用户名: 密码: 验证码:
约束轮对随机非线性动力学理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国内外高速铁路和高速列车的大力发展,由此带来了对车辆、轨道系统动力学各方面更为严峻的挑战和要求。确定性的观点在物理、工程技术、生物和经济领域中的应用是众所周知的,然而随着科学技术的发展,要求对实际问题的描述越来越精确。因此,随机因素的影响就不能轻易被忽视,于是对某些实际过程的分析也就有必要从通常的确定性观点转到随机的观点。对于现代轨道车辆而言,由于高速度已成为高速铁路高新技术的核心,随机因素影响更应受到重视,它对系统的运动稳定性、运行平稳性、脱轨安全性、结构服役可靠性以及列车空气动力学问题等均有重要作用。由于对轨道车辆的研究以往主要集中于确定性框架,而对随机非线性动力学的研究也主要集中于响应问题,对定性行为、可靠性等少有涉及,所以本文尝试在这方面作一些工作,内容主要包括:
     (1)物理模型和数学模型的建立:考虑轨道随机不平顺激励(根据作用机理主次分为随机外激和随机参激两种类型)与结构自身的频变随机参激作用等,把弹性约束轮对系统的建模从Lagrange体系转换到了Hamilton体系,用Hamilton函数的形式(即从能量的角度,把多因素的随机响应问题转化为单因素能量的分析)来对动力学行为进行研究,并建立了弹性约束轮对系统带Hamilton函数形式的Ito型随机微分方程组,运用随机平均法把该Ito型随机微分方程组表示为一维扩散过程,同时得到了支配该过程的平均Ito随机微分方程。
     (2)随机稳定性、分岔以及实验测定方法研究:运用拟不可积Hamilton系统相关理论和Oseledec乘性遍历定理求解了系统的最大Lyapunov指数,得到了系统的随机局部稳定性条件;通过分析一维扩散的奇异边界形态,得到了系统随机全局稳定性条件;依据系统响应的平稳概率密度和联合概率密度,得到了系统的随机Hopf分岔类型,以及D-分岔(动态分岔)和P-分岔(唯象分岔)的分岔条件,并对随机稳定性和确定性稳定性进行了比较分析;另外给出了分岔点以及脱轨安全条件的实验测定方法,并把该方法应用到了具体的实验数据分析中,实验结果和理论分析结果得到了较好吻合,验证了方法的正确性和线路应用的可行性。
     (3)首次穿越失效可靠性研究:在对随机稳定性和随机分岔分析的基础上,求得了弹性约束轮对系统发生首次穿越失效可靠性破坏的条件,得到了系统可靠性函数所满足的后向Kolmogorov方程,首次穿越平均时间满足的广义Pontryagin方程以及首次穿越时间条件概率密度方程,并结合初始条件和边界条件,运用相关的数值方法对其进行了分析,研究了首次穿越失效对系统形态的影响以及失效后的动力学行为。
     (4)随机非线性最优控制研究:依据随机动态规划方法,以系统可靠度更高和首次穿越时间更长为目标,对弹性约束轮对系统进行了随机非线性最优控制分析,并对控制效果和策略进行了详细讨论,另外还对弹性约束轮对系统随机稳定性化的非线性随机最优控制进行了研究。
With the rapid development of domestic and international high-speed rail and high-speed trains, much more severe challenges and requirements are put forward for vehicle-track system dynamics. As well known, deterministic view is widely used in physical, engineering, biological and economic fields, but with the development of science and technology, descriptions of the practical problems are required to be more accurate. Therefore, the influence of stochastic factors cannot be ignored easily, for some actual process analysis it is necessary to investigate in the stochastic view instead of deterministic view. For the modern rail vehicles, since high speed has become the core of high-speed railway technology, stochastic factors should be taken seriously, which play an important role in system stability, ride comfort, derailment safety, structural reliability, and train air dynamics issues. Because the rail vehicle research in the past mainly focused on the deterministic framework, while the stochastic nonlinear dynamics studies mainly focused on the system response and qualitative behaviors are rarely involved, this thesis attempts to do further research in this area, mainly including:
     (1) the building of physical and mathematical model:this paper considers track stochastic irregularity excitation based on primary and secondary action mechanism, that is, stochastic external excitations and randomly parametric excitation, and the structure frequency dependent stochastic parametric excitations. The modeling of elastic restraint wheelset system is transferred from Lagrange system to Hamilton system. With the Hamiltonian (from the energy view, the stochastic response problem analysis of multi-factor is transformed into single-factor energy analysis), dynamic behavior research is conducted. Meanwhile Ito stochastic differential equations with Hamiltonian of the elastic constraints wheelset system are established, which are represented as one-dimensional diffusion process using stochastic averaging method, and average Ito stochastic differential equation which dominated the process has been obtained.
