用户名: 密码: 验证码:
我国黄、东海典型海域微生物群落结构及其与环境变化的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋微生物具有丰度高、分布广的特点,同时可以产生许多特殊的活性物质。它们在能量传递和多种重要生源要素的生物地球化学循环中起到重要的作用,一直以来都是海洋生态学研究中的热点。本文应用测序、分子生物学方法和培养手段对我国黄、东海典型海域微生物的群落结构和特殊种类做了相应研究。
     利用PCR-DGGE方法,结合克隆、测序技术对黄海中部海域细菌群落结构的周年变化进行研究。结果显示,研究海域中主要存在8个细菌类群,分别是Alphaproteobacteria、Gammaproteobacteria、Deltaproteobacteria、Cyanobacteria、Actinobacteria、Flavobacteria、Bacilli和SAR406类群。其中Alphaproteobacteria是群落组成中绝对的优势类群,另外,各月份中一直存在的类群还有Gammaproteobacteria、Flavobacteria、Bacilli及SAR406类群。DGGE图谱上条带的多少可以表征多样性的高低,在时间尺度上,9月份多样性最高(25条条带),10月份多样性最低(19条)。依据条带有无的聚类分析显示,调查海区的细菌群落结构存在周年变化,在1-5月中,每个月份各个水层的群落结构相似,可以按月份聚类,并最终聚成一枝;6-11月中,不同月份、水层的样品群落结构复杂,聚类相互交叉。水文环境(温度和盐度)的变化可能是影响细菌群落结构变化和聚类的主要原因,黄海冷水团的产生、鼎盛和衰退,对6-11月样品的聚类产生明显影响,特别是8月份处在黄海冷水团的鼎盛时期,细菌群落结构最为特殊,聚类自成一枝。
     使用罗氏454高通量测序技术在东海选取一个断面(2011年5月)进行细菌群落结构的研究。5个站位共17个海水样品和5个表层沉积物样品获得16SrDNA V1-V3区优化序列149067条,平均长度454nt。细菌多样性丰富(Shannon指数平均为5.38),且沉积物样品(平均7.65)高于海水样品(平均4.71)。经与SILVA数据库对比,确定22个门,34个纲,74个目,146个科及333个属的细菌分类信息,其中有十余个门的细菌在以往同海域的研究中未见报道。另外,各分类阶元中都存在一些不能确定具体分类的信息,其含量变化在海水样品中为1.52-59.96%,沉积物样品中为8.07-71.61%,从“门”到“属”有增加趋势。纲水平上,海水群落组成以Alphaproteobacteria、Gammaproteobacteria、Deltaproteobacteria和Flavobacteria等为优势,沉积物中以Gammaproteobacteria、Deltaproteobacteria和Phycisphaerae为优势。对比海水样品的聚类和水团划分结果显示,细菌群落结构可能受到东海水团和其它因素的共同影响,黑潮表层水和中层水中的样品分别按水团的划分相聚在一起,长江冲淡水和黑潮次表层水中的一些聚类结果可能受到叶绿素荧光值的影响,另有一些因素的综合作用也可能影响细菌的群落结构。
     上述东海海域的古菌群落结构同样使用罗氏454高通量测序技术进行研究,共获得16S rDNA V3-V5区的优化序列196018条,其中海水样品171653条,平均长度495nt,沉积物样品24365条,平均长度511nt。古菌多样性丰富(Shannon指数平均为4.79),且沉积物样品(平均6.25)高于海水样品(平均4.36)。经与SILVA数据库对比,确定2个门,13个纲,10个目,21个科及25个属的分类信息,各分类阶元均存在不能确定分类的信息,含量在海水样品中为0.04-85.25%,沉积物中为1.40-86.95%,从“门”到“属”有增加趋势。纲水平上,海水样品群落组成以Marine Group I和Thermoplasmata为优势,沉积物中的优势类群还有Halobacteria、Group C3及Marine Benthic Group B。不同海水样品的物种丰富度与水团划分的比较显示,丰富度指数由高到低的排序为黑潮次表层水(Chao1平均2751)、黑潮中层水(2432)、黑潮表层水(2259)、长江冲淡水(2131)、东海陆架混合水(1843)。东海海域的细菌、古菌在属的水平上均存在较高比例无准确分类的信息,提示东海蕴含着很高的未知微生物资源。
     胶州湾是一个半封闭海湾,受人类活动的影响明显,通过监测胶州湾大肠菌群丰度的长期变化,不仅能在时间和空间尺度上对特定类群的细菌进行研究,也可以使用大肠菌群丰度作为指标对环境变化进行评价。采用最大可能数计数法对表层海水中大肠菌群丰度进行连续9年(108个月)的监测,发现其丰度的周年变化明显,夏秋季呈上升趋势,冬、春两季呈下降趋势,一年中最高丰度(9月,(2.18±1.93)×10~4个·L~(-1))与最低丰度(4月,(1.05±0.71)×10~4个·L~(-1))相差约2.1倍。大肠菌群的丰度分布具有明显的区域性特征,河口区((5.20±2.35)×10~4个·L~(-1))最高,湾内区最低((0.41±0.08)×10~4个·L~(-1)),差异近13倍。使用SPSS软件对大肠菌群的平均丰度与环境因子进行两两相关性分析,结果表明大肠菌群丰度变化与胶州湾表层海水中的总氮、溶解有机碳、叶绿素a浓度、盐度以及青岛市的废水排放量均显著相关。表层海水中大肠菌群丰度自2005年至2009年持续下降,作为环境评价的指标,说明胶州湾环境质量在5年内一直有所好转,也显示河口区和湾口区环境污染状况较为严重,应作为今后环保工作的重点。
     对黄、东海典型海区微生物群落结构和特殊种类的研究,有助于了解微生物和环境变化间的关系并全面认识海洋生态系统。通过本文中的实验,也为深入开展我国黄、东海海洋微生物研究奠定了基础。
Marine microorganisms have the characteristics of high abundance and widedistribution. The microorganisms can produce many active substances and playimportant roles either in the energy flows or in the material circulations. Study onmarine microorganisms is a hotspot in marine ecology. In this article, the microbialcommunity structure and special bacteria in typical areas of the Yellow Sea and EastChina Sea were studied by sequencing, molecular biological methods and culture.
     In order to study the annual variation of bacterial community structure in thecentral Yellow Sea, PCR-DGGE, clone and sequencing methods were employed.There were eight main classes of bacteria in the sampling area, includingAlphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Cyanobacteria,Actinobacteria, Flavobacteria, Bacilli and SAR406cluster. Alphaproteobacteria wasthe dominant class in the central Yellow Sea, Gammaproteobacteria, Flavobacteriaand Bacilli were also the common classes in different months. Quantity of bands inDGGE profiles showed the diversity of different samples. In this study, diversity washighest in September with25bands while October was the lowst with19bands. Thecluster analysis which based on the presence and absence of each band showed anannual variation of bacterial community structure. Structures of different layers’samples in different months were alike and could be clustered together duringJannuary to May, while the structures were much more complex in June to Novenber.The hydrogeological environments (temperature and salinity) might influence thecommunity structure most. For example, the Yellow Sea Cold Water Mass influencedthe bacterial community structure in June to Novenber significantly, especially inAugust, which samples could be clustered in an independent branch.
     Bacterial community structures in one section of the East China Sea in May2011 were studied by Roche454pyrosequencing technology.17seawater samples and5sediment samples were collected in5stations. Totally,149067optimized reads withthe average length of454nt in V1-V3regions of the16S rDNA were obtained. Thediversity was high (the average of Shannon indices was5.38), and the sedimentsamples (7.65) were higher than seawater ones (4.71). In all,22phyla,34classes,74orders,146families, and333genera were identified by comparing against the SILVAdatabase. More than10phyla were reported in the East China Sea for the first time.There was some unclassified information in each taxonomic category with theproportions increased from “phylum” to “genus”. The unclassified information washigher in sediment samples (8.07-71.61%) than in seawater samples (1.52-59.96%).Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria; and Flavobacteriawere some dominant classes in seawater samples while Gammaproteobacteria,Deltaproteobacteria, and Phycisphaerae were dominant in sediment. Comparation ofclustering and partition of water masses showed that bacterial diversity andcommunity structure might be affected by the water masses in the East China Seaand other factors. The samples in Kuroshio surface water (KSW) and intermediatewater (KIW) were clustered together, samples in Changjiang diluted water (CDW)and Kuroshio subsurface water (KSSW) might be influenced by chlorophyllfluorescence. There were also some comprehensive factors which could influencethe bacterial community structure.
     Archael community structure in the same area in the ECS were studied also byRoche454pyrosequencing technology and obtained196018optimized reads inV3-V5regions of16S rDNA.171653optimized reads were detected with theaverage length of495nt in seawater samples while sediment samples contained24365optimized reads with the average length of511nt. The diversity was high (theaverage of Shannon indices was4.79), and the sediment samples (6.25) were higherthan seawater ones (4.36). Totally,2phyla,13classes,10orders,21families, and25genera were identified by comparing against the SILVA database. Unclassifiedinformation in each taxonomic category with the proportions increased from“phylum” to “genus”. The unclassified information in sediment (1.40-86.95%) was more than it in seawater (0.04-85.25%). Marine Group I and Thermoplasmata weredominant in seawater while Marine Group I, Thermoplasmata Halobacteria, GroupC3and Marine Benthic Group B were dominant in sediment. The comparation ofrichness indices and partition of water masses showed that the indices from high tolow were samples in KSSW (average Chao1indices was2751), KIW (2432), KSW(2259), CDW (2131) and shelf mixing water (SMW,1843). The high proportions ofunclassified information in bacterial and archaeal studies indicated that the ECScontained a lot of unknown microbial resources.
