用户名: 密码: 验证码:
高地温巷道围岩非稳态温度场及隔热降温机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热害已经成为继顶板、瓦斯、水、火、粉尘后的第六大矿井自然灾害。对于深部矿井,高地温因素在矿井热害的形成过程中起着决定性的作用,其中,高地温巷道以其通风线路长、暴露面积大、通风系统复杂等原因,最有可能在较大区域范围内影响到井下的气象环境。它不仅直接向风流传热使风温上升,还会对空调降温产生的冷空气造成热污染,降低人工制冷降温的效果。因此,需要研究高地温巷道围岩的传热问题,而其基本问题之一是巷道围岩的温度场。
     论文采用理论分析、物理模拟和数值试验相结合的方法,提出了适用于巷道围岩温度场研究的物理相似试验方法;利用自主设计研制的高地温巷道热湿环境相似模拟试验系统,开展了巷道围岩温度场的物理试验研究,揭示了高地温巷道围岩温度分布特征及其演化规律;建立了巷道围岩非稳态温度场的数值解法,进行了高地温巷道围岩温度场的数值试验,进一步探讨了巷道围岩温度时空分布的演化规律;建立了具有阻热圈结构的高地温巷道围岩非稳态导热的数学模型,首次给出了阻热圈温度场的数值解法,开展了阻热圈结构隔热机理的研究,进一步完善了阻热圈概念的内涵。主要研究结论如下:
     1)提出了适用于高地温巷道围岩温度场研究的物理相似试验方法。基于能量守恒定律和傅里叶定律,把高地温巷道围岩传热简化成一维半无限大单一介质空心圆薄片的导热问题,建立了巷道围岩非稳态导热的数学模型;依据相似理论,推导出了巷道围岩温度场的相似准则,得到了巷道围岩温度场物理模拟试验的相似常数关系式,在此基础上,提出了适合于高地温巷道围岩温度场研究的物理模拟试验方法。
     2)自主设计研制了高地温巷道热湿环境相似模拟试验系统。基于巷道围岩温度场相似准则及物理相似试验方法,自主设计研制了用于高地温巷道围岩温度场研究的试验系统。该系统能够进行井巷常规通风降温、空调降温、隔热降温等物理模拟试验,是目前国内外已知尺寸最大、功能最全的用于矿井高地温井巷热湿环境相似模拟的专用试验平台。
     3)开展了巷道围岩温度场的物理试验研究,揭示了高地温巷道围岩温度分布特征及其演化规律。采用自主设计研制的高地温巷道热湿环境相似模拟试验系统,研究了高地温巷道围岩温度分布特征及其动态变化规律,主要成果:(1)巷道通风以后,壁面温度急剧降低,很快就接近风温;随着通风时间的延长,温度扰动范围由浅到深逐渐扩展到巷道围岩深部;(2)巷道通风后,从巷道壁面到围岩深处,温度按指数函数(Θ=1-f_1(F_o, O) exp(f_2(F_o, O) R))形式逐渐增大;(3)随着通风时间的延长,巷道围岩温度以希尔方程(Θ=A/(F_o~m+B)+C)形式逐渐降低,在初期降低的幅度较大,整个过程中降幅在逐渐减小;(4)巷道围岩的温度梯度、热流密度和热流量的变化过程大致可以分成三个阶段,在围岩温度未被扰动时,温度梯度、热流密度和热流量均维持在很低水平;在围岩刚进入温度扰动范围到被充分扰动阶段,温度梯度、热流密度和热流量逐渐增加,直至到达峰值;围岩温度被充分扰动以后,温度梯度、热流密度和热流量逐渐降低,逐渐重新恢复到较低水平。
     4)进行了高地温巷道围岩温度场的数值试验研究,验证了物理相似试验结果及所建立的巷道围岩温度场数学模型的合理性,进一步探讨了巷道围岩温度时空分布的演化规律,主要成果:(1)利用数值方法,验证了物理试验中巷道围岩无量纲温度与无量纲半径之间符合指数函数、与无量纲时间之间符合希尔方程,以及温度梯度、热流密度和热流量具有三阶段分布特征等结论;(2)巷道围岩温度扰动范围与无因次时间之间呈幂函数关系(R=2.75Fo+1),对于与模拟条件接近的巷道围岩,其通风4年后进入准稳态,最大温度扰动范围25m左右;(3)巷道围岩无量纲温度与毕渥数Bi之间呈指数函数(Θ=A exp(BBi)+C)关系,Bi越大,无量纲温度越低,说明增大风速有助于加大排热量;当Bi达到极值以后,巷道围岩的温度并不随着Bi的增大而显著降低,说明风速增大到一定值后,降温效果不再明显。
     5)研究了具阻热圈结构巷道围岩温度分布特征及阻热圈隔热机理。建立了具有阻热圈结构的巷道围岩导热数学模型;采用热平衡法,建立了高地温巷道围岩阻热圈温度场的数值解法,编写了阻热圈温度场数值试验的专用计算机源程序,开展了阻热圈隔热结构隔热机理的研究,主要成果:(1)阻热圈内温度分布具有明显的分区域特点,区域界线处在喷浆层与注浆层,以及注浆层与深部岩体的交界面。(2)与无阻热圈的巷道围岩相比,有阻热圈结构的巷道围岩的温度场具有壁面温度低、内部温度高的总体特点;壁面温度在通风初期降低的速率更快,且喷浆层导热系数越小,壁面温度越低;(3)阻热圈内喷浆层和注浆层的导热系数越小,岩体内的温度就越高;(4)注浆层内温度分布分为两部分:靠近喷浆层的一小段区域是注浆层导热越好,其温度越高;靠近深部岩体的其余大部分注浆层区域是导热越好,其温度越低。(5)在阻热圈的喷浆层和注浆层内,其导热系数越小,温度梯度就越大,热流密度就越小,隔热效果越明显;在通风初期,相同的导热系数降幅,喷浆层隔热效果优于注浆层;通风3个月以后,注浆层的隔热效果优于喷浆层。(6)阻热圈结构对于减少巷道围岩散热效果显著,巷道服务期内可减排29~40%,且通风早期,效果更明显。