     (2) The study of stochastic stability, bifurcation and experimental determination method:based on quasi non-integrable Hamilton system theories and Oseledec multiplicative ergodic theorem, maximal Lyapunov exponents of the system are obtained thus and local stability conditions of the random system are got. Through the analysis of one-dimensional singular boundary diffusion patterns, global stability conditions of the random system are obtained Using averaged probability density and joint probability density of system response, stochastic Hopf bifurcation types, D-bifurcation (dynamic bifurcation) and P-bifurcation (phenomenological bifurcation) bifurcation conditions are obtained, and the stochastic stability and deterministic stability are compared and analyzed. Experimental determination methods of the bifurcation points and derailment safety conditions are given, which have been applied to realistic experimental data analysis. The experimental results and theoretical analysis results have a good match which verifies the correctness of the methods and the feasibility of application in specific railway lines.
     (3) First reliability investigation of transversing derailment failure:based on stochastic stability and stochastic bifurcation analysis, this paper obtains the first passage derailment failure reliability destruction conditions of elastic constraints wheelset system, gets the backward Kolmogorov equation met by the system reliability function, the generalized Pontryagin equation met by averaged first passage time and the conditional probability density equation of first passage, studies the influence of first passage failure on system configurations as well as the dynamical behavior after failure combined with the initial conditions and boundary conditions using numerical methods.
     (4)Stochastic nonlinear optimal control study:with stochastic dynamic programming by targeting higher system reliability and longer first-passage time, stochastic nonlinear optimal control analysis is carried out on the elastic constraints wheelset system, and control effectiveness and strategy are discussed in detail. In addition, nonlinear stochastic optimal control of the elastic constraints wheelset on stochastic system stabilization is discussed.
引文
[1]张卫华.动车组总体与转向架.北京:中国铁道出版社,2011.
    [2]张曙光.高速列车设计方法研究.北京:中国铁道出版社出版,2008.
    [3]张曙光.中国高速铁路技术丛书·和谐号CRH动车组技术系列:CRH5型动车组.北京:中国铁道出版社,2008.
    [4]樱井弘一.日本新干线技术系列介绍(三)-500系新干线高速电动车组的开发.中国铁路,1995,5:44-46.
    [5]钱立新.世界高速铁路技术.北京:中国铁道出版社,2003.
    [6]张曙光.中国高速铁路技术丛书·和谐号CRH动车组技术系列:CRH2型动车组.北京:中国铁道出版社,2006.
    [7]王伯铭.高速动车组总体及转向架.成都:西南交通大学出版社,2008.
    [8]铁道科学研究员高速铁路技术研究总体组.高速铁路技术.北京:中国铁道出版社,2005.
    [9]李强,金新灿.动车组设计.北京:中国铁道出版社,2008.
    [10]严隽耄,付茂海.车辆工程.3版.北京:中国铁道出版社,2009.
    [11]廖晓昕.稳定性的理论、方法和应用.武汉:华中科技大学出版社,2010.
    [12]施尔尼科夫等(俄罗斯).金成桴,译.非线性动力学定性理论方法(第一卷).北京:高等教育出版社,2010.
    [13]钱学森,宋健.工程控制论(上册).北京:科学出版社,2011.
    [14]张家忠.非线性动力学系统的运动稳定性、分岔理论及其应用.西安:西安交通大学出版社.
    [15]Stephenson.G. Observation on Edge and Tram Railways.1821.
    [16]Matsudeira,T. The stability of complete vehicle with coned wheels. Papers awarded Prizes in the competition sponsored by office of Research and Experiment of the International Union of Railways. Utrecht.1960.
    [17]Wickens.A.H. The dynamic stability of a simplified four-wheeled railway vehicle having profiled wheels. International Journal of Solids and Strutures.1965,1(4):385-406.
    [18]Cooperrider, N.K.. The hunting behavior of conventional railway trucks. ASME Journal of Engineering and Industry.1972,94:752-762.