     Jiaozhou Bay is a semi-enclosed bay and can be affected by human activitiessignificantly. The abundance of coliform bacteria is an indicator of environmentalquanlity. We can either obtain the results on the temporal and spatial scales orappraise the environment by monitoring the abundance. The MPN method wasemployed to study the abundance of coliform bacteria in Jiaozhou Bay. A9-year(108months) monitoring result showed clear annual variations. The abundance ofcoliform bacteria increased in summer and autumn and reduced in winter and spring.The maximum (in Semptember,(2.18±1.93)×10~4·L~(-1)) was about2.1times of theminimum (in April,(1.05±0.71)×10~4·L~(-1)) on an annual basis. The abundance ofcoliform bacteria in the surface seawater in Jiaozhou Bay was different in4marinedivisions (the estuary area, the inner bay area, the outer bay area and the bay moutharea). It’s highest in estuary area ((5.20±2.35)×10~4·L~(-1)) and lowest in inner bay area((0.41±0.08)×10~4·L~(-1)), the highest value was about13times of the lowest one.Correlation analysis between the abundance of the coliform bacteria and theenvironmental factors showed that the abundance was significantly corre-lated withsewage discharged in Qingdao, salinity, concentration of total nitrogen, dissolvedorganic carbon, and chlorophyll-a in the Jiaozhou Bay. Analysis on the interannualvariations showed that the abundance of coliform bacteria declined from2005to2009, suggesting that the environmental quality of Jiaozhou Bay had been improved.The pollutin was much more serious in the estuary area and bay mouth area whichindicated those areas should be paid more attention on environmental protection inthe future.
     The researches on microbial community structure and special bacteria in typicalareas of the Yellow Sea and East China Sea helpe people to better understand therelationship between environmental changes and microorganisms. It can also layfoundation for researches on microorganisms in the Yellow Sea and East China Sea.
引文
1胡厚田,白志勇.土木工程地质.第二版.北京:高等教育出版社,2009.
    2冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社,1999.
    3刘敏.我国黄、东海典型生态过程中的微生物群落结构:(学位论文).北京:中国科学院研究生院(海洋研究所),2011.
    4李果,吴晓莆,罗遵兰,等.构建我国生物多样性评价的指标体系.生物多样性,2011,19(5):497-504.
    5周德庆.微生物学教程.第二版.北京:高等教育出版社,2002.
    6张偲,张长生,田新朋,等.中国海洋微生物多样性研究.中国科学院院刊,2010,25(6):651-658.
    7SOGIN M L, MORRISON H G, HUBER J A, et al. Microbial diversity in thedeep sea and the underexplored "rare biosphere". Proceedings of the NationalAcademy of Sciences of the United States of America,2006,103(32):12115-12120.
    8PEDROS-ALIO C. Genomics and marine microbial ecology. InternationalMicrobiology,2006,9(3):191-197.
    9AZAM F, MALFATTI F. Microbial structuring of marine ecosystems. NatureReviews Microbiology,2007,5(10):782-791.
    10池振明.现代微生物生态学.北京:科学出版社,2005.
    11PROCTOR L M. Advances in the study of marine viruses. MicroscopyResearch and Technique,1997,37(2):136-161.
    12李越中,陈琦.海洋微生物资源多样性.生物工程进展,1998,18(4):34-40.
    13薛超波,王国良,金珊,等.海洋微生物多样性研究进展.海洋科学进展,2005,22(3):377-384.
    14马英,钱鲁闽,王永胜,等.硝化细菌分子生态学研究进展.中国水产科学,2007,14(5):872-879.
    15仇天雷.不同生境产甲烷古菌分离鉴定及初步应用研究:(学位论文).北京:中国农业科学院,2007.
    16单丽伟,冯贵颖,范三红.产甲烷菌研究进展.微生物学杂志,2003,23(6):42-46.
    17STROM S L. Microbial ecology of ocean biogeochemistry: a communityperspective. Science,2008,320(5879):1043-1045.
    18DELONG E F, KARL D M. Genomic perspectives in microbial oceanography.Nature,2005,437(7057):336-342.
    19FUHRMAN J A. Microbial community structure and its functionalimplications. Nature,2009,459(7244):193-199.
    20FUHRMAN J A, HEWSON I, SCHWALBACH M S, et al. Annuallyreoccurring bacterial communities are predictable from ocean conditions. Proceedingsof the National Academy of Sciences,2006,103(35):13104-13109.
    21POMMIER T, CANB CK B, RIEMANN L, et al. Global patterns of diversityand community structure in marine bacterioplankton. Molecular Ecology,2007,16(4):867-880.
    22RIEMANN L, STEWARD G F, FANDINO L B, et al. Bacterial communitycomposition during two consecutive NE Monsoon periods in the Arabian Sea studiedby denaturing gradient gel electrophoresis (DGGE) of rRNA genes. Deep-SeaResearch Part II-Topical Studies in Oceanography,1999,46(8):1791-1811.
    23DUNLAP P V. New insights on marine bacterial diversity-Moleculartechniques complement culturing. Oceanus,1995,38(2):16-19.
    24TORSVIK V, GOKS YR J, DAAE F L. High diversity in DNA of soil bacteria.Applied and Environmental Microbiology,1990,56(3):782-787.
    25孙昌魁,冯静,马桂荣.海洋微生物多样性的研究进展.生命科学,2001,13(3):97-99.
    26PACE N R. A molecular view of microbial diversity and the biosphere.Science,1997,276(5313):734-740.
    27KOBAYASHI T, ENOMOTO S, SAKAZAKI R, et al. A new selectiveisolation medium for the vibrio group: on a modified Nakanishi's medium (TCBS agarmedium). Nihon saikingaku zasshi Japanese journal of bacteriology,1963,18:387-392.
    28ZOBELL C E. Studies on marine bacteria. I. The cultural requirements ofheterotrophic aerobes. J Mar Res,1941,4:42-75.
    29孙国玉,陈世阳.海洋微生物种类调查的若干问题.海洋湖沼通报,1982,(2):67-73.
    30XU H-S, ROBERTS N, SINGLETON F, et al. Survival and viability ofnonculturable Escherichia coli and Vibrio cholerae in the estuarine and marineenvironment. Microbial Ecology,1982,8(4):313-323.
    31RIDGWAY H, OLSON B. Scanning electron microscope evidence forbacterial colonization of a drinking-water distribution system. Applied andEnvironmental Microbiology,1981,41(1):274-287.
    32GUNDERSEN K, HELDAL M, NORLAND S, et al. Elemental C, N, and Pcell content of individual bacteria collected at the Bermuda Atlantic Time-SeriesStudy (BATS) site. Limnology and Oceanography,2002,47(5):1525-1530.
    33杨弘远.荧光显微镜技术的基本原理与方法.植物学通报,1984,2(6):45-48.
    34胡洪营,童中华.微生物醌指纹法在环境微生物群体组成研究中的应用.微生物学通报,2002,29(4):95-98.
    35马丽华,张道方,黄民生,等.活性污泥微生物分子生态学研究与应用进展.净水技术,2005,24(1):33-35.
    36臧红梅,樊景凤,王斌,等.海洋微生物多样性的研究进展.海洋环境科学,2006,35(3):96-100.
    37张惠文,张倩茹,周启星,等.分子微生物生态学及其研究进展.应用生态学报,2003,14(2):286-292.
    38沈梅丽,杨锐.分子生物学方法及其在海洋微生物生态中的应用.生物技术通报,2012,243(10):20-29.
    39张洪勋,王晓谊,齐鸿雁.微生物生态学研究方法进展.生态学报,2003,23(5):988-995.
    40MUYZER G, DE WAAL E C, UITTERLINDEN A G. Profiling of complexmicrobial populations by denaturing gradient gel electrophoresis analysis ofpolymerase chain reaction-amplified genes coding for16S rRNA. Applied andEnvironmental Microbiology,1993,59(3):695-700.
    41马悦欣, HOLMSTRM C, WEBB J, et al.变性梯度凝胶电泳(DGGE)在微生物生态学中的应用.生态学报,2003,23(8):1561-1569.
    42FISCHER S, LERMAN L. DNA fragments differing by single base-pairsubstitutions are separated in denaturing gradient gels: correspondence with meltingtheory. Proceedings of the National Academy of Sciences,1983,80(6):1579-1583.
    43吴少慧,张成刚. RAPD技术在微生物生物多样鉴定中的应用.微生物学杂志,2000,20(2):44-47.
    44HADRYS H, BALICK M, SCHIERWATER B. Applications of randomamplified polymorphic DNA (RAPD) in molecular ecology. Molecular Ecology,2008,1(1):55-63.
    45WOESE C R, FOX G E, ZABLEN L, et al. Conservation of primary structurein16S ribosomal RNA. Nature,1975,254:83-86.
    46柳承璋,宋林生,吴青.分子生物学技术在海洋微生物多样性研究中的应用.海洋科学,2002,26(8):27-30.
    47MAXAM A M, GILBERT W. A new method for sequencing DNA.Proceedings of the National Academy of Sciences,1977,74(2):560-564.
    48SANGER F, NICKLEN S, COULSON A R. DNA sequencing withchain-terminating inhibitors. Proceedings of the National Academy of Sciences,1977,74(12):5463-5467.
    49段曌,肖炜,王永霞,等.454测序技术在微生物生态学研究中的应用.微生物学杂志,2011,31(5):76-81.
    50HANDELSMAN J, RONDON M R, BRADY S F, et al. Molecular biologicalaccess to the chemistry of unknown soil microbes: a new frontier for natural products.Chemistry&biology,1998,5(10): R245-R249.