Heat hazard has become the sixth largest natural hazard in underground mine,following after roof accident, gas disaster, water accident, fire disaster and coal dust.The geothermal temperature factor plays the decisive role in the formation of hightemperature damage in deep coal mines. Because of long ventilation lines, largeexposure area, and complex ventilation system, the high geothermal temperatureroadway most possibly influences the meteorological environment with largest regionin underground mines. It not only directly heats wind flow, but also indirectly reducesthe air-conditioning cooling effect by polluting cool air flow. Therefore, it is necessaryto research the heat transfer problems in surrounding rock of the high geothermaltemperature roadway, whose fundamental problem is the temperature field.
     This paper adopted the combined method of theoretical anlysis, physicalsimulation and numerical test to research the temperature field of surrouding rock ofroadway and its evolution law, and obtained some corresponding results. Similarsimulation test method for the research on the temperature of surrounding rock in highgeothermal roadway was proposed. With the similar simulation test system of thermaland humid environment in high geothermal roadway, designed and developedindependently, the paper carried on the research on temperature field, and revealed thetemperature distribution characteristics and their evolution laws in high geothermalroadway's surrounding rock. A numerical solution method suitable for transienttemperature field was established to carry on the numerical test research ontemperature field of surrounding rock in high geothermal roadway, and the evolutionlaws of temperature field were further discussed. A mathematical model of transientconduction in surrounding rock with heat insulation zone in high geothermal roadwaywas established to carry on the research on insulation mechanism of the heatinsulation zone, and the scientific connotation of the heat insulation zone concept wasfurther perfected. The specific results are listed as follows:
     1) A physical similar simulation method suitable for the research on thetemperature field of surrounding rock in high geothermal roadway was proposed inthis paper. Based on the law of conservation of energy and the Fourier's law, the heattransfer problem in surrounding rock of roadway was simplied to the heat conductionproblem in a semi infinite hollow circle slice with one dimension, and a mathematicalmodel for transient conduction in roadway's surrounding rock was built. At the same time, this article derived the similarity criterion of temperature field in roadway'ssurrounding rock according to the theory of similarity, and got the relationalexpression of similarity constant in the process of physical simulation experiments oftemperature field of roadway's surrounding rock. Finally, the paper anlyzed andsummarized the physical simulation method suitable for the research of thetemperature field of surrounding rock in high geothermal roadway.
