淼,周锡元.基础隔震建筑软碰撞保护分析.建筑科学,1999,15(1):14-20
    [127]韩森,杜红凯,刘健兵.U型钢板软碰撞限位实验隔震层位移回归分析.中国力学学会结构工程专业委员会.第17届全国结构工程学术会议论文集.武汉.2008.北京:中国力学学会,2008.37-41
    [128]韩淼,王秀梅.基础隔震层软碰撞限位试验研究.工程抗震与加固改造,2005,27(3):70-72
    [129]李志军,邓子辰.带限位装置的基础滑移隔震结构的模糊滑模控制研究.振动与冲击,2008,27(9):111—115
    [130]谷伟,刘叔伦,刘斌.带限位器滑移隔震砌体结构考虑竖向地震作用影响研究.振动与冲击,2004,23(1):74-77
    [131]崔艺斌,张富有.带限位钢棒隔震橡胶垫基本特性研究.河海大学学报(自然科学版),2007,35(3):302-304
    [132]樊剑,刘铁,魏俊杰.近断层地震下摩擦型隔震结构与限位装置碰撞反应及防 护研究.土木工程学报,2007,40(5):10—16
    [133]Kelly, J. M. Earthquake-resistant Design with Rubber. Springer.London,1997.
    [134]Subramanian R S, Reinborn A M and Riley M A. Hybrid control of structures using fuzzy logic. Microcomputers in Civil Engineering,1996,11(1):1-17
    [135]Roberti V and Jezequel L. Adaptive semiactive isolation of seismic buildings. Smart Materials and Structures,1995,4(1A):32-40
    [136]Luo N, Rodellar J and Vehi J. Composite semiactive control of a class of seismically excited structures. Journal of the Franklin Institute,2001,338(2): 225-240
    [137]孙作玉,王晖,赵桂峰.基于滚球隔震和换能控制的智能控制系统.工程力学,2010,27(1):160-164
    [138]吴从晓,周云,邓雪松.高位转换隔震与耗能减震结构体系分析研究.土木工程学报,2010,43:289-296
    [139]李慧,刘迪,杜永峰.附设耗能装置的高层基础隔震建筑抗震性能研究.土木工程学报,2010,43:277-281
    [140]瞿伟廉,周耀.MR阻尼器对地震反应的模糊半主动控制.武汉理工大学学报,2003,25(11):44-46
    [141]石城林.基于MR阻尼器的智能复合隔震系统的半主动控制.铁道勘测与设计,2006,4(33—35)
    [142]金章才,朱玉华,吕西林,et al.不同烈度地震作用下铅芯橡胶隔震房屋模型振动台试验研究.结构工程师,2003,1:43-48
    [143]于旭,宰金珉,王志华.铅芯橡胶支座隔震钢框架结构体系振动台模型试验研究.世界地震工程,2010,26(3):30-36
    [144]Kitamura S, Morishita M and Yabana S et al. Shaking table tests with large test specimens of seismically isolated FBR plants part 1:Response behavior of test specimen under design ground motions. American Society of Mechanical Engineers,1988,41(2):11-35
    [145]黄襄云,周福霖,金建敏,et al.多层隔震与非隔震框剪结构振动台对比试验研究.建筑结构,2007,37(8):55—58
    [146]Inaba S, Anabuki T and Shirai K et al. Shaking table tests with large test specimens of seismically isolated FBR plants part 2:Damage test of reinforced concrete wall structure. American Society of Mechanical Engineers,1990,59(2):22-46
    [147]朱玉华,施卫星,吕西林,et al.基础隔震房屋模型振动台对比试验与分析.同济大学学报,2001,29(5):505—509
    [148]于旭,宰金珉,王志华.考虑SSI效应的铅芯橡胶支座隔震结构体系振动台模型试验.南京航空航天大学学报,2010,42(6):786-762
    [149]Shrimali M K and Jangid R S. Non-linear seismic response of base-isolated liquid storage tanks to bi-directional excitation. Nuclear Engineering and Design,2002, 217(2):1-20
    [150]李向真,向伟明,全明,et a1.平扭耦联隔震体系振动台试验研究.工程抗震与加固改造,2010,32(3):94-98
    [151]Ogiyama, K., Sato, T. Nonlinear structural system identification using shaking table test data of five-story model building. Journal of the Franklin Institute,2001, 338(2):225-240
    [152]付伟庆,王焕定,刘文光,et al. LRB隔震结构模型振动台试验研究(1).哈尔滨工业大学学报,2007,39(2):201—205
    [153]付伟庆,王焕定,刘文光,et al. LRB隔震结构模型振动台试验研究(2).哈尔滨工业大学学报,2007,39(2):521—524
    [154]刘文光,何文福,霍达.大高宽比隔震结构双向输人振动台试验及数值分析.北京工业大学学报,2007,33(6):597-602
    [155]王铁英,王焕定,刘文光.大高宽比橡胶垫隔震结构振动台试验研究(1).哈尔滨工业大学学报,2006,38(12):2060-2064
    [156]王铁英,于焕定,刘文光.大高宽比橡胶垫隔震结构振动台试验研究(2).哈尔滨工业大学学报,2007,39(2):196-200
    [157]丁琳,付伟庆,吕孔才.振动台模拟高层隔震结构多维地震反应的试验.沈阳建筑大学学报(自然科学版),2007,23(3):367-371
    [158]何文福,霍达,刘文光.高层隔震结构振动台试验及数值分析.北京工业大学 学报,2010,36(3):334-339
    [159]何文福,刘文光,张颖,et a1.高层隔震结构地震反应振动台试验分析.振动与冲击,2007,27(8):97—101
    [160]JSSI. An introduction to seismic isolaion.American:Ohmsha,1995
    [161]Robinson W H and Cousins W J. Recent development in lead dampers for base isolations. Earthquake engineering,1987,15(4):279-284
    [162]Birchenall C E. Physical metallurgy. London:Taylor,1959
    [163]Pugh H L. Hydrostatic extrusion. Earthquake Engineering and Structural Dynamics, 1970,11:187-197