    51张薇,高洪文,张化永.宏基因组技术及其在环境保护和污染修复中的应用.生态环境,2008,17(4):1696-1701.
    52中国大百科全书出版社编辑部.中国大百科全书:大气科学,海洋科学,水文科学.北京:中国大百科全书出版社,1992.
    53管倩倩.基于拓扑分析的海洋特征结构的提取研究:(学位论文).青岛:中国海洋大学,2006.
    54李凤岐,苏宇嵩.海洋水团分析.青岛:青岛海洋大学出版社,2000.
    55AZAM F. Microbial control of oceanic carbon flux: the plot thickens.SCIENCE-NEW YORK THEN WASHINGTON-,1998:694-695.
    56HAGSTROM A, AZAM F, ANDERSSON A, et al. Microbial loop in anoligotrophic pelagic marine ecosystem: possible roles of cyanobacteria andnanoflagellates in the organic fluxes. Marine ecology progress series Oldendorf,1988,49(1):171-178.
    57孙云明,宋金明.中国海洋碳循环生物地球化学过程研究的主要进展(1998-2002).海洋科学进展,2002,20(3):110-118.
    58唐启升,苏纪兰.海洋生态系统动力学研究与海洋生物资源可持续利用.地球科学进展,2001,16(1):5-11.
    59PAERL H W, DYBLE J, TWOMEY L, et al. Characterizing man-made andnatural modifications of microbial diversity and activity in coastal ecosystems.Antonie van Leeuwenhoek,2002,81(1):487-507.
    60LIU M, DONG Y, ZHANG W, et al. Diversity of bacterial community duringspring phytoplankton blooms in the central Yellow Sea. Canadian journal ofmicrobiology,2013,59(5):324-332.
    61VALINSKY L, DELLA VEDOVA G, SCUPHAM A J, et al. Analysis ofbacterial community composition by oligonucleotide fingerprinting of rRNA genes.Applied and Environmental Microbiology,2002,68(7):3243-3250.
    62NEWELL S, SHERR B, SHERR E, et al. Bacterial response to presence ofeukaryote inhibitors in water from a coastal marine environment. MarineEnvironmental Research,1983,10(3):147-157.
    63EMANUELSSON E A C, EMANUELSSON M A E, PATTERSON D A, et al.Microbiology for chemical engineers-from macro to micro scale. Asia-PacificJournal of Chemical Engineering,2007,2(5):448-454.
    64GAST G J, JONKERS P J, VAN DUYL F C, et al. Bacteria, flagellates andnutrients in island fringing coral reef waters: Influence of the ocean, the reef andeutrophication. Bulletin of Marine Science,1999,65(2):523-538.
    65MURRAY A E, GRZYMSKI J J. Diversity and genomics of Antarctic marinemicro-organisms. Philosophical Transactions of the Royal Society B-BiologicalSciences,2007,362(1488):2259-2271.
    66PAOLI A, DEL NEGRO P, UMANI S F. Temporal variability inbacterioplanktonic abundance in coastal waters of the Northern Adriatic Sea.Chemistry and Ecology,2006,22:93-103.
    67秦蕴珊,赵一阳,陈丽蓉,等.黄海地质.北京:海洋出版社,1989.
    68刘健,李绍全,王圣洁,等.末次冰消期以来黄海海平面变化与黄海暖流的形成.海洋地质与第四纪地质,1999,19(1):13-24.
    69DUDA A M, SHERMAN K. A new imperative for improving management oflarge marine ecosystems. Ocean&Coastal Management,2002,45(11-12):797-833.
    70韩君.黄海物理环境对浮游植物水华影响的数值研究:(学位论文).青岛:中国海洋大学,2008.
    71魏静.黄海微食物环季节变化及对主食物链贡献的生态动力学模拟研究:(学位论文).青岛:中国海洋大学,2012.
    72陈义中.黄海东海环流和长江冲淡水季节连续变化的数值模拟:(学位论文).上海:华东师范大学,2007.
    73苏纪兰,黄大吉.黄海冷水团的环流结构.海洋与湖沼增刊,1995,26(5):1-7.
    74ZHANG S W, WANG Q Y, LUE Y, et al. Observation of the seasonalevolution of the Yellow Sea Cold Water Mass in1996-1998. Continental ShelfResearch,2008,28(3):442-457.
    75魏皓,王磊,林以安,等.黄海中部营养盐的贯跃层输运.海洋科学进展,2002,20(3):15-20.
    76PU X M, SUN S, YANG B, et al. The combined effects of temperature andfood supply on Calanus sinicus in the southern Yellow Sea in summer. Journal ofPlankton Research,2004,26(9):1049-1057.
    77TIAN T, WEI H, SU J, et al. Simulations of annual cycle of phytoplanktonproduction and the utilization of nitrogen in the Yellow Sea. Journal of Oceanography,2005,61(2):343-357.
    78ZHANG F, SUN S, JIN X, et al. Associations of large jellyfish distributionswith temperature and salinity in the Yellow Sea and East China Sea. Hydrobiologia,2012,690(1):81-96.
    79李洪波,肖天,丁涛,等.浮游细菌在黄海冷水团中的分布.生态学报,2006,26(4):1012-1020.
    80刘敏,朱开玲,李洪波,等.应用PCR-DGGE技术分析黄海冷水团海域的细菌群落组成.环境科学,2008,29(4):1082-1091.
    81CAO H, CAO X, GUAN X, et al. High temporal variability in bacterialcommunity, silicatein and hsp70expression during the annual life cycle ofHymeniacidon sinapium (Demospongiae) in China's Yellow Sea. Aquaculture,2012,358:262-273.
    82GUO C, LI F, JIANG P, et al. Bacterial diversity in surface water of theYellow Sea during and after a green alga tide in2008. Chinese Journal of Oceanologyand Limnology,2011,29(6):1147-1154.
    83白洁,李海艳,赵阳国.黄海北部不同站位海洋细菌群落分布特征.微生物学报,2009,49(3):343-350.
    84李海艳.黄海西北部真细菌群落结构及多样性研究:(学位论文).青岛:中国海洋大学,2009.
    85BOHANNAN B, LENSKI R. Linking genetic change to community evolution:insights from studies of bacteria and bacteriophage. Ecology Letters,2000,3(4):362-377.
    86于心科,李铁刚,周伟光.西菲律宾海比科尔陆架深海沉积物古菌多样性研究.海洋科学,2012,35(11):4-10.
    87ABELL G C J, BOWMAN J P. Ecological and biogeographic relationships ofclass Flavobacteria in the Southern Ocean. FEMS Microbiology Ecology,2005,51(2):265-277.
    88王健鑫,许贤恩,周链链,等.东海陆架表层沉积物微生物多样性初步研究.海洋与湖沼,2012,43(4):805-813.
    89FUHRMAN J A, COMEAU D E, HAGSTROM A, et al. Extraction fromnatural planktonic microorganisms of DNA suitable for molecular biological studies.Applied and Environmental Microbiology,1988,54(6):1426-1429.
    90董逸,刘敏,王金霞,等.使用反应器培养钝顶螺旋藻(Spirulinaplarensis)过程中细菌群落的组成变化.海洋与湖沼,2011,42(1):148-156.
    91YU Z, MORRISON M. Comparisons of Different Hypervariable Regions ofrrs Genes for Use in Fingerprinting of Microbial Communities by PCR-DenaturingGradient Gel Electrophoresis. Applied and Environmental Microbiology,2004,70(8):4800-4806.
    92单国彬,金文标,林佶侃,等.变性梯度凝胶电泳在环境微生物生态学中的应用.生态学杂志,2006,25(10):1257-1264.
    93VALLAEYS T, TOPP E, MUYZER G, et al. Evaluation of denaturing gradientgel electrophoresis in the detection of16S rDNA sequence variation in rhizobia andmethanotrophs. FEMS Microbiology Ecology,2006,24(3):279-285.
    94WATANABE K, KODAMA Y, HARAYAMA S. Design and evaluation ofPCR primers to amplify bacterial16S ribosomal DNA fragments used for communityfingerprinting. Journal of Microbiological Methods,2001,44(3):253-262.
    95邢德峰,任南琪,宋佳秀,等.不同16S rDNA靶序列对DGGE分析活性污泥群落的影响.环境科学,2006,27(7):1424-1428.
    96刘敏,王子峰,朱开玲,等.应用PCR-DGGE技术分析长江口低氧区的细菌群落组成.高技术通讯,2008,18(6):650-656.
    97KANAGAWA T. Bias and artifacts in multitemplate polymerase chainreactions (PCR). Journal of Bioscience and Bioengineering,2003,96(4):317-323.
    98LI Y, LI F, ZHANG X, et al. Vertical distribution of bacterial and archaealcommunities along discrete layers of a deep-sea cold sediment sample at the EastPacific Rise (~13°N). Extremophiles,2008,12(4):573-585.
    99V WINTZINGERODE F, G BEL U B, STACKEBRANDT E. Determinationof microbial diversity in environmental samples: pitfalls of PCR‐based rRNAanalysis. FEMS microbiology reviews,2006,21(3):213-229.
    100ALONSO-SAEZ L, SANCHEZ O, GASOL J M. Bacterial uptake of lowmolecular weight organics in the subtropical Atlantic: Are major phylogenetic groupsfunctionally different? Limnology and Oceanography,2012,57(3):798-808.
    101HOWARD E C, SUN S, BIERS E J, et al. Abundant and diverse bacteriainvolved in DMSP degradation in marine surface waters. Environmental Microbiology,2008,10(9):2397-2410.
    102KANOKRATANA P, UENGWETWANIT T, RATTANACHOMSRI U, et al.Insights into the Phylogeny and Metabolic Potential of a Primary Tropical PeatSwamp Forest Microbial Community by Metagenomic Analysis. Microbial Ecology,2011,61(3):518-528.