    [19]Lohe, M.A,Huilgol.R.R. Flange force effects on the motion of a train wheelset.Vehicle System Dynamics.1982,11(5):283-303.
    [20]Petzold,L. Automatic selection of methods for solving stiff and no stiff systems of ordinary differential equations.SIAM Journal of Scientific and Statistical Computing.1983,4(1):136-148.
    [21]True, H, Kaas-Petersen.C. A bifurcation analysis of nonlinear oscillations in railway vehicles. Proceeding of 8th IAVSD Symposium, The Dynamics of Vehicleson Roads and on Tracks,1984:438-444.
    [22]True.H. Dynamics of a rolling wheelset. Applied Mechanics Reviews.1993, 46(7):438-444.
    [23]舒仲周,张继业等.《运动稳定性》.北京:中国铁道出版社出版,2001年.
    [24]Utz von Wagner. Nonlinear dynamic behaviour of a railway wheelset Vehicle System Dynamics.2009,47(5):627-640.
    [25]Castelazo.IA. Hedrick JK.Stability analysis of a nonlinear wheel set rolling on rough track. Journal of Dynamic Systems.Measurement and Control. 1989,111:277-285.
    [26]Extensive Summaries of 18th IAVSD Symposium on Dynamics of Vehicles on Roadsand Tracks [Z]. Kanagawa Institute of Technology. Japan,2003.
    [27]O.Polach. Methods for Running Stability Prediction and Their Sensitivity to wheel Rail Contact Geometry.6th international Conference Railway Bogies and Running Gears. BUD APEST.13-16.Supplement.2006.
    [28]Shen Z Y, Zhang X F, Dai H Y, Shen L R. Curving behaviour and lateral stability of a three-axle forced-steering freight bogie for heavy haul railway transportation. Proceedings of the 11th IAVSD Symposium, Canada,1989.
    [29]沈利人,严隽耄.迫导向转向架低锥度失稳问题的研究.西南交通大学学报,1991,1(1):74-81.
    [30]詹斐生.机车动力学.北京:中国铁道出版社,1990.
    [31]陈泽深、王成国.铁道车辆动力学与控制.北京:中国铁道出版社,2004
    [32]曾京.车辆系统的蛇行运动分又及极限环的数值计算[J].铁道学报,1996,(3):13-19.
    [33]高学军,李映辉,高庆.高速客车蛇行运动稳定性与分岔研究[J].动力学与控制学报,2008.6(3):202-207.
    [34]罗仁,曾京.列车系统蛇行运动稳定性分析及其与单车模型的比较[J].机械工程学报,2008,(4):184-188.
    [35]孙桐林,胡忠国,高国生.轮对蛇行运动Hopf分岔的非线性反馈控制[J].国防交通工程与技术,2004,1:29-33.
    [36]高国生,杨绍普,郭京波.轮对蛇行运动Hopf分岔的非线性控制[J].铁道学报,2002.24(6):23-26.
    [37]王福天.车辆系统动力学.北京:中国铁道出版社,1994.
    [38]胡永生.现代轨道车辆动力学.中国铁道出版社,2009.
    [39]任尊松.车辆动力学基础.中国铁道出版社,2009.
    [40]原亮明,宫相太,王渊等.铁道车辆空气弹簧—可变节流阀垂向动态特性的研究[J].铁道学报.2005,27(1):40-44.
    [41]张卫华.机车车辆动态模拟.北京:中国铁道出版社,2006.
    [42]张卫华,宋绍南,陈良麒.车辆运动稳定性实验台实验及其结果分析[J].西南交通大学学报,1998,33(5):484-489.
    [43]陈泽深,王成国.铁道车辆动力学与控制.北京:中国铁道出版社,2004.
    [44]龚光鲁.随机微分方程及其应用.北京:清华大学出版社,2008.
    [45]胡宣达.随机微分方程稳定性理论.南京:南京大学出版社,1986.
    [46]马知恩,周义仓.常微分方程定性与稳定性.北京:科学出版社,2007
    [47]陈予恕,唐云等.非线性动力学中的现代分析方法.北京:科学出版社,2000
    [48]王洪礼,张琪昌.现代非线性动力学理论及应用.天津:天津科技出版社.2002
    [49]朱位秋.随机振动[M].北京:科学出版社,1998.