    [164]Kalpakidis I V and Constantinou M C. Effects of Heating on the Behavior of Lead-Rubber Bearings. I:Theory. Journal of Structural Engineering,2009,135(12): 1440-1449
    [165]Geni A N and Meineeke E A. Compression, Bending and Shear of Bonded Rubber blocks. Ploymer Engineering and Science,1970,10(1):62-79
    [166]Kalpakidis I V and Constantinou M C. Effects of heating on the behavior of Lead-rubber bearings. ii:Verification of theory. Journal of Structural Engineering, 2009,135(12):1450-1461
    [167]由世岐,刘斌,楼永林.低温环境对叠层橡胶支座变形特性影响的试验研究.东北大学学报(自然科学版).2005,26(3):297-299
    [168]尹维祥.叠层橡胶支座稳定性极其受低温环境的影响.甘肃工业大学,2001,10(2):54-69
    [169]Ghasemi H and Higgins M S. Sizing up seismic bearings. Civil Engineering,1999, 69(7):54-59
    [170]李慧,邓学晶,杜勇锋.寒区叠层橡胶隔震支座拟静力试验研究.低温建筑技术,2003,4:33—35
    [171]Nakano O, Taniguchi H and Nishi H. Effect of temperature on the dynamic behavior of base-isolated bearings. Wind and Seismic Effects,1992,24(5): 116-135
    [172]Hwang J S, Wu J D and Pan T-C et al. A mathematical hysteretic model for elastomeric isolation bearings. Earthquake Engineering and Structural Dynamics, 2002,31(4):771-789
    [173]聂肃非.连续梁桥橡胶铅芯隔震支座的力学性能研究及应用[博士论文].武汉:华中科技大学,2010
    [174]Ahn I.-S and Chen S S. Nonlinear model-based system identification of lead-rubber bearings. Journal of Structural Engineering,2008,134(2):318-328
    [175]SKinner R I and Robinson W H. An introduction to seismic isolation. New York: Wiley,1993
    [176]Aiken I D, Kelly J M and Tajirian F F. Mechanic of low shape factor elastomeric seismic isolation bearings. Berkeley:UCB/EERC-89/13,1989
    [177]Clark P W, Aiken I D and Kelly J M. Experimental studies of the ultimate behavior of seismeically-isolated structures. Berkeley:UCB/EERC-97/18,1997
    [178]Griffith M C, Kelly J M and Coveney V A. Experimental evaluation of medium-rise structures subject to uplift. Berkeley:UCB/EERC-88/02,1988
    [179]Tyler R G and Robinson W H. High-strain tests on leadrubber bearings for earthquake loadings. Earthquake Engineering and Structural Dynamics,1984, 17(2):90-105
    [180]Ryan K and Kelly J. Experimental observation of axial load effects in isolation bearings. Earthquake Engineering,2004,11 (2):150-181
    [181]Ryan K L, Kelly J M and Chopra A K. Nonlinear Model for Lead-Rubber Bearings Including Axial-Load Effects. Journal of Engineering Mechanics,2005, 131(12):1270-1278
    [182]Hwang J and Hsu T. Experimental study of isolated building under triaxial ground excitations. Journal of Structural Engineering,2000,126(8):879-886
    [183]Buckle I and Liu H. Stability of elastomeric isolation systems for buildings. Journal of Mechanical Sciences,1981,20:732-749
    [184]Koh C and Kelly J. A simple mechanical model for elastomeric bearings used in base isolation. International Journal of Mechanical Sciences,1988,30:933-943
    [185]Koh C and Kelly J. Seismic response of base isolated buildings including P-A effects of isolation bearings. Earthquake Engineering and Structural Dynamics, 1989,18:461-473
    [186]Iizuka M. A macroscopic model for predicting large-deformation behaviors of laminated rubber bearings. Engneering Structure,2000,22:323-334
    [187]Yamamoto S and Kikuchi M. A mechanical model for elastomeric seismic isolation bearings including the influence of axial load. Earthquake Engineering and Structural Dynamics,2009,38:157-180
    [188]张延年,李宏男.耦合地震作用下的MRD与LRB混合控制结构动力分析.工程力学,2008,25(4):26-31
    [189]党育,霍凯成.多层隔震结构的竖向地震作用研究.地震工程与工程振动,2010,30(4):139—145

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700