    103NERCESSIAN O, FOUQUET Y, PIERRE C, et al. Diversity of Bacteria andArchaea associated with a carbonate‐rich metalliferous sediment sample from theRainbow vent field on the Mid‐Atlantic Ridge. Environmental Microbiology,2005,7(5):698-714.
    104PRADELLA S, ALLGAIER M, HOCH C, et al. Genome organization andlocalization of the pufLM genes of the photosynthesis reaction center inphylogenetically diverse marine Alphaproteobacteria. Applied and EnvironmentalMicrobiology,2004,70(6):3360-3369.
    105ZENG Y, ZOU Y, GREBMEIER J M, et al. Culture-independent and-dependent methods to investigate the diversity of planktonic bacteria in the northernBering Sea. Polar Biology,2012,35(1):117-129.
    106张文杰,张心齐,应意,等.太平洋多金属结核区深海沉积物细菌多样性分析.浙江大学学报(理学版),2009,36(5):578-585.
    107CHO J C, GIOVANNONI S J. Cultivation and growth characteristics of adiverse group of oligotrophic marine Gammaproteobacteria. Applied andEnvironmental Microbiology,2004,70(1):432-440.
    108FUCHS B M, SPRING S, TEELING H, et al. Characterization of a marinegammaproteobacterium capable of aerobic anoxygenic photosynthesis. Proceedings ofthe National Academy of Sciences,2007,104(8):2891-2896.
    109NEUFELD J D, SCH FER H, COX M J, et al. Stable-isotope probingimplicates Methylophaga spp and novel Gammaproteobacteria in marine methanoland methylamine metabolism. The ISME Journal,2007,1(6):480-491.
    110王红,刘吉文,张晓华.黄海冷水团可培养细菌的多样性研究.中国海洋大学学报(自然科学版),2011,41(6):61-67.
    111ARAKAWA S, SATO T, SATO R, et al. Molecular phylogenetic andchemical analyses of the microbial mats in deep-sea cold seep sediments at thenortheastern Japan Sea. Extremophiles,2006,10(4):311-319.
    112NIELSEN M E, REIMERS C E, WHITE H K, et al. Sustainable energy fromdeep ocean cold seeps. Energy&Environmental Science,2008,1(5):584-593.
    113PERREAULT N N, ANDERSEN D T, POLLARD W H, et al.Characterization of the prokaryotic diversity in cold saline perennial springs of theCanadian high Arctic. Applied and Environmental Microbiology,2007,73(5):1532-1543.
    114董金海,焦念志.胶州湾生态学研究.科学出版社,1995.
    115赵三军,肖天,李洪波,等.胶州湾聚球菌(Synechococcus spp.)蓝细菌的分布及其对初级生产力的贡献.海洋与湖沼,2005,36(6):534-540.
    116CRUMP B C, PERANTEAU C, BECKINGHAM B, et al. Respiratorysuccession and community succession of bacterioplankton in seasonally anoxicestuarine waters. Applied and Environmental Microbiology,2007,73(21):6802-6810.
    117FUCHS B M, WOEBKEN D, ZUBKOV M V, et al. Molecular identificationof picoplankton populations in contrasting waters of the Arabian Sea. AquaticMicrobial Ecology,2005,39(2):145-157.
    118KIM B S, KIM B K, LEE J H, et al. Rapid phylogenetic dissection ofprokaryotic community structure in tidal flat using pyrosequencing. Journal ofMicrobiology,2008,46(4):357-363.
    119NA H, KIM O S, YOON S H, et al. Comparative approach to capturebacterial diversity of coastal waters. Journal of Microbiology,2011,49(5):729-740.
    120江蓓洁,鲍献文,吴德星,等.北黄海冷水团温、盐多年变化特征及影响因素.海洋学报(中文版),2007,29(4):1-10.
    121赫崇本,汪圆祥,雷宗友,等.黄海冷水团的形成及其性质的初步探讨.海洋与湖沼,1959,2(1):11-15.
    122于非,张志欣,刁新源,等.黄海冷水团演变过程及其与邻近水团关系的分析.海洋学报(中文版),2006,28(5):26-34.
    123任慧军,詹杰民.黄海冷水团的季节变化特征及其形成机制研究.水动力学研究与进展(A辑),2005,20(S1):887-896.
    124翁学传,张以恳,王从敏,等.黄海冷水团的变化特征.海洋与湖沼,1989,19(1):119-131.
    125GONG G C, CHEN Y L L, LIU K K. Chemical hydrography and chlorophylla distribution in the East China Sea in summer: implications in nutrient dynamics.Continental Shelf Research,1996,16(12):1561-1590.
    126GONG G C, WEN Y H, WANG B W, et al. Seasonal variation of chlorophylla concentration, primary production and environmental conditions in the subtropicalEast China Sea. Deep-Sea Research Part II-Topical Studies in Oceanography,2003,50(6-7):1219-1236.
    127LEI H, PAN D L, BAI Y, et al. The proportions and variations of the lightabsorption coefficients of major ocean color components in the East China Sea. ActaOceanologica Sinica,2012,31(2):45-61.
    128ICHIKAWA H, BEARDSLEY R C. The current system in the Yellow andEast China Seas. Journal of Oceanography,2002,58(1):77-92.
    129TSAI A Y, GONG G C, SANDERS R W, et al. Heterotrophic bacterial andSynechococcus spp. Growth and mortality along the inshore-offshore in the EastChina Sea in summer. Journal of Oceanography,2012,68(1):151-162.
    130GONG G C, CHANG J, CHIANG K P, et al. Reduction of primaryproduction and changing of nutrient ratio in the East China Sea: Effect of the ThreeGorges Dam? Geophysical Research Letters,2006,33(7):
    131BEARDSLEY R C, LIMEBURNER R, YU H, et al. Discharge of theChangjiang (Yangtze River) into the East China Sea. Continental Shelf Research,1985,4(1-2):57-&.
    132XU X D, ODA M. Surface-water evolution of the eastern East China Seaduring the last36,000years. Marine Geology,1999,156(1-4):285-304.
    133CHEN Y, ZHANG Y, JIAO N Z. Responses of aerobic anoxygenicphototrophic bacteria to algal blooms in the East China Sea. Hydrobiologia,2011,661(1):435-443.
    134TSAI A Y, GONG G C, CHIANG K P, et al. Long-term (1998-2007) trendson the spatial distribution of heterotrophic ciliates in the East China Sea in summer:effect of the Three Gorges Dam construction. Journal of Oceanography,2011,67(6):725-737.
    135ZHOU W H, YIN K D, LONG A M, et al. Spatial-temporal variability oftotal and size-fractionated phytoplankton biomass in the Yangtze River estuary andadjacent East China Sea coastal waters, China. Aquatic Ecosystem Health&Management,2012,15(2):200-209.
    136张翠霞,张武昌,赵楠,等.秋冬季东海陆架区浮游纤毛虫的生态分布特点.海洋学报,2011,33(1):127-137.
    137赵苑.黄海和东海微微型浮游生物研究:(学位论文).青岛:中国海洋大学,2010.
    138JIAO N Z, YANG Y H, KOSHIKAWA H, et al. Influence of hydrographicconditions on picoplankton distribution in the East China Sea. Aquatic MicrobialEcology,2002,30(1):37-48.
    139LE F F, NING X R, LIU C G, et al. Picoplankton abundance and biomass inthe East China Sea during autumn and winter. Oceanology,2012,52(1):48-59.
    140TSAI A Y, CHIANG K P, CHANG J, et al. Seasonal diel variations ofpicoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem.Limnology and Oceanography,2005,50(4):1221-1231.
    141肖天,岳海东,张武昌,等.东海聚球蓝细菌(Synechococcus)的分布特点及在微食物环中的作用.海洋与湖沼,2003,34(1):33-43.
    142ZHAO L, ZHAO Y, ZHANG W, et al. Picoplankton distribution in differentwater masses of the East China Sea in autumn and winter. Chinese Journal ofOceanology and Limnology,2013,31(2):1-20.
    143CHEN C C, SHIAH F K, GONG G C, et al. Planktonic communityrespiration in the East China Sea: importance of microbial consumption of organiccarbon. Deep-Sea Research Part II-Topical Studies in Oceanography,2003,50(6-7):1311-1325.
    144SHIAH F K, GONG G C, XIAO T. Effects of ChangJiang River summerdischarge on bottom-up control of coastal bacterial growth. Aquatic MicrobialEcology,2006,44(2):105-113.
    145肖天,王荣.东海异养细菌生产力的时空分布.海洋与湖沼,2000,31(6):664-670.
    146ZHAO S J, XIAO T, LU R H, et al. Spatial variability in biomass andproduction of heterotrophic bacteria in the East China Sea and the Yellow Sea.Deep-Sea Research Part II-Topical Studies in Oceanography,2010,57(11-12):1071-1078.
    147赵三军,岳海东,肖天.海洋异养细菌生物量与生产力的研究方法.海洋科学,2002,26(1):21-23.
    148LONG C, LU X L, GAO Y, et al. Description of a Sulfitobacter strain and itsextracellular cyclodipeptides. Evidence-Based Complementary and AlternativeMedicine,2011,2011(2011):1-6.
    149WU Y H, SHEN Y Q, XU X W, et al. Pseudidiomarina donghaiensis sp. nov.and Pseudidiomarina maritima sp. nov., isolated from the East China Sea.International Journal of Systematic and Evolutionary Microbiology,2009,59(6):1321-1325.
    150XU X W, WU Y H, WANG C S, et al. Vibrio hangzhouensis sp. nov., isolatedfrom sediment of the East China Sea. International Journal of Systematic andEvolutionary Microbiology,2009,59(8):2099-2103.