     2) We designed and developed the Similarity Simulation Test System forThermal and Humid Environment in High Geothermal Roadway independently, withwhich the ventilation cooling, the air conditioning cooling and the insulation coolingcould be simulated. So far, the testing system is a specialized testing platform with thelargest size and the most perfect function at home and abroad, applied to simulate thethermal and humid environment in high geothermal roadway.
     3) Temperature distribution of surrounding rock in high geothermal roadway andits evolution law were investigated using the physical similarity experiment method.The main achievements are as follows:(1) After ventilation in roadway, the roadwaysurface temperature decreases rapidly, which would be soon close to the windtemperature; the temperature disturbance range of the surrounding rock expandsgradually from the shallow to deep.(2) The temperature of the surrounding rock inroadway grows exponentially from the surface to depth.(3) With the extension ofventilation time, the temperature of surrounding rock decreases as Hill function, andthe decreasing amplitude is also gradually decreasing.(4) The variation process oftemperature gradient, heat flux density and heat flux in roadway's surrounding rockcould be divided into three stages. They keep a relatively lower level before thetemperature of surrounding rock is disturbed. When the surrounding rock enters theregion of temperature disturbance, the temperature gradient, heat flux density and heatflux will gradually increase until they reach the peaks. The third stage is when thetemperature of surrounding rock is fully disturbed. At that time, the temperaturegradient, heat flux density and heat flux gradually decrease, and finally return to avery low level.
     4) Transient conduction characteristics of surrounding rock in high geothermalroadway were studied with the numerical simulation method. The experimental resultsand the mathematical model of transient conduction of surrounding rock were provedreasonable, and the evolution laws of temperature field were further discussed. Themain achivements are as follows:(1) It is proved that the relationship between dimensionless temperature and dimensionless radio fits exponential function, and therelationship between dimensionless temperature and dimensionless time fits hillfunction by the numerical method. Meanwhile, it is proved that there are three stagesin the distribution characteristics of temperature grandient, heat flux density and heatflux.(2) The temperature disturbance range in surrounding rock is expanding toaround in a power function law as the transient conduction goes on. After ventilationfor4years, the temperature of the surrounding rock reaches quasi-steady state, andthe largest temperature disturbance range is about25meters.(3) The relationshipbetween dimensionless temperature and Bi fits exponential function, and the more theBi is, the lower the dimensionless temperature is, which demonstrates that increasingwind speed promotes thermal discharge. When the Bi reaches to the peak, thetemperature of the surrounding rock doesn't decrease obviously with the Bi increasing,which demonstrates the cooling effect will not be obvious when the wind speedreaches to a certain high level.
     5) The temperature distribution characteristics and insulation mechanism of theheat insulation zone wer studied in the paper. Mathematical model for heat conductionin surrounding rock of high geothermal roadway with heat insulation zone was built inthis article. Based on the heat conduction characteristics of composite material, thenumerical solution method was also built by the energy balance method. Meanwhile,the special computer programme for temperature field simulation of heat insulationzone was written, with which the insulation mechanism of heat insulation zone wassimulated. The main achivements are as follows:(1) There exists obvious regionaltemperature distribution characteristic in the heat insulation zone, and the boundarylines are the interface between the spouting layer and the grouting layer, and theinterface between grounting layer and the rock mass.(2) The temperature of theroadway surface with heat insulation zone decreases more quickly during initialperiod of ventilation, and the lower the conductivity coefficient of the spouting layer,the temperature of the surface is lower.(3) The lower the heat conductivity coefficientof the spouting layer and the grouting layer, the higher the temperature of the rockmass in deep is.(4) The temperature distribution in the grouting layer can be dividedinto two parts. In the first part, whih is a small region close to the spouting layer, thebetter the heat conductivity of grouting layer is, the higher the temperature. In otherregion, the better the heat conductivity is, the lower the temperature is.(5) The lowerthe heat conductivity coefficient of the spouting layer and the grouting layer is, the larger the temperature grandient is, and the lower the heat flux density is, whichdemonstrates that the insulation effect is more obvious. During the preliminary stageof ventilation, the insulation effect of spouting layer is better than that of groutinglayer with the same decreasing amplitude of heat conductivity. However, theinsulation effect of grouting layer is better than spouting layer after3month'sventilation.(6) Researches show that the heat insulation zone is significantly effectiveto reduce heat dissipation of the roadway's surrounding rock. There would be an about29~40%cut in heat emission, and the cooling effect is more obvious during thepreliminary stage.