    [50]张志祥.随机扰动间断动力系统的极限性质及其应用.数学的实践与认识,2002,32(4),651-657.
    [51]曹庆杰.非线性系统随机振动与分叉理论研究.天津大学博士学位论文,1991.
    [52]廖晓昕.动力系统的稳定性和应用.北京:国防工业出版社,2000。
    [53]庄表中,陈乃立,高瞻.非线性随机振动理论及其应用.杭州:浙江大学出版社,1996.
    [54]陈予恕.非线性振动系统的分岔和混沌理论.北京:高等教育出版社,1993.
    [55]陆启韶.常微分方程的定性方法和分岔,北京:北京航空航天大学出版社,1989.
    [56]戎海武,王命宇,方同.随机ARNOLD系统的稳定性与分又.应用力学学报.1996,13(4):112—116.
    [57]朱位秋,非线性随机动力学与控制- Hamilton理论体系框架.科学出版社,2003.
    [58]冯剑丰.渤海赤潮生态动力学与预测研究.天津大学博士学位论文,2003.
    [59]Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications. New York:McGraw-Hill,1995.
    [60]Battaini M, Casciati F, Faravelli L. Some reliability aspects in structural control. Probabilistic Engineering Mechanics,2000,15:101-107.
    [61]Vanini P, Mariani C. Reliability as a measure of active control effectiveness. Computers & Structures,1999,73 (1-5):465-473.
    [62]陈滨.分析动力学.北京:北京大学出版社,1987.
    [63]经典力学.张启仁.北京:科学出版社,2002.
    [64]叶敏.分析力学.天津:天津大学出版社,2001.
    [65]李子平.约束哈密尔顿系统及其对称性质,北京:北京工业大学出版社, 1999.
    [66]程崇庆,孙义燧.哈密顿系统中的有序与无序运动.上海:上海科技教育1996.
    [67]李继彬,赵晓华,刘正荣.广义哈密顿系统理论及其应用.北京:科学出版社,1999.
    [68]冯康.哈密尔顿系统的辛几何算法.杭州:浙江科学技术出版社,2003.
    [69]Khasmiskii.R.Z., Stochastic Stability of Differential Equations, Alpenaan denRijin, the Netherlands, Sijthoff and Noordhoff,1980.
    [70]黄东卫.渤海赤潮生态系统的非线性随机动力学研究.天津大学博士学位论文,2005.
    [71]Fuller A T. Analysis of nonlinear stochastic systems by means of the Fokker-Planck equations. International Journal of Control,1969,9:603-655.
    [72]Andronov A A, Pontryagin A A, Vitt L S. On the statistical investigation of dynamical systems. Zh.Exp.Teor.Fiz.1933,3:165-180 (in Russian)
    [73]Kramers H A. Brownian motion in a field of force and diffusion model of chemical reactions. Physica,1940,7:284-304
    [74]Caughey T K, Payne H J. On the response of a class of self excited oscillators to stochastic excitation. International Journal of Non-Linear Mechanics.1967.2:125-151
    [75]Caughey T K, Ma F. The exact steady-state solution of a class of nonlinear stochastic systems. International Journal of Non-Linear Mechanics,1982,17 (3):137-142
    [76]Caughey T K, Ma F. The steady-state response of a class of dynamical systems to stochastic excitation. ASME Journal of Applied Mechanics, 1982,49 (3):629-632
    [77]Dimentberg M F. An exact solution to a certain nonlinear random vibration problem. International Journal of Non-Linear Mechanics,1982,17 (4): 231-236
    [78]朱位秋,几类非线性系统对白噪声参激与(或)外激平稳响应的精确解.应用数学和力学,1990,11(2):155-164.
    [79]Soize C. The Fokker-Planck Equation for Stochastic Dynamical Systems and Its Explicit Steady State Solution. Singapore:World Scientific,1994
    [80]Yong Y, Lin Y K. Exact stationary-response solution for second order nonlinear systems under parametric and external white-noise excitations. ASME Journal of Applied Mechanics,1987,54 (2):414-418.
    [81]Jiongmin Yong, Xun Yu Zhou, Stochastic Controls, Hamiltonian Systems and HJB Equations. New York:Springer-Verlag,1999.
    [82]Goriely A. Integrability, partially integrability, and nonintegrability for systems of ordinary differential equations. Journal of Mathematical Physics. 1996,37(4):1871-1893.