    151WANG C S, WANG Y, XU X W, et al. Microbulbifer donghaiensis sp. nov.,isolated from marine sediment of the East China Sea. International Journal ofSystematic and Evolutionary Microbiology,2009,59(3):545-549.
    152YOSHIDA A, SEO Y, SUZUKI S, et al. Actinomycetal community structuresin seawater and freshwater examined by DGGE analysis of16S rRNA gene fragments.Marine Biotechnology,2008,10(5):554-563.
    153FENG B W, LI X R, WANG J H, et al. Bacterial diversity of water andsediment in the Changjiang estuary and coastal area of the East China Sea. FEMSMicrobiology Ecology,2009,70(2):236-248.
    154LIU M, XIAO T, WU Y, et al. Temporal distribution of bacterial communitystructure in the Changjiang estuary hypoxia area and the adjacent East China Sea.Environmental Research Letters,2012,7(2):025001.
    155WU L, GE G, ZHU G F, et al. Diversity and composition of the bacterialcommunity of Poyang Lake (China) as determined by16S rRNA gene sequenceanalysis. World Journal of Microbiology&Biotechnology,2012,28(1):233-244.
    156CAVARI B, COLWELL R R. Effect of pollution on the bacterial communitystructure in the coastal waters of the Eastern Mediterranean Sea. Progress inOceanography,1988,21(2):147-157.
    157JONES P R, COTTRELL M T, KIRCHMAN D L, et al. Bacterialcommunity structure of biofilms on artificial surfaces in an estuary. MicrobialEcology,2007,53(1):153-162.
    158MARINELLI R L, LOVELL C R, WAKEHAM S G, et al. Experimentalinvestigation of the control of bacterial community composition in macrofaunalburrows. Marine Ecology-Progress Series,2002,235:1-13.
    159LI H, YANG S Z, MU B Z, et al. Molecular analysis of the bacterialcommunity in a continental high-temperature and water-flooded petroleum reservoir.FEMS Microbiology Ecology,2006,257(1):92-98.
    160DAHLBERG C, HERMANSSON M. Abundance of Tn3, Tn21, and Tn501transposase (tnpA) sequences in bacterial community DNA from marine environments.Applied and Environmental Microbiology,1995,61(8):3051-3056.
    161WHITE J R, PATEL J, OTTESEN A, et al. Pyrosequencing of bacterialsymbionts within Axinella corrugata sponges: diversity and seasonal variability. PlosOne,2012,7(6): e38204.
    162XIE W, MENG Q S, WU Q J, et al. Pyrosequencing the Bemisia tabacitranscriptome reveals a highly diverse bacterial community and a robust system forinsecticide resistance. Plos One,2012,7(4): e35181.
    163MOROZOVA O, MARRA M A. Applications of next-generation sequencingtechnologies in functional genomics. Genomics,2008,92(5):255-264.
    164VERA J C, WHEAT C W, FESCEMYER H W, et al. Rapid transcriptomecharacterization for a nonmodel organism using454pyrosequencing. MolecularEcology,2008,17(7):1636-1647.
    165刘晖,吴以平,高尚德,等.即墨养虾场虾病爆发前期底质中叶绿素的变化.海洋湖沼通报,1998,(1):65-69.
    166尹盛乐,刘晓收,袁超,等.胶州湾大沽河口潮间带沉积物中叶绿素和有机质含量的季节变化.海洋湖沼通报,2012,(2):97-106.
    167HAGSTROM A, POMMIER T, ROHWER F, et al. Use of16S ribosomalDNA for delineation of marine bacterioplankton species. Applied and EnvironmentalMicrobiology,2002,68(7):3628-3633.
    168PRUESSE E, QUAST C, KNITTEL K, et al. SILVA: a comprehensive onlineresource for quality checked and aligned ribosomal RNA sequence data compatiblewith ARB. Nucleic Acids Research,2007,35(21):7188-7196.
    169SCHLOSS P D, WESTCOTT S L, RYABIN T, et al. Introducing mothur:open-Source, platform-Independent, community-supported software for describingand comparing microbial communities. Applied and Environmental Microbiology,2009,75(23):7537-7541.
    170MAHAFFEE W F, KLOEPPER J W. Temporal changes in the bacterialcommunities of soil, rhizosphere, and endorhiza associated with field-growncucumber (Cucumis sativus L.). Microbial Ecology,1997,34(3):210-223.
    171PITTA D W, PINCHAK W E, DOWD S E, et al. Rumen Bacterial DiversityDynamics Associated with Changing from Bermudagrass Hay to Grazed WinterWheat Diets. Microbial Ecology,2010,59(3):511-522.
    172PANDYA P R, SINGH K M, PARNERKAR S, et al. Bacterial diversity inthe rumen of Indian Surti buffalo (Bubalus bubalis), assessed by16S rDNA analysis.Journal of Applied Genetics,2010,51(3):395-402.
    173HAGSTROM A, PINHASSI J, ZWEIFEL U L. Biogeographical diversityamong marine bacterioplankton. Aquatic Microbial Ecology,2000,21(3):231-244.
    174ZOETENDAL E G, AKKERMANS A D, DE VOS W M. Temperaturegradient gel electrophoresis analysis of16S rRNA from human fecal samples revealsstable and host-specific communities of active bacteria. Applied and EnvironmentalMicrobiology,1998,64(10):3854-3859.
    175NAJDEK M, BLAZINA M, FUKS D. Northern Adriatic mesocosmexperiment Rovinj2003: Changes in bacterial community by fatty acid profiling.Periodicum Biologorum,2004,106(1):49-55.
    176STABILI L, ACQUAVIVA M I, CAVALLO R A. Mytilus galloprovincialisfilter feeding on the bacterial community in a Mediterranean coastal area (NorthernIonian Sea, Italy). Water Research,2005,39(2-3):469-477.
    177STABILI L, LICCIANO M, GIANGRANDE A, et al. Sabella spallanzaniifilter-feeding on bacterial community: Ecological implications and applications.Marine Environmental Research,2006,61(1):74-92.
    178ZOPPINI A, PUDDU A, FAZI S, et al. Extracellular enzyme activity anddynamics of bacterial community in mucilaginous aggregates of the northern AdriaticSea. Science of the Total Environment,2005,353(1-3):270-286.
    179BEJA O. To BAC or not to BAC: marine ecogenomics. Current Opinion inBiotechnology,2004,15(3):187-190.
    180PORTER J, DIAPER J, EDWARDS C, et al. Direct measurements of naturalplanktonic bacterial community viability by flow cytometry. Applied andEnvironmental Microbiology,1995,61(7):2783-2786.
    181GREGORY L G, BOND P L, RICHARDSON D J, et al. Characterization ofa nitrate-respiring bacterial community using the nitrate reductase gene (narG) as afunctional marker. Microbiology-Sgm,2003,149(1):229-237.
    182LI S K, XIAO X, YIN X B, et al. Bacterial community along a historic lakesediment core of Ardley Island, west Antarctica. Extremophiles,2006,10(5):461-467.
    183ROBERG S, OSTERHUS J I, LANDFALD B. Dynamics of bacterialcommunity exposed to hydrocarbons and oleophilic fertilizer in high-Arctic intertidalbeach. Polar Biology,2011,34(10):1455-1465.
    184BOUCHER D, JARDILLIER L, DEBROAS D. Succession of bacterialcommunity composition over two consecutive years in two aquatic systems: a naturallake and a lake-reservoir. FEMS Microbiology Ecology,2006,55(1):79-97.
    185HARDER T, LAU S C K, DOBRETSOV S, et al. A distinctive epibioticbacterial community on the soft coral Dendronephthya sp. and antibacterial activity ofcoral tissue extracts suggest a chemical mechanism against bacterial epibiosis. FEMSMicrobiology Ecology,2003,43(3):337-347.
    186JARDILLIER L, BASSET M, DOMAIZON I, et al. Bottom-up andtop-down control of bacterial community composition in the euphotic zone of areservoir. Aquatic Microbial Ecology,2004,35(3):259-273.
    187MATZ C, JURGENS K. Interaction of nutrient limitation and protozoangrazing determines the phenotypic structure of a bacterial community. MicrobialEcology,2003,45(4):384-398.
    188CHUNG H C, LEE O O, HUANG Y L, et al. Bacterial communitysuccession and chemical profiles of subtidal biofilms in relation to larval settlement ofthe polychaete Hydroides elegans. The ISME Journal,2010,4(6):817-828.
    189MEYNET P, HALE S E, DAVENPORT R J, et al. Effect of ActivatedCarbon Amendment on Bacterial Community Structure and Functions in a PAHImpacted Urban Soil. Environmental Science&Technology,2012,46(9):5057-5066.
    190PAJARES S, BONILLA-ROSSO G, TRAVISANO M, et al. Mesocosms ofAquatic Bacterial Communities from the Cuatro Cienegas Basin (Mexico): A Tool toTest Bacterial Community Response to Environmental Stress. Microbial Ecology,2012,64(2):346-358.
    191PANTOS O, BYTHELL J C. Bacterial community structure associated withwhite band disease in the elkhorn coral Acropora palmata determined usingculture-independent16S rRNA techniques. Diseases of Aquatic Organisms,2006,69(1):79-88.
    192HONG P Y, WHEELER E, CANN I K O, et al. Phylogenetic analysis of thefecal microbial community in herbivorous land and marine iguanas of the GalapagosIslands using16S rRNA-based pyrosequencing. The ISME Journal,2011,5(9):1461-1470.