引文
[1]中华人民共和国国家统计局编.中国统计年鉴-2011[M].北京:中国统计出版社,2011.
    [2]刘铁男.中国能源发展报告-2011[M].北京:经济出版社,2011.
    [3]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究:综合卷[M].北京:科学出版社,2011.
    [4]黄盛初.2010中国煤炭发展报告[M].北京:煤炭工业出版社,2010.
    [5]钱鸣高.岩层控制与煤炭科学开采文集[M].徐州:中国矿业大学出版社,2011.
    [6]国家自然科学基金委员会工程与材料科学部.矿产资源科学与工程[M].北京:科学出版社,2006.
    [7]国家安全监管总局国家煤矿安监局.煤矿安全生产“十一五”规划[S].2007.
    [8]国家安全监管总局国家煤矿安监局.煤矿安全生产“十二五”规划[S].2011.
    [9]虎维岳,何满潮.深部煤炭资源及其开发地质条件研究现状与发展趋势[M].北京:煤炭工业出版社,2008.
    [10]何满潮,谢和平,彭苏萍.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007,3:1-14.
    [11]国家发展和改革委员会.煤炭工业发展“十二五”规划[S].2012.
    [12]毛节华,许惠龙.中国煤炭资源预测与评价[M].北京:科学出版社,1999.
    [13]黄明.福矿井降温技术的最新发展[J].煤矿安全,1983(9):45-52.
    [14]杨德源,杨天鸿.矿井热环境及其控制[M].北京:冶金出版社,2009.
    [15] Yuan Liang. Study on critical, modern technology for mining in gassy deep mines[J]. Journalof China University of Mining and Technology,2007,17(2):226-231.
    [16]金双林,杨思光.三河尖煤矿高温高湿环境的治理技术[J].煤矿安全,2005,36(2):20-21.
    [17]朱绍军.新郑矿区地温异常及成因分析[J].煤矿安全,2005,36(2):27-28.
    [18]闫海渠.河北省煤矿区地热异常与地热资源开发前景浅议[J].地球学报,2000,21(2):147-150.
    [19]袁秋新,李光汉.协庄矿井热害治理的实践[J].矿业安全与环保,2003,30(6):52-59.
    [20]王克喜.永成矿区井下热害防治措施[J].煤炭科学技术,2003,31(4):14-16.
    [21]陈胜利.徐州矿区煤矿深井高温热害及防治技术[J].煤炭科技,2008,(4):92-94.
    [22]兰贵枝.徐州矿区矿井热害治理邹议[J].江苏煤炭,1991,(20):55-56.
    [23]雷鸣,张邻楚.谢桥矿井降温方式及空调系统的探讨[J].煤炭科学技术,1997,25(1):40-44.
    [24]李振顶,彭辉仕.矿井热害的治理方法及效果[J].煤炭科学技术,2002,30(10):22-24.
    [25]李振顶,彭辉仕.矿井降温在掘进巷道内的应用[J].煤矿安全,2001,(3):12-13.
    [26]胡春胜,彭辉仕,刘贵平.平煤五矿矿井综合降温工程的设计与实践[J].矿业安全与环保,2003,30(5):45-48.
    [27]孙艳玲,桂祥友.煤矿热害及其治理[J].辽宁工程技术大学学报,2003,22(sup):35-37.
    [28]杨承祥,袁世伦,胡国斌.冬瓜山铜矿深井热害的防治对策[J].矿业工程,2004,2(2):29-31.
    [29]李鹏,周继祯,赵延湘.孙村矿井热源分析及通风降温经济可采深度确定[J].煤矿安全,2003,34(12):16-18.
    [30]刘卫东,张岩松,王丽华.我国煤矿高温矿井摸底调查情况[J].职业与健康,2012,28(9):1136-1138.
    [31]郭平业.我国深井温度场特征及热害控制模式研究[D].北京:中国矿业大学(北京),2010.
    [32]严荣林,侯贤文.矿井空调技术[M].煤炭工业出版社,1994
    [33]刘守斌.浅谈矿井高温原因及防治措施[J].山东煤炭科技,2010(2):206-207.
    [34]陈安明.济二煤矿深部开采热害调查及治理技术研究[D].西安:西安科技大学博士学位论文,2006.
    [35]刘星光,高峰,刘冠男.工作面热源分析与热环境预测[J].煤,2010(6):35-36.