    [83]Bountis T, Segar H, Vivaldi F. Integrable Hamiltonian systems and the Painleve' property. Physical Review A, Third Series.1982,25 (3) 1257-1264.
    [84]Yoshida H. A new necessary condition for the integrability of Hamiltonian systems with two-dimensional homogeneous potential, physical D,1999,128: 53-69.
    [85]Haller G. Chaos Near Resonance. New York:Springer-Verlag,1999.
    [86]汪秉宏.弱混沌与准规则斑图.上海:上海科技教育出版社,1996.
    [87]Dankowicz H. Chaotic Dynamics in Hamiltonian systems, With Applications to Celestial Mechanics. Singapore:World Scientific,1997.
    [88]Lin Y K, Cai G Q. Exact stationary-response solution for second order nonlinear systems under parametric and external ex citations,Part II. ASME Journal of Applied Mechanics,1988,55(3):702-705.
    [89]Lin Y K, Cai G Q. Probabilistic Structural Dynamics,Advanced Theory and Applications. New York:McGraw-Hill,1995.
    [90]Zhu W Q, Cai G Q, Lin Y K. On exact stationary solutions of stochastically perturbed Hamiltonian systems. Probabilistic Engineering Mechanics,1990, 5:84-87.
    [91]Van Kampen N G. Derivation of phenomenological equations from the Master equation, II:even and odd variables. Physics,1957,23:816-829.
    [92]Zhu W Q, Yang Y Q. Exact stationary solutions of stochastically excited and dissipated integrable Hamiltonian systems. ASME Journal of Applied Mechanics,1996,63 (2):493-500.
    [93]Cai G Q, Lin Y K. Exact and approximate solutions for randomly excited MDOF non-linear systems. International Journal of Non-Linear Mechanics, 1996,31 (5):647-655.
    [94]Zhu W Q, Huang Z L. Exact stationary solutions of stochastically excited and dissipated partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics,2001,36 (1):39-48.
    [95]Ying Z G, Zhu W Q. Exact stationary solutions of stochastically excited and disspated gyroscopic systems. International Journal of Non-Linear Mechanics,2000,35:837-848.
    [96]Huang Z L, Zhu W Q. Exact stationary solutions of stochastically and harmonically excited and dissipated integrable Hamiltonian systems. Journal of Sound and Vibration,2000,230 (3):709-720.
    [97]王梓坤.马尔可夫过程和今日数学.长沙:湖南科学技术出版社,1999.
    [98]刘克.适用马尔可夫决策过程.北京:清华大学出版社,2004.
    [99]Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications. New York:McGraw-Hill,1995.
    [100]Zhu W Q. Recent developments and applications of the stochastic averaging method in random vibration. ASME Applied Mechanics Reviews,1996,49 (10):s72-s80
    [101]Cai G Q, Lin Y K. Random vibration of strongly nonlinear systems. Nonlinear Dynamics,2001,24:3-15.
    [102]陆大紷.随机过程及其应用.北京:清华大学出版社,1986.
    [103]龚光鲁.应用随机过程教程-及其在算法和智能计算机中的应用.北京:清华大学,2003.
    [104]Zhu W Q, Huang Z L, Suzuki Y. Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics,2002,37:419-437.
    [105]Zhu W Q, Huang Z L, Suzuki Y. Response and stability of strongly non-linear oscillators under wide-band random excitation, International Journal of Non-Linear Mechanics,2001,36:1235-1250.
    [106]Roberts J B. Vasta M. Response of non-linear oscillators to non-white random excitation using an energy based method. Nonlinear and Stochastic Structural Dynamics, Proceedings of IUTAM Symposium, Narayanan S, Iyengar R N. (Eds.), Dordrecht:Kluwer Academic Publishers,2001, 221-231.
    [107]Ying Z G, Zhu W Q, Ni Y Q, Ko J M. Stochastic averaging of Duhem hysteretic systems. Journal of Sound and Vibration,2002,254:91-104.
    [108]Huang Z L, Zhu W Q, Suzuki Y. Stochastic averaging of strongly non-linear oscillators under combined harmonic and white noise excitations. Journal of Sound and Vibration,2000.238:233-256.
    [109]Huang Z L, Zhu W Q, Ni Y Q, Ko J M. Stochastic averaging of strongly non-linear oscillators under bounded noise excitation. Journal of Sound and Vibration,2002,254:245-267.