    193HUSE S M, DETHLEFSEN L, HUBER J A, et al. Exploring MicrobialDiversity and Taxonomy Using SSU rRNA Hypervariable Tag Sequencing. PLoSGenetics,2008,4(11):
    194SCHLUTER A, BEKEL T, DIAZ N N, et al. The metagenome of abiogas-producing microbial community of a production-scale biogas plant fermenteranalysed by the454-pyrosequencing technology. Journal of Biotechnology,2008,136(1-2):77-90.
    195ZAKRZEWSKI M, GOESMANN A, JAENICKE S, et al. Profiling of themetabolically active community from a production-scale biogas plant by means ofhigh-throughput metatranscriptome sequencing. Journal of Biotechnology,2012,158(4):248-258.
    196BOWMAN J S, RASMUSSEN S, BLOM N, et al. Microbial communitystructure of Arctic multiyear sea ice and surface seawater by454sequencing of the16S RNA gene. Isme Journal,2012,6(1):11-20.
    197CHEN C, ZHANG Z C, DING A Z, et al. Bar-Coded PyrosequencingReveals the Bacterial Community during Microcystis water Bloom in GuantingReservoir, Beijing//ZHU R. Second Sree Conference on Chemical Engineering.Amsterdam; Elsevier Science Bv.2011.
    198AR STEGUI J, GASOL J M, DUARTE C M, et al. Microbial oceanographyof the dark ocean’s pelagic realm. Limnol Oceanogr,2009,54(5):1501-1529.
    199杜萍,刘晶晶,曾江宁,等.长江口低氧区异养细菌及氮磷细菌分布.应用生态学报,2011,22(5):1316-1324.
    200卢婧雯,张心齐,杜丽丽,等.中国东海及南海近海4采样点海水可培养细菌的多样性研究.浙江大学学报(理学版),2012,39(4):443-449.
    201JIAO N Z, ZHANG Y, ZENG Y H, et al. Ecological anomalies in the EastChina Sea: Impacts of the three gorges dam? Water Research,2007,41(6):1287-1293.
    202STACKEBRANDT E, MURRAY R G E, TRUPER H G. Proteobacteriaclassis nov, a name for the phylogenetic taxon that includes the "purple bacteria andtheir relatives". International Journal of Systematic Bacteriology,1988,38(3):321-325.
    203STALEY J T, BOONE D R, BRENNER D J, et al. The Proteobacteria.2nded.New York, USA: Springer,2005.
    204ALEXANDRE A, LARANJO M, YOUNG J P W, et al. dnaJ is a usefulphylogenetic marker for alphaproteobacteria. International Journal of Systematic andEvolutionary Microbiology,2008,58(12):2839-2849.
    205PINHASSI J, SALA M M, HAVSKUM H, et al. Changes in bacterioplanktoncomposition under different phytoplankton regimens. Applied and EnvironmentalMicrobiology,2004,70(11):6753-6766.
    206MORAN M A, GONZALEZ J M, KIENE R P. Linking a bacterial taxon tosulfur cycling in the sea: studies of the marine Roseobacter group. GeomicrobiologyJournal,2003,20(4):375-388.
    207RIEMANN L, STEWARD G F, AZAM F. Dynamics of bacterial communitycomposition and activity during a mesocosm diatom bloom. Applied andEnvironmental Microbiology,2000,66(2):578-587.
    208PINHASSI J, BERMAN T. Differential growth response of colony-formingα-and β-proteobacteria in dilution culture and nutrient addition experiments fromLake Kinneret (Israel), the eastern Mediterranean Sea, and the Gulf of Eilat. Appliedand Environmental Microbiology,2003,69(1):199-211.
    209ALONSO-SAEZ L, BALAGUE V, SA E L, et al. Seasonality in bacterialdiversity in north-west Mediterranean coastal waters: assessment through clonelibraries, fingerprinting and FISH. FEMS Microbiology Ecology,2007,60(1):98-112.
    210BERNHARD A E, COLBERT D, MCMANUS J, et al. Microbial communitydynamics based on16S rRNA gene profiles in a Pacific Northwest estuary and itstributaries. FEMS Microbiology Ecology,2005,52(1):115-128.
    211PINHASSI J, HAGSTROM A. Seasonal succession in marinebacterioplankton. Aquatic Microbial Ecology,2000,21(3):245-256.
    212GLOCKNER F O, FUCHS B M, AMANN R. Bacterioplanktoncompositions of lakes and oceans: a first comparison based on fluorescence in situhybridization. Applied and Environmental Microbiology,1999,65(8):3721-3726.
    213EILERS H, PERNTHALER J, PEPLIES J, et al. Isolation of novel pelagicbacteria from the German bight and their seasonal contributions to surfacepicoplankton. Applied and Environmental Microbiology,2001,67(11):5134-5142.
    214LAM C, STANG A, HARDER T. Planktonic bacteria and fungi areselectively eliminated by exposure to marine macroalgae in close proximity. FEMSMicrobiology Ecology,2008,63(3):283-291.
    215AGOGUE H, CASAMAYOR E O, BOURRAIN M, et al. A survey onbacteria inhabiting the sea surface microlayer of coastal ecosystems. FEMSMicrobiology Ecology,2005,54(2):269-280.
    216AKOB D M, MILLS H J, KOSTKA J E. Metabolically active microbialcommunities in uranium-contaminated subsurface sediments. FEMS MicrobiologyEcology,2007,59(1):95-107.
    217BRETTAR I, CHRISTEN R, HOFLE M G. Rheinheimera perlucida sp. nov.,a marine bacterium of the Gammaproteobacteria isolated from surface water of thecentral Baltic Sea. International Journal of Systematic and Evolutionary Microbiology,2006,56:2177-2183.
    218PORETSKY R S, BANO N, BUCHAN A, et al. Analysis of microbial genetranscripts in environmental samples. Applied and Environmental Microbiology,2005,71(7):4121-4126.
    219EILERS H, PERNTHALER J, GLOCKNER F O, et al. Culturability and insitu abundance of pelagic bacteria from the North Sea. Applied and EnvironmentalMicrobiology,2000,66(7):3044-3051.
    220BANO N, HOLLIBAUGH J T. Phylogenetic composition ofbacterioplankton assemblages from the Arctic Ocean. Applied and EnvironmentalMicrobiology,2002,68(2):505-518.
    221URAKAWA H, YOSHIDA T, NISHIMURA M, et al. Characterization ofdepth-related population variation in microbial communities of a coastal marinesediment using16S rDNA-based approaches and quinone profiling. EnvironmentalMicrobiology,2000,2(5):542-554.
    222LI L N, KATO C, HORIKOSHI K. Bacterial diversity in deep-sea sedimentsfrom different depths. Biodiversity and Conservation,1999,8(5):659-677.
    223ANDREOTE F D, JIMENEZ D J, CHAVES D, et al. The microbiome ofBrazilian mangrove sediments as revealed by metagenomics. Plos One,2012,7(6):e38600.
    224GALAND P E, POTVIN M, CASAMAYOR E O, et al. Hydrography shapesbacterial biogeography of the deep Arctic Ocean. The ISME Journal,2010,4(4):564-576.
    225BATZKE A, ENGELEN B, SASS H, et al. Phylogenetic and physiologicaldiversity of cultured deep-biosphere bacteria from equatorial Pacific Ocean and PeruMargin sediments. Geomicrobiology Journal,2007,24(3-4):261-273.
    226ABELL G C J, BOWMAN J P. Colonization and community dynamics ofclass Flavobacteria on diatom detritus in experimental mesocosms based on SouthernOcean seawater. FEMS Microbiology Ecology,2005,53(3):379-391.
    227FANDINO L B, RIEMANN L, STEWARD G F, et al. Variations in bacterialcommunity structure during a dinoflagellate bloom analyzed by DGGE and16SrDNA sequencing. Aquatic Microbial Ecology,2001,23(2):119-130.
    228高存彬.基于K-Means聚类法的水团划分算法和可视化研究:(学位论文).青岛:中国海洋大学,2008.
    229黄江婵,臧璐,石晓勇,等.北黄海四季水团划分及化学特性比较.渔业科学进展,2012,33(1):17-27.
    230李凤岐,王凤钦,苏玉嵩,等.黄、东海域春季水团的划分、判别与分析.青岛海洋大学学报,1989,19(1):22-34.
    231WHITMAN W B, GOODFELLOW M, K MPFER P, et al. TheActinobacteria, Part A.2nded. New York, USA: Springer,2012.
    232BULL A T, STACH J E M, WARD A C, et al. Marine actinobacteria:perspectives, challenges, future directions. Antonie Van Leeuwenhoek InternationalJournal of General and Molecular Microbiology,2005,87(1):65-79.
    233POSEDEL N, FAGANELI J. Nature and sedimentation of suspendedparticulate matter during density stratification in shallow coastal waters (Gulf ofTrieste, northern Adriatic). Marine Ecology-Progress Series,1991,77(2-3):135-145.
    234FUKUNAGA Y, KURAHASHI M, SAKIYAMA Y, et al. Phycisphaeramikurensis gen. nov., sp nov., isolated from a marine alga, and proposal ofPhycisphaeraceae fam. nov., Phycisphaerales ord. nov and Phycisphaerae classis novin the phylum Planctomycetes. Journal of General and Applied Microbiology,2009,55(4):267-275.
    235ZHANG F, MA Y, LIN L, et al. Hydrophysical correlation and water massindication of optical physiological parameters of picophytoplankton in Prydz Bayduring autumn2008. Journal of Microbiological Methods,2012,91(3):559-565.
    236MURA M P, SATTA M P, AGUSTI S. Water-mass influences on summerAntarctic phytoplankton biomass and community structure. Polar Biology,1995,15(1):15-20.
    237TAYLOR A G, GOERICKE R, LANDRY M R, et al. Sharp gradients inphytoplankton community structure across a frontal zone in the California CurrentEcosystem. Journal of Plankton Research,2012,34(9):778-789.