    [36]袁亮.淮南矿区矿井降温研究与实践[J].采矿与安全工程学报,2007(3):298-301.
    [37]董代安.矿井热害的形成原因及其防治技术现状[J].科技信息,2012(7):610-611.
    [38]刘何清.高温矿井井巷热质交换理论及降温技术研究[D].长沙:中南大学博士学位论文,2009.
    [39]余恒昌,邓孝,陈碧琬.矿山地热与热害治理[M].北京:煤炭工业出版社,1991.
    [40] Vieira F, Diering D, Durrhiem R. Methods to mine the ultra-deep tabular gold bearing reefs ofthe Witwatersrand basin, South Africa[A]. Techniques in underground mining[C]. Bullock R.SME,2011.
    [41] Bullard E.C. Terrestrial Heat Flow. Geophysical Monograph[J]. American Geophysical Union,1965,8:1-4.
    [42]刘何清,吴超,王卫军.矿井降温技术研究评述[J].金属矿山,2005,6:43-48.
    [43]陈安国.矿井热害产生的原因、危害及防治措施[J].中国安全科学学报,2004,14(8):124-127.
    [44]王文,桂祥友,王国君.矿井热害的治理[J].矿业安全与环保,2002,9(3):89-94.
    [45]李光天.高温作业对人体健康的影响[J].劳动安全与健康,2009,7:53.
    [46]王冲.井巷喷注隔热材料降温机理及实验研究[D].徐州:中国矿业大学,2011.
    [47]杨洪新.低温岩层预冷入风流技术研究与应用[J].金属矿山,2001,(295):52-53.
    [48]丁向阳.国外矿井降温方法及存在的问题[J].东北煤炭技术,1989,(1):6-8.
    [49]彭担任,隋金峰.通风降温防治采面热害[J].劳动保护科学技术,1998,18(5):41-42.
    [50]约阿希姆·福斯.矿井气候[M].刘从孝译.北京:煤炭工业出版社,1989.
    [51]梅甫定.高温矿井是否进行增风降温的判别[J].煤矿设计,1992,(4):9-12.
    [52]王冲,万志军,蔡中秋.深井煤矿巷道低碳降温新思路[J].煤矿科技,2011,(1):47-49.
    [53]谢中强.非机械降温技术在高温热害矿井治理的应用[J].煤矿开采,2009,14(4):88-89.
    [54]李国富.高温岩层巷道主动降温支护结构技术研究[D].太原:太原理工大学,2010.
    [55]郭文兵,涂子兴,姚荣.深井煤矿巷道隔热材料研究[J].煤炭科学技术,2003,31(12):23-27.
    [56]李春阳.新型矿用隔热防水材料在矿井应用的节能试验研究[D].天津:天津大学,2008.
    [57] Calizaya F, Mulyadi A, New P T. Freeport Mine Ventilation System-basic requirements [J].Mining Engineering,1999,51(8):54-58.
    [58]李学文,常心坦.矿井火灾通风动态模拟并行计算及其可视化[J].煤矿安全,2000,31(1):28-29.
    [59]李珠,祝国强.深井巷道降温的一项新技术[J].山西焦煤科技,2011,(10):42-45.
    [60]胡春胜.矿井空调现状及评述[J].煤矿设计,1992(4):9-12.
    [61] BIUHM S J,BIFFI M,WILSON R B. Optimized cooling systems for mining at extremedepths[J]. CIM Bulletin,2000,93(1):146–150.
    [62] RAMSDEN R,SHEER T J,BUTTRWORTH M D. Design and simulation of ultra-deep minecooling systems[C]//Proceedings of the7th International Mine Ventilation Congress.Krakow,Poland:[s. n.],2001:755–760.
    [63] GOU K H,SHU B F,YANG W J. Advances and applications of gas hydrate thermal energystorage technology[C]//Proceedings of the1st Trabzon Int. Energy and Environment Symp..Turkey:Karadeniz Technology University Press,1996:381–386
    [64] PARRA M T,VILLAFRUELA J M,CASTRO F,et al. Numerical and experimental analysisof different ventilation systems in deep mines[J]. Building and Environment,2006,41(2):87–93.
    [65]何满潮,徐敏.深井降温系统研发及热害控制对策[J].岩石力学与工程学报,2008,27(7):1353-1361.
    [66]何满潮,张毅,乾增珍.储冷对井治理深部矿井热害研究[J].煤田地质与勘探,2006,34(5):23-26.