    [110]刘先斌,陈虬,陈大鹏.非线性随机动力系统的稳定性和分岔研究,力学进展,1996.26(4),437-452.
    [Ill]V.S.Anishchenko, T.E.Vadivasova, G.I.Strelkova. Statistical properties of dynamical chaos, Mathematical Biosciences and Engineering,2004,1(1), 161-184.
    [112]C.Castillo-Chavez and B.Song, Dynamical Models of tuberculosis and their applications, Mathematical Biosciences and Engineering,2004,1(2), 361-404.
    [113]Walter, M., Recknagel, F., Carpenter, C., Bormans, M., Prediction Eutrophication Effects in the Burrinjuck Reservior (Australia) by Means of the DeterministicModel SALMO and the Recurrent Neural Network Model ANNA. Ecol.Modelling,2000.
    [114]Huang Z L, Zhu W Q. A new approach to almost-sure asymptotic stability of stochastic systems of higher dimension. International Journal of Non-Linear Mechanics,2003,38:239-247.
    [115]Y.Kuang, J.Huisman and J.J.Elser, Stoichometric plant-herbivore models and their interpretation, Mathematical Biosciences and Engineering,2004,1(2), 215-222.
    [116]R.Lopez,-Ruiz and D.Fournier-Prunaret, Complex behavior in a discrete coupled logistic model for the symbiotic interaction of two species, Mathematical Biosciences and Engineering,2004,1 (2),307-324.
    [117]Zhu W Q, Huang Z L, Suzuki Y. Stochastic averaging and Lyapunov exponent of quasi partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics,2002,37:419-437.
    [118]Zhu W Q, Huang Z L. Lyapunov exponent and stochastic stability of quasi-Hamiltonian systems. ASME Journal of Applied Mechanics,1999,66: 211-217.
    [119]Namachiwaya N.S., Roessel V. and Talwar S., Maximal Lyapunov exponent and almost-sure stability for coupled two degree of freedom stochastic systems,ASME Journal of Applied Mechanics,1994,61.446-452.
    [120]Ariaratnam S.T. and Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992.59,664-673.
    [121]戎海武,孟光,徐伟,方同,二自由度耦合线性随机系统的最大Lyapunov指数和稳定性,应用力学学报,2000,17(3),46-53.
    [122]戎海武,方同,二阶线性随机微分方程的渐近稳定性,应用力学学报,1996,13(3),72-78.
    [123]刘伟渭,戴焕云,曾京.弹性约束轮对系统的随机稳定性研究[J].中国机械工程,2013,(6):799-804.
    [124]杨建华,胡栋梁,刘先斌.非高斯色噪声激励下Van der Pol-Duffing振子的随机稳定性[J].振动工程学报,2011,(1):20-25.
    [125]葛根,王洪礼,许佳.矩形薄板在面内随机参数激励下的随机稳定性与分岔研究[J].振动与冲击,2009,(9):91-94.
    [126]Arnold L., Papanicolaou.G. and Wihstutz V., Asymptotic analysis of the Lyapunov exponent and rotation number of the random oscillator and applications, SIAM Journal of Applied Mechanics,1986,46(3),427-450.
    [127]Ariaratnam S.T. and Xie W.C., Lyapunov exponents and stochastic stability of coupled linear systems under real noise excitation, ASME Journal of Applied Mechanics,1992,59,664-673.
    [128]戎海武,孟光,徐伟,方同,二阶随机参激系统的Lyapunov指数和稳定性,振动工程学报,2002,15(3),295-299.
    [129]W.Q.Zhu, Z.L.Huang, Stochastic Stability of Quasi-nonintegrable-Hamiltonian Systems,Journal of Sound and Vibration,1998,218(5),769-789.
    [130]W.Q.Zhu,Y.Q.Yang, Stochastic Averaging of Quasi-nonintegrable-Hamiltonian Systems, Journal of Applied Mechanics, Vol.64,1997,157-164.
    [131]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov指数(I),应用数学和力学,1999,20(9):902-912.
    [132]刘先斌,陈大鹏,陈虬,实噪声参激一类余维2分叉系统的最大Lyapunov旨数(II),应用数学和力学,1999,,20(10):997-1003.
    [133]刘先斌,陈虬,实噪声参激Hopf分叉系统研究,力学进展,1997,29(2):158-166.