    238ARASHKEVICH E, WASSMANN P, PASTERNAK A, et al. Seasonal andspatial changes in biomass, structure, and development progress of the zooplanktoncommunity in the Barents Sea. Journal of Marine Systems,2002,38(1-2):125-145.
    239LIU P, SONG H J, WANG X, et al. Seasonal variability of the zooplanktoncommunity in the southwest of the Huanghai Sea (Yellow Sea) Cold Water Mass. ActaOceanologica Sinica,2012,31(4):127-139.
    240PAKHOMOV E A, MCQUAID C D. Distribution of surface zooplanktonand seabirds across the Southern Ocean. Polar Biology,1996,16(4):271-286.
    241WOESE C R, FOX G E. Phylogenetic structure of the prokaryotic domain:the primary kingdoms. Proceedings of the National Academy of Sciences,1977,74(11):5088-5090.
    242毛健民,李季平.古菌.生物学教学,2002,27(4):35-36.
    243李曙光,皮昀丹, CHUAN-LUN Z.古菌研究及其展望.中国科学技术大学学报,2007,37(8):830-838.
    244曹摇鹏.古菌细胞膜脂在古菌群落组成及其对环境响应研究中的应用.应用生态学报,2012,23(9):2609-2616.
    245KANOKRATANA P, CHANAPAN S, POOTANAKIT K, et al. Diversity andabundance of Bacteria and Archaea in the Bor Khlueng hot spring in Thailand.Journal of basic microbiology,2004,44(6):430-444.
    246WAIN M, TINDALL B, INGVORSEN K. Halorhabdus utahensis gen.nov., sp. nov., an aerobic, extremely halophilic member of the Archaea from GreatSalt Lake, Utah. International Journal of Systematic and Evolutionary Microbiology,2000,50(1):183-190.
    247TAKAI K, HORIKOSHI K. Genetic diversity of archaea in deep-seahydrothermal vent environments. Genetics,1999,152(4):1285-1297.
    248DING X, LV Z-M, ZHAO Y, et al. MTH1745, a protein disulfideisomerase-like protein from thermophilic archaea, Methanothermobacterthermoautotrophicum involving in stress response. Cell Stress and Chaperones,2008,13(2):239-246.
    249MACARIO A J, LANGE M, AHRING B K, et al. Stress genes and proteinsin the archaea. Microbiology and molecular biology reviews,1999,63(4):923-967.
    250ECKBURG P B, LEPP P W, RELMAN D A. Archaea and their potential rolein human disease. Infection and immunity,2003,71(2):591-596.
    251丁霞.嗜热自养甲烷杆菌的分离纯化和二硫键异构酶(MTH1745)的分子结构和功能研究:(学位论文).杭州:浙江大学,2008.
    252丁霞,闵航,杨卫军.嗜热自养甲烷杆菌DX01抗胁迫蛋白质的分离纯化与鉴定.江西农业大学学报,2010,32(4):797-801.
    253DELONG E F. Archaea in coastal marine environments. Proceedings of theNational Academy of Sciences,1992,89(12):5685-5689.
    254MADRID V M, TAYLOR G T, SCRANTON M I, et al. Phylogeneticdiversity of bacterial and archaeal communities in the anoxic zone of the CariacoBasin. Applied and Environmental Microbiology,2001,67(4):1663-1674.
    255BERG I A, KOCKELKORN D, RAMOS-VERA W H, et al. Autotrophiccarbon fixation in archaea. Nature Reviews Microbiology,2010,8(6):447-460.
    256OELGESCHL GER E, ROTHER M. Carbon monoxide-dependent energymetabolism in anaerobic bacteria and archaea. Archives of microbiology,2008,190(3):257-269.
    257CABELLO P, ROLD N M D, MORENO-VIVI N C. Nitrate reduction andthe nitrogen cycle in archaea. Microbiology,2004,150(11):3527-3546.
    258DI H J, CAMERON K C, SHEN J P, et al. Ammonia‐oxidizing bacteria andarchaea grow under contrasting soil nitrogen conditions. FEMS MicrobiologyEcology,2010,72(3):386-394.
    259LEIGH J A, DODSWORTH J A. Nitrogen regulation in bacteria and archaea.Annu Rev Microbiol,2007,61:349-377.
    260FRANCIS C A, ROBERTS K J, BEMAN J M, et al. Ubiquity and diversityof ammonia-oxidizing archaea in water columns and sediments of the ocean.Proceedings of the National Academy of Sciences of the United States of America,2005,102(41):14683-14688.
    261SOUTHWORTH M W, KONG H, KUCERA R B, et al. Cloning ofthermostable DNA polymerases from hyperthermophilic marine Archaea withemphasis on Thermococcus sp.9degrees N-7and mutations affecting3'-5'exonuclease activity. Proceedings of the National Academy of Sciences of the UnitedStates of America,1996,93(11):5281-5285.
    262姚宏伟,冯银刚,王金凤.古菌蛋白质SSO6904的双体形式的NMR鉴定.波谱学杂志,2012,29(2):224-230.
    263张光亚,方柏山.古菌信使RNA5′和3′非编码区特性研究.生物信息学,2006,3(1):13-18.
    264赵美训,李大伟,邢磊.古菌生物标志物古海水温度指标TEX86研究进展.海洋地质与第四纪地质,2009,29(3):75-84.
    265曹鹏,沈菊培,贺纪正.古菌细胞膜脂在古菌群落组成及其对环境响应研究中的应用.应用生态学报,2012,23(9):2609-2616.
    266姜丽晶.珠江口沉积物微生物多样性及其与环境相互关系的研究:(学位论文).厦门:国家海洋局第三海洋研究所,2007.
    267刘梅,帅燕华,梁汉东,等.古菌细胞膜脂在生物地质学中的应用.微生物学通报,2010,37(3):413-418.
    268杨大群.天山冷环境中微生物系统多样性及分布特征的研究:(学位论文).兰州:兰州大学,2008.
    269王淑芳.深海热液口硫化物及沉积物微生物多样性及其与环境相互关系研究:(学位论文).青岛:中国海洋大学,2008.
    270BIRD D F, KARL D M. Uncoupling of bacteria and phytoplankton duringthe austral spring bloom in Gerlache Strait, Antarctic Peninsula. Aquatic MicrobialEcology,1999,19(1):13-27.
    271CASAMAYOR E O, LLIROS M, PICAZO A, et al. Contribution of deepdark fixation processes to overall CO2incorporation and large vertical changes ofmicrobial populations in stratified karstic lakes. Aquatic Sciences,2012,74(1):61-75.
    272CUNLIFFE M, SCHAFER H, HARRISON E, et al. Phylogenetic andfunctional gene analysis of the bacterial and archaeal communities associated with thesurface microlayer of an estuary. The ISME Journal,2008,2(7):776-789.
    273格根塔娜.西菲律宾海比科尔陆架与马努斯海盆海底热液口沉积物微生物多样性研究:(学位论文).呼和浩特:内蒙古农业大学,2010.
    274景天爽.黑潮源区沉积物中古菌多样性及群落结构研究:(学位论文).北京:中国科学院研究生院(海洋研究所),2012.
    275李涛,王鹏,汪品先.南海南部陆坡表层沉积物细菌和古菌多样性.微生物学报,2008,48(3):323-329.
    276王明清.南海北部两根沉积物柱古菌多样性比较研究:(学位论文).青岛:中国海洋大学,2009.
    277张心齐.陆地热泉及深海热液沉积物生境中的嗜热菌多样性研究:(学位论文).杭州:浙江大学,2009.
    278DANG H, ZHANG X, SUN J, et al. Diversity and spatial distribution ofsediment ammonia-oxidizing crenarchaeota in response to estuarine andenvironmental gradients in the Changjiang Estuary and East China Sea. Microbiology,2008,154(7):2084-2095.
    279LIU M, XIAO T, WU Y, et al. Temporal distribution of the archaealcommunity in the Changjiang Estuary hypoxia area and the adjacent East China Seaas determined by denaturing gradient gel electrophoresis and multivariate analysis.Canadian journal of microbiology,2011,57(6):504-513.
    280曾永辉.典型海洋环境中浮游细菌多样性及环境适应机制的研究:(学位论文).厦门:厦门大学,2008.
    281张林宝.鄂霍次克海天然气水合物区与东海内陆架泥质区沉积物古菌多样性研究:(学位论文).北京:中国科学院研究生院(海洋研究所),2009.
    282WOESE C R, KANDLER O, WHEELIS M L. Towards a natural system oforganisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings ofthe National Academy of Sciences,1990,87(12):4576-4579.
    283ABREU C, JURGENS G, DE MARCO P, et al. Crenarchaeota andEuryarchaeota in temperate estuarine sediments. Journal of Applied Microbiology,2001,90(5):713-718.
    284DO MANH H, TASHIRO T, KATO M, et al. Population Dynamics ofCrenarchaeota and Euryarchaeota in the Mixing Front of River and Marine Waters.Microbes and Environments,2010,25(2):126-132.
    285STOICA E, HERNDL G J. Contribution of Crenarchaeota andEuryarchaeota to the prokaryotic plankton in the coastal northwestern Black Sea.Journal of Plankton Research,2007,29(8):699-706.
    286张丽梅,贺纪正.一个新的古菌类群——奇古菌门(Thaumarchaeota).微生物学报,2012,52(4):411-421.
    287BROCHIER-ARMANET C, BOUSSAU B, GRIBALDO S, et al. Mesophiliccrenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. NatureReviews Microbiology,2008,6(3):245-252.