    [67]何满潮,王建,乾增珍.地层储能空调系统及其应用[J].矿业研究与开发,2006,26(6):71-73.
    [68]张毅,郭东明,姜耀东.地层储能技术在大温差水源热泵中的应用[J].矿业研究与开发,2009,29(2):56-59.
    [69]何满潮,乾增珍,朱家玲.深部地层储能技术与水源热泵联合应用工程实例[J].太阳能学报,2005,26(1):23-27.
    [70]吴先瑞,彭毓全.德国矿井降温技术考察[J].江苏煤炭,1992,(4):8-11.
    [71] Sheer T J, Chaplain E J, Correia R M. Some recent development in the use of ice for coolingmines[J]. Journal of the Mine Ventilation Society of South Africa,1985,38(6):18-24.
    [72]Eschenburg H M W, et al. Use of ice for underground cooling at Harmony gold mine[J].South African Inst of Mining&metallurgy,1986,(1):203-210.
    [73] Voss J. Use of ice for air cooling[J]. Glueckauf&Translation,1987,123(7):176-181.
    [74] Fujita T. Hydraulic transport of ice-water mixtures[J]. Trans of the JAR,1993,10(3):349-356.
    [75] Correia R M, Sheer T J, et al. Pneumatic conveying of ice into deep mines[J]. Journal ofPipelines,1987,6(2):155-167.
    [76]王景刚,冯如彬.粒状冰融解实验研究[J].暖通空调,2001,31(2):5-8.
    [77]卫修君,胡春胜.热—电—乙二醇低温制冷矿井降温技术的研究及应用[J].矿业安全与环保,2009,36(1):20-25.
    [78]中国科学院地质研究所地热室.矿山地热概论[M].北京:煤炭工业出版社,1981.
    [79]邓孝.矿山地热研究的回顾与展望[J].地球科学进展,1992,7(3):20-24.
    [80]陈墨香,汪集汤,邓孝.中国地热学研究之进展[J].地球科学,1995,20(4):367-372.
    [81]王义江,周国庆,魏亚志,等.深部巷道非稳态温度场演变规律试验研究[J].中国矿业大学学报,2011,40(3):345-350.
    [82] STARFIELD A M. A rapid method of calculating temperature increases along mineairways[J]. Journal of the South African Institute of Mining and Metallurgy,1969,70:77-83.
    [83] MCPHERSON M J. The analysis and simulation of heat flow into underground airways [J].International Journal of Mining and Geological Engineering,1986,4(3):165-196.
    [84]秦跃平,秦凤华,党海政.用差分解算巷道围岩与风流不稳定换热准数[J].湘潭矿业学院学报,1998,13(1):6-10.
    [85]高建良,杨明.巷道围岩温度分布及调热圈半径的影响因素分析[J].中国安全科学学报,2005,15(2):73-76.
    [86]欧晓英,杨胜强,于宝海,等.矿井热环境评价及其应用[J].中国矿业大学学报,2005,34(3):323-326.
    [87]王树刚,徐哲,张腾飞,等.矿井热环境人体热舒适性研究[J].煤炭学报,2010,35(1):97-100.
    [88] Zhi-Jun Wan, Yuan Zhang, Jing-Yi Cheng, et al. Mine geothermal and heat hazard preventionand control in China [J]. Disaster Advances,2013,6(S5):86-94.
    [89]李国富,夏永怀,李珠.深井巷道隔热降温技术的研究与应用[J].金属矿山,2010,(9):152-154.
    [90] P O Fanger. Thermal Comfort [M]. New York: McGraw-Hill company,1972
    [91] G Ga. Numerical Method for a Full Assessment of Indoor Thermal Comfort [J]. Indoor Air,1994,4(4):154-16
    [92] Sun Peide. Geothermal prediction of country rock in deep mines [J]. Mining Science andTechnology,1991,13(3):433–438.
    [93] S. Wasilewski, M. Branny. A preliminary study of the unsteady states of the ventilationparameters at the longwall face during the shearer operation [C]. In:12th U.S./NorthAmerican Mine Ventilation Symposium,2008, U.S..
    [94]胡桃元.井下原岩温度的测定方法[J].矿业科学技术,1994,(1):60-63.
    [95]汪集旸.中低温对流型地热系统[M].北京:科学出版社,1993.