    [134]王洪礼,姚士磊,葛根,许佳.形状记忆合金梁在随机激励下的随机分岔与首次穿越[J].振动与冲击.2012,(9):24-28.
    [135]赵德敏,张琪昌,王炜.具有间隙非线性的二元机翼的随机分岔和功率谱分析[J].振动与冲击.2009,(6):86-89.
    [136]葛根.矩形薄板振动的随机分岔和可靠性研究.天津大学博士学位论文,2009.
    [137]高维非线性系统的随机分岔研究[Z].陕西省:西北工业大学.
    [138]李爽,徐伟,李瑞红.Duffing-van der Pol系统的随机分岔[J].力学学报,2006,(3):429-432.
    [139]刘先斌,一类随机分叉系统概率1分叉研究,固体力学学报,2001,22(3),297-302.
    [140]Namachchiwaya N Sri. Stochastic bifurcation, Applied Mathematics and Computation,1990,38:101-159.
    [141]Dong-Wei Huang, Hong-Li Wang, Yu Qiao, Zhi-Wen Zhu. Stochastic Hopf Bifurcation of Four-wheel-steering System, Proceedings of the Fifth International Conference on Stochastic Structural Dynamics, Hangzhou, China,2003:207-214.
    [142]Kedai Xu. Stochastic pitchfork bifurcation, numerical simulations and symbolic calculations using MAPLE [J]. Mathematics and Computers in Simulation 1995,38:199-209.
    [143]L. Arnold, K.D. Xu. Normal-Forms for random diffeomorphism [J]. J.Dynamics Differential Equations,1992,4:445-483.
    [144]K.D.Xu. Bifurcations of random differential equations in dimension one [J].Random Comput. Dynamics 1991,1:277-305.
    [145]杨槐,朱华,褚亦清,一类非线性系统在随机激励下的分叉,应用力学学报,1993,10(4):69-71.
    [146]戎海武,徐伟,方同,随机分叉定义小议,广西科学,1997,4(1):15-19.
    [147]冯剑丰,渤海赤潮生态动力学与预测研究,天津大学博士学位论文,2003.
    [148]S.P.铁木辛柯等着,王德荣等译.工程中的振动问题.北京:人们铁道出版社,1978.
    [149]S.P.铁木辛柯,D.H. Young等着,叶红玲等译.结构理论.北京:机械工业出版社,2005.
    [150]S.P.Timoshenko, J.M.Gere. Theory of Elastic Stability. Second Edition. New York:McGraw-Hill, Inc.,1961.
    [151]高学军,李映辉,乐源.延续算法在简单轨道客车系统分岔中的应用.振动与冲击,2012,31(20):178-183.
    [152]吕可维,曾京,沈志云.铁道车辆系统周期解的延续算法.工程力学,2004,21(1):174-179.
    [153]高学军,李映辉,高庆.基于延续算法的六轴机车蛇行运动分岔分析.交通运输工程学报,2009,9(5):32-36.
    [154]曾庆元,向俊,周智辉等.列车脱轨分析理论与应用.长沙:中南大学出版社,2006.
    [155]Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications. New York:McGraw-Hill,1995.
    [156]Gan C B, Zhu W Q. First-passage failure of quasi-non-integrable-Hamiltonian systems. International Journal of Non-Linear Mechanics,2001, 36:209-220.
    [157]Zhu W Q, Deng M L, Huang Z L. First-passage failure of quasi-integrable Hamiltonian systems. ASME Journal of Applied Mechanics,2002,69: 274-282.
    [158]任丽梅,徐伟,李战国.非线性结构动力学系统的首次穿越[J].振动与冲击,2013,(4):163-166.
    [159]张雷,吴勇军.五自由度强非线性随机振动系统的首次穿越研究[J].振动与冲击,2012,(12):1-4.
    [160]任丽梅,徐伟,肖玉柱,王文杰.基于重要样本法的结构动力学系统的首次穿越[J].力学学报.2012,(3):648-652.
    [161]张静静,靳艳飞.非高斯噪声驱动下非对称双稳系统的平均首次穿越时间与随机共振研究[J].物理学报,2011,(12):54-62.
    [162]Zhu W Q, Huang Z L, Deng M L. First-passage failure and its feedback minimization of quasi-partially integrable Hamiltonian systems. International Journal of Non-Linear Mechanics, in press.