    288BIDDLE J F, CARDMAN Z, MENDLOVITZ H, et al. Anaerobic oxidationof methane at different temperature regimes in Guaymas Basin hydrothermalsediments. Isme Journal,2012,6(5):1018-1031.
    289COOLEN M J L, ABBAS B, VAN BLEIJSWIJK J, et al. Putativeammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wideecological study using16S ribosomal and functional genes and membrane lipids.Environmental Microbiology,2007,9(4):1001-1016.
    290HALLAM S J, MINCER T J, SCHLEPER C, et al. Pathways of carbonassimilation and ammonia oxidation suggested by environmental genomic analyses ofmarine Crenarchaeota. Plos Biology,2006,4(4):520-536.
    291MULLER F, BRISSAC T, LE BRIS N, et al. First description of giantArchaea (Thaumarchaeota) associated with putative bacterial ectosymbionts in asulfidic marine habitat. Environmental Microbiology,2010,12(8):2371-2383.
    292MUNSON M A, NEDWELL D B, EMBLEY T M. Phylogenetic diversity ofArchaea in sediment samples from a coastal salt marsh. Applied and EnvironmentalMicrobiology,1997,63(12):4729-4733.
    293NAKAYAMA C R, KUHN E, ARAUJO A C V, et al. Revealing archaealdiversity patterns and methane fluxes in Admiralty Bay, King George Island, and theirassociation to Brazilian Antarctic Station activities. Deep-Sea Research Part II-TopicalStudies in Oceanography,2011,58(1-2):128-138.
    294NICOL G W, SCHLEPER C. Ammonia-oxidising Crenarchaeota: importantplayers in the nitrogen cycle? Trends in Microbiology,2006,14(5):207-212.
    295SAUDER L A, ENGEL K, STEARNS J C, et al. Aquarium NitrificationRevisited: Thaumarchaeota Are the Dominant Ammonia Oxidizers in FreshwaterAquarium Biofilters. Plos One,2011,6(8): e23281.
    296SPANG A, HATZENPICHLER R, BROCHIER-ARMANET C, et al.Distinct gene set in two different lineages of ammonia-oxidizing archaea supports thephylum Thaumarchaeota. Trends in Microbiology,2010,18(8):331-340.
    297蔡小龙,罗剑飞,林炜铁,等.珠三角养殖水体中参与氮循环的微生物群落结构.微生物学报,2012,52(5):645-653.
    298刘园园,姜伟伟,秦红玉,等. PCR-DGGE技术在水牛瘤胃产甲烷菌多样性分析中的应用.南方农业学报,2011,42(9):1144-1147.
    299方治伟.洪湖沉积物微生物垂直分布及其对环境变化的响应:(学位论文).武汉:华中农业大学,2010.
    300POULSEN M, SCHWAB C, JENSEN B B, et al. Methylotrophicmethanogenic Thermoplasmata implicated in reduced methane emissions from bovinerumen. Nature communications,2013,4:1428.
    301LYKIDIS A, CHEN C-L, TRINGE S G, et al. Multiple syntrophicinteractions in a terephthalate-degrading methanogenic consortium. The ISME Journal,2011,5(1):122-130.
    302GAO B, GUPTA R S. Phylogenomic analysis of proteins that are distinctiveof Archaea and its main subgroups and the origin of methanogenesis. Bmc Genomics,2007,8(1):86.
    303BANO N, RUFFIN S, RANSOM B, et al. Phylogenetic composition ofArctic Ocean archaeal assemblages and comparison with antarctic assemblages.Applied and Environmental Microbiology,2004,70(2):781-789.
    304LAM P, JENSEN M M, LAVIK G, et al. Linking crenarchaeal and bacterialnitrification to anammox in the Black Sea. Proceedings of the National Academy ofSciences of the United States of America,2007,104(17):7104-7109.
    305MOESENEDER M M, WINTER C, ARRIETA J M, et al.Terminal-restriction fragment length polymorphism (T-RFLP) screening of a marinearchaeal clone library to determine the different phylotypes. Journal ofMicrobiological Methods,2001,44(2):159-172.
    306TAKAI K, MOSER D P, DEFLAUN M, et al. Archaeal diversity in watersfrom deep South African gold mines. Applied and Environmental Microbiology,2001,67(12):5750-5760.
    307叶光斌,王风平,肖湘.东太平洋中国多金属结核区锰结核样品中微生物群落结构的研究.台湾海峡,2010,29(2):218-227.
    308BAKER B J, LESNIEWSKI R A, DICK G J. Genome-enabledtranscriptomics reveals archaeal populations that drive nitrification in a deep-seahydrothermal plume. The ISME Journal,2012,6(12):2269-2279.
    309LESNIEWSKI R A, JAIN S, ANANTHARAMAN K, et al. Themetatranscriptome of a deep-sea hydrothermal plume is dominated by water columnmethanotrophs and lithotrophs. The ISME Journal,2012,6(12):2257-2268.
    310WEI M, ZHANG R, WANG Y, et al. Microbial community structure anddiversity in deep-sea hydrothermal vent sediments along the Eastern Lau SpreadingCentre. Acta Oceanologica Sinica,2013,32(2):42-51.
    311CYTRYN E, MINZ D, OREMLAND R S, et al. Distribution and diversity ofarchaea corresponding to the limnological cycle of a hypersaline stratified lake (SolarLake, Sinai, Egypt). Applied and Environmental Microbiology,2000,66(8):3269-3276.
    312VENTOSA A, NIETO J. Biotechnological applications and potentialities ofhalophilic microorganisms. World Journal of Microbiology and Biotechnology,1995,11(1):85-94.
    313郭炳火,葛人峰.东海黑潮锋面涡旋在陆架水与黑潮水交换中的作用.海洋学报,1997,19(6):1-11.
    314刘瑞玉.胶州湾生态学和生物资源.科学出版社,1992.
    315王倩,孙松,霍元子,等.胶州湾毛颚类生态学研究.海洋与湖沼,2010,41(4):639-644.
    316董逸,刘敏,武洪庆,等.胶州湾大肠菌群丰度变化及对环境污染的指示.海洋与湖沼,2011,42(5):684-689.
    317孙松,张永山,吴玉霖,等.胶州湾初级生产力周年变化.海洋与湖沼,2005,36(6):481-486.
    318李新正,王洪法,张宝琳.胶州湾大型底栖动物次级生产力初探.海洋与湖沼,2005,36(6):527-533.
    319叶思源,原晓军,丁喜桂,等.胶州湾水生系统中Pb、Zn的分布特征及其在生物体中的浓缩.海洋与湖沼,2009,40(4):400-406.
    320张洪海,杨桂朋.胶州湾及青岛近海微表层与次表层中二甲基硫(DMS)与二甲巯基丙酸(DMSP)的浓度分布.海洋与湖沼,2010,41(5):683-691.
    321中华人民共和国卫生部.食品安全国家标准食品微生物学检验大肠菌群计数//中华人民共和国卫生部.北京;中国标准出版社.2010.
    322国家海洋局第三海洋研究所,青岛海洋大学.海水水质标准//国家环境保护局.北京;中国环境出版社.1997.
    323王文琪,钱振儒.胶州湾水域异养细菌、大肠菌群和石油降解菌的生态分布.海洋科学,2000,24(1):37-39.
    324赵三军,肖天,李洪波,等.胶州湾异养细菌及大肠菌群的分布及对陆源污染的指示.海洋与湖沼,2005,36(6):541-547.
    325関文威.水界微生物生態研究法.共立出版,1976.
    326郭伟,李书恒,朱大奎.深圳东部海岸地貌环境与可持续发展.地理学报,2007,62(4):377-386.
    327李春雁,杨永亮,牟晓燕,等.山东荣成湾月湖细菌生态学研究.青岛大学学报(自然科学版),2000,13(1):67-71.
    328沈晓盛,陈亚瞿,陈琼.杭州湾北岸奉贤水域大肠菌群和异养细菌的生态分布.海洋环境科学,2006,25(1):20-23.
    329张少军,周毅,张延青,等.滤食性双壳贝类对工厂化养殖废水中悬浮物的生物滤除研究.农业环境科学学报,2010,29(2):363-367.
    330黄备,唐静亮,胡颢琰,等.舟山市海洋贝类生物体内的细菌学研究.中国环境监测,2010,26(1):31-33.
    331徐涤,秦松,庞国兴,等.青岛和大连海区海带(Laminaria japonica)外生细菌的16S rRNA基因序列分析.高技术通讯,2004,14(2):81-86.
    332倪燕.云龙水库氮、磷污染原因分析及对策措施.环境科学导刊,2010,29(2):45-48.
    333周小壮,林小涛,林继辉,等.不同模式对虾养殖的自身污染及其环境效应.生态科学,2004,23(1):68-72.
    334何本茂,童万平,韦蔓新.不同模式对虾养殖水体中硝酸盐和亚硝酸盐的变化特征及其影响因素.广西科学,2005,12(1):76-79.
    335FUNGE-SMITH S J, BRIGGS M R P. Nutrient budgets in intensive shrimpponds: implications for sustainability. Aquaculture,1998,164(1):117-133.
    336石明岩,莫东华,冯兆继,等.垃圾渗滤液、粪便污水与城市污水合并处理研究.中国市政工程,2010,(2):64-66.
    337OTTO S, BALZER W. Release of dissolved organic carbon (DOC) fromsediments of the NW European Continental Margin (Goban Spur) and its significancefor benthic carbon cycling. Progress in Oceanography,1998,42(1):127-144.
    338刘诚刚,宁修仁,郝锵,等.海洋浮游植物溶解有机碳释放研究进展.地球科学进展,2010,25(2):123-132.
    339贺志鹏,宋金明,张乃星.南黄海溶解有机碳的生物地球化学特征分析.海洋科学进展,2006,24(4):477-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700