    [96]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [97]王志军.高温矿井地温分布规律及其评价系统研究[D].泰安:山东科技大学,2006.
    [98]朱庭浩.通风时间对巷道围岩温度场影响规律的研究[J].煤矿安全,2010,(2):10-13.
    [99]吴强,秦跃平,郭亮.巷道围岩非稳态温度场有限元分析[J].辽宁工程技术大学学报,2002,21(5):604-607.
    [100]褚召祥,辛嵩,王保齐.赵楼煤矿原岩温度测定[J].煤炭工程,2010,(9):91-93.
    [101]吴章云,曲方,樊海兵.利用浅钻孔测定原始地温的方法[J].煤矿安全,2008,(8):52-54.
    [102]张汉君.地温预热过程中井巷调热圈若干问题的探讨[J].黄金,1992,13(6):19-23.
    [103]孙培德.深井巷道围岩地温场温度分布可视化模拟研究[J].岩土力学,2005,26(S):222-226.
    [104]黎明镜.深井巷道围岩温度场分布规律研究[J].山西建筑,2010,36(12):89-90.
    [105]张树光.深埋巷道围岩温度场的数值模拟分析[J].科学技术与工程,2006,6(14):2194-2196.
    [106]侯棋棕,沈伯雄.调热圈半径及其温度场的数值解算模型[J].湘潭矿业学院学报,1997,12(1):9-16.
    [107]樊小利,张学博.围岩温度场及调热圈半径的半显式差分法解算[J].煤炭工程,2011,(11):82-84.
    [108] Yuan Zhang, Zhi-Jun Wan, Chang-Bing Zhou, et al. Spatial-temporal distributioncharacteristics of surrounding rock temperature in high geothermal roadway [J]. DisasterAdvances,2013,6(S5):103-109.
    [109]王义江.深部热环境围岩及风流传热传质研究[D].徐州:中国矿业大学,2010.
    [110]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,2006.
    [111]王丰.相似理论及其在传热学中的应用[M].北京:高等教育出版社,1990.
    [112]王英敏,朱毅.在地温预热中空气与围岩热交换过程的研究[J].东北工学院学报,1984,39(2):13-23.
    [113]张习军,姬建虎,陆伟.深热矿井巷道围岩的热分析煤[J].煤矿开采,2009,14(2):5-13.
    [114] Zhang Shu-guang, SUN Shu-kui. Temperature field distribution of laneway in heat harmfulmine. Proceedings of XII International Congress of International Society for MineSurveying,2004.09
    [115] Sun Peide. A new computation method for the unsteady heat transfer coefficient in a deepmine[J]. Journal of Coal Science&Engineering (China),2000,5(2):57-61.
    [116] Sun Peide. A new method for the unsteady heat transfer coefficient between surroundingrock an tunnel airflow[A]. Toronto: University of Toronto Press,2002.
    [117]冯强,陈舟.深部巷道围岩散热Laplace解析计算[J].黑龙江科技学院学报,2011,21(1):44-47.
    [118]张国柱,夏才初,殷卓.寒区隧道轴向及径向温度分布理论解[J].同济大学学报(自然科学版),2010,38(8):1117-1122.
    [119] Jacovides C P, M ihalak G. An underground pipe system as an energy source for cooling/heating purposes[J]. Renewable Energy,1995,6(8):893.
    [120]刘景秀,李慧,周磊.干燥巷道围岩传热对平巷风流温度影响研究[J].金属矿山,2011,422(8):147-150.
    [121]张学富,张闽湘,杨风才.风火山隧道温度特性非线性分析[J].岩土工程学报,2009,31(11):1680-1685.
    [122]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1998.
    [123]苏亚欣.传热学[M].武汉:华中科技大学出版社,2009.
    [124]陈才生.数学物理方程[M].北京:科学出版社,2008.
    [125]李汉龙,缪淑贤.数学物理方程[M].北京:国防工业出版社,2009.
    [126]张洪济.热传导[M].北京:高等教育出版社,1992.
    [127] Incropera F P, De Witt D P. Fundamentals of heat and mass transfer[M].5th ed. New York:John Wiley&Sons,2002.
    [128] S. Goldstein. Operational representations of Whittaker's confluent hypergeometric functionand Weber's parabolic cylinder function [J]. Proc. London Math. Soc.(2),34(1932):103-125.