    [163]Zhu W Q, Wu Y J. First-passage time of strongly nonlinear oscillators under combined harmonic and white noise excitations. Nonlinear Dynamics, in press.
    [164]C.B. Gan, W.Q. Zhu. First-passage failure of quasi non integrable Hamiltonian systems. International Journal of Non Linear Mechanics,2001,36:209-220.
    [165]吴勇军,张雷.具有内外共振的随机振动系统的首次穿越损坏[A].2011:105-116.
    [166]张雷,吴勇军.外共振耦合Duffing-van der Pol系统的首次穿越[J].力学学报,2012,(2):437-442.
    [167]陆金莆,关治.偏微分方程数值解法.北京:清华大学出版社,2004.
    [168]刘扬.对流扩散方程的新型Crank-Nicholson差分格式.数学杂志,25(4):463-467.
    [169]杨绍华.求解非定常对流扩散方程的高精度差分格式.商丘师范学院学报,25(3):48-50.
    [170]朱位秋;应祖光.拟哈密顿系统非线性随机最优控制[J/OL].力学进展,2013,(01):1-18,
    [171]孙燕军,冷小磊.公路桥梁车辆耦合系统随机最优控制研究[J].应用力学学报.2012,(3):335-340.
    [172]王永,应祖光,朱位秋.基于极大值原理的拟Hamilton系统的非线性随机最优控制[A].,2012:61.
    [173]葛根.王洪礼,许佳.随机最优控制下矩形薄板受面内随机参数激励的首次穿越研究[J].振动与冲击,2012,(4):179-183.
    [174]Yong J M, Zhou X Y. Stochastic Controls, Hamiltonian Systems and HJB Equations. New York:Springer-Verlag,1999.
    [175]Kushner H J, Dupuis P. Numerical Methods for Stochastic Control Problems in Continuous Time, New York:Springer-Verlag,1993.
    [176]Charalambous C D, Elliott R J. Classes of nonlinear partially observable stochastic optimal control problems with explicit optimal control law. SIAM Journal of Control and Optimization,1998,36:542-578.
    [177]Zhu W Q, Ying Z G. Optimal nonlinear feedback control of quasi-Hamiltonian systems. Science in China, Series A,1999,42:1213-1219
    [178]冯驹.拟哈密顿系统非线性随机最优控制的若干问题研究, 浙江大学博士学位论文,2011.
    [179]魏立峰.随机最优控制相关的HJB方程及弱解研究,山东大学博士学位论文.2009.
    [180]张明,聂宏.弹性飞机地面滑行随机最优控制[J].航空学报,2009,(8)1405-1412.
    [181]应祖光.结构系统的随机最优控制[A].2008:27.
    [182]茅僰,应祖光,朱位秋.不确定结构非线性随机最优控制的鲁棒性[J].浙江大学学报(工学版),2008,(7):1101-1105.
    [183]应祖光,倪一清,高赞明.地震激励邻接高层建筑的随机最优控制[J].工程力学,2003,(4):204-208.
    [184]容一鸣,崔九同.随机最优控制在半主动悬架中的应用研究[J].现代机械,2003,(4):20-21.
    [185]方明霞,冯奇,马星.磁悬浮列车系统的随机最优控制[J].力学季刊,2003,(2):174-178.
    [186]Zhu W Q, Ying Z G, Ni Y Q, Ko J M. Optimal nonlinear stochastic control of hysteretic systems. ASCE Journal of Engineering Mechanics,2000,126: 1027-1032.
    [187]Florchinger P. A universal formula for the stabilization of control stochastic differential equations. Stochastic Analysis and Applications,1993,11: 155-162.
    [188]Florchinger P. Feedback stabilization of affine in the control stochastic differential systems by the control Lyapunov function method. SIAM Journal of Control and Optimization,1997,35:500-511.
    [189]Lin Y K, Cai G Q. Probabilistic Structural Dynamics, Advanced Theory and Applications. New York:McGraw-Hill,1995.
    [190]Spencer Jr B F, Kaspari Jr J C, Sain M K. Reliability-based optimal structural control. Proceedings of the Fifth US National Conference on Earthquake Engineering, Chicago, IL,1994.
    [191]Zhu W Q, Huang Z L, Deng M L. Feedback minimization of first-passage failure of quasi non-integrable Hamiltonian systems. International Journal of Non-Linear Mechanics,2002,37:1057-1071.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700