    [129] M. N.奥齐西克著.俞昌铭主译.热传导[M].北京:高等教育出版社,1983.
    [130]屠兴.模型实验的基本理论与方法[M].西安:西北工业大学出版社,1989.
    [131]徐挺.相似理论与模型试验[M].北京:中国农业机械出版社,1982.
    [132]李之光.相似与模化[M].北京:国防工业出版社,1982.
    [133] П. К.科纳科夫.李德桃,贺道德译.相似理论及其在热工上的应用[M].北京:科学出版社,1962.
    [134] А. Ъ.列兹尼亚科夫.王成斌译.相似方法[M].北京:科学出版社,1963.
    [135]徐挺.相似方法及其应用[M].北京:机械工业出版社,1995.
    [136]崔广心.相似理论与模型试验[M].徐州:中国矿业大学出版社,1990.
    [137]王德明.矿井通风与安全[M].徐州:中国矿业大学出版社,2012.
    [138]张红兵.矿井通风(通风)[M].北京:煤炭工业出版社,2011.
    [139]高建良,何权富,张学博.矿井巷道对流换热系数的现场测定[J].中国安全科学学报,2010,20(2):100-103.
    [140]张建荣,刘照球,刘文燕.混凝土表面自然对流换热系数的实验研究[J].四川建筑科学研究,2007,32(5):143-146.
    [141]张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报2006,39(9):39-61.
    [142]姚亚雄,朱伯龙.钢筋混凝土框架结构火灾反应分析[J].同济大学学报,1997,25(3):255-261.
    [143]过镇海,时旭东.钢筋混凝土的高温性能及其计算[M].北京:清华大学出版社,2002.
    [144]陶文铨.传热学[M].西安:西北工业大学出版社,2006.
    [145]万志军.非均质岩体热力耦合作用及煤炭地下气化通道稳定性研究[D].徐州:中国矿业大学,2006.
    [146]柳本竹一,内野健一.乾燥した坑道における通気温度計算[J].日本鉱業会誌,1974,(1039):583-587.
    [147]王英敏,朱毅.计算机仿真在巷道围岩与风流热交换研究中的应用[J].煤矿安全,1984,(6):1-10.
    [148]史策.热传导方程有限差分方法的Matlab实现[J].咸阳师范学院学报,2009,24(4):27-29.
    [149]张文生.科学计算中的偏微分方程有限差分法[M].北京:科学出版社.
    [150]徐建良,汤炳书.一维热传导方程的数值解[J].淮阴师范学院学报,2004,3(3):210-214.
    [151]郭本瑜.偏微分方程数值解法[M].北京:科学出版社,1988.
    [152]马成成,李守义,赵丽娟.大体积混凝土结构表面保温计算方法研究[J].西北农林科技大学学报(自然科学版),2012,40(6):217-223.
    [153]张国新.不同材料复合结构温度场的有限元算法改进[J].水力发电,2003,29(9):37-55.
    [154]田青超,吴建.生有限差分法在复合枪管传热中的应用[J].兵工学报,2000,21(4):297-300.
    [155]董方庭.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001.
    [156] Varenne M, Batsale JC, Gobbe C. Estimation of local thermophysical properties of aone-dimensional periodic heterogeneous medium by infrared image processing and volumeaveraging method[J]. Journal of heat transfer-transactions of the ASME,2000,122(1):21-26.
    [157] Kubicar L, Bohac V, Vretnar V, Barta S, Neuer G, Brandt R. Thermophysical properties ofheterogeneous structures measured by pulse transient method[J]. International Journal ofthermophysics,2005,26(6):1949-1962.
    [158] Knupp DC, Naveira-Cotta CP, Orlande HRB, Cotta RM. Experimental identification ofthermophysical properties in heterogeneous materials with integral transformation oftemperature measurements from infrared thermography[J]. Experimental heat transfer,2013,26(1):1-25.
    [159]张树光,周秋龙,于勇刚,路明.裂隙岩体等效导热系数影响因素的分析研究[J].广西大学学报(自然科学版),2012,37(4):757-762.
    [160]刘祥宽,Mehari Salomon,胡献国.基于球型填充相复合材料有效导热系数的计算[J].合肥工业大学学报(自然科学版),2008,31(9):1378-1381.
    [161]陈则韶,钱军,叶一火.复合材料等效导热系数的理论推算[J].中国科学技术大学学报,1992,22(4):416-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700