用户名: 密码: 验证码:
伟晶岩多孔微晶玻璃的研制及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国辽宁地区的非金属矿资源非常丰富,如石英矿、石英砂、高岭土、石灰岩、白云岩、硅灰石、伟晶岩等,有些矿产已得到高效利用,但对于以前只作为石材的本溪矿产——伟晶岩来说,高效率的利用是亟待解决的问题。本文以伟晶岩为原料,研制SiO_2-Al_2O_3-CaO-ZnO-R_2O多孔微晶玻璃,并将多孔微晶玻璃应用于建筑保温领域属于新的尝试。
     在用伟晶岩制多孔微晶玻璃的过程中,首先对伟晶岩通过X光射线荧光光谱技术进行化学成分定性、定量分析,确定其主要成分为SiO_2、Al_2O_3、Fe_2O_3、R_2O、CaO和MgO等,从定量分析结果可见,伟晶岩中SiO_2和Al_2O_3的总含量占总成分的90%以上,是生产微晶玻璃的可选材料。采用添加造孔剂法和二次烧结制多孔微晶玻璃,这是对伟晶岩利用的一个创新研究。实验过程中通过TGA/SDTA测试手段对伟晶岩玻璃、造孔剂硬脂酸和粘结剂聚乙烯醇进行分析,确定烧结多孔微晶玻璃的热处理制度。
     在研究新型微晶玻璃材料时,一个很重要的问题就是控制玻璃的析晶,以期得到所需要的晶相,从而制得符合一定物理、化学及力学性能要求的材料。本文以一组伟晶岩玻璃为研究对象介绍了玻璃析晶动力学方程以及晶化指数的求法,并利用修正的JMA公式计算了5种玻璃样品的晶化活化能E和频率因子γ,求出了样品的析晶动力学参数k(Tp),并利用Augis-Bennett方程计算微晶玻璃的晶化指数n。实验结果表明:五种样品中SiO_2与Al_2O_3的比例为61:6的样品k值最大,且随着温度的升高,该样品的k值增加速率大于其它样品,表明研制的5种微晶玻璃样品中此样品最易析晶;多孔微晶玻璃样品均为体积晶化;其主晶相副硅灰石是具有单斜链状结构的ZM型硅灰石,通称副硅灰石(α'-CaSiO_3),呈长针状或短柱状。
     SiO_2、Al_2O_3、CaO是SiO_2-Al_2O_3-CaO系统多孔微晶玻璃的三大主要成分,成分含量的变化直接影响着多孔微晶玻璃的性能,本文从CaO/SiO_2比和Al_2O_3/SiO_2比的角度出发,研究这两组比例对多孔微晶玻璃性能的影响,结果表明:1、随着CaO/SiO_2比例的增加副硅灰石的长径比逐渐减小了,主晶相没有发生改变;多孔微晶玻璃的抗压强度和抗折强度均是随着CaO/SiO_2比例的增加,先是增加到一定值后又呈下降趋势;1#~5#多孔微晶玻璃耐酸性的最大抗折损失率达到了0.30,耐碱性能的最大抗折损失率0.32。2、随着Al_2O_3/SiO_2比值的增加,析出晶体的数量有所减少,主晶相没有发生变化;多孔微晶玻璃的抗压强度和抗折强度均是随着Al_2O_3/SiO_2比例的增加,呈下降趋势:6#~10#多孔微晶玻璃耐酸性的最大抗折损失率达到了0.29,耐碱性能的最大抗折损失率0.30。
     为了研究多孔微晶玻璃的保温性能,根据伟晶岩多孔微晶玻璃的内部组成以及孔隙率情况,作者提出了三种热传导的理想等效物理模型,推导出了数学公式,验证了多孔微晶玻璃的导热系数。结果显示,实验测得的多孔微晶玻璃的导热系数值与理论导热系数之间具有较好的一致性。随着孔隙率的增加,多孔微晶玻璃的导热系数呈减小的趋势。根据保温材料的定义,D#和E#多孔微晶玻璃样品的导热系数值达到了定义的要求。目前对多孔微晶玻璃导热性能的研究比较少见。
Liaoning Province is very rich in non-metallic mineral resources, such as quartz ore, quartz sand, kaolin, limestone, dolomite, wollastonite, pegmatite, and some mineral resources have been used efficiently, but the efficient use of pegmatite (a mineral resource from Benxi, Liaoning Province) which was only used as mineral stone was an urgent need to resolve. In this paper, SiO_2-Al_2O_3-CaO-ZnO-R_2O porous glass-ceramics was prepared from pegmatite, and the porous glass-ceramics was attempted to be used in the field of building insulation.
     The chemical constitutions of Pegmatite was determinded with XRF. The results of qualitative and quantitative analysis indicated that the main components of Pegmatite were SiO_2, Al_2O_3, Fe_2O_3, R_2O, CaO and MgO. Through the theoretical analysis, the total content of SiO_2 and Al_2O_3 can reach more than 90% of the total ingredient of Pegmatite, thus Pegmatite was suitable to prepare SiO_2-Al_2O_3-CaO family porous glass-ceramics. Sintered process and addition of pore-forming agent were adopted to prepare porous glass-ceramics. In order to determine the heat treating regime for preparing porous glass-ceramics, the thermal-properties of Pegmatite, pore-forming agent-stearic acid and the binder-polyvinyl alcohol were analyzed through the TGA/SDTA method.
     The physical, chemical and mechanical properties of porous glass-ceramics are dependent on the crystalline phase, so it is a very important task to control the crystallization of glass. The glass crystallization dynamic equation as well as the crystallization index were introduced in the paper, and the crystallization active energy E and the frequency factorγfor 5 glass samples were calculated according to the modified JMA equation, the crystallization kinetic parameter k(Tp) of samples were obtained. Finally, the crystallization index n for all samples was got via Augis-Bennett equation. The results indicated that k of the sample, whose ratio of SiO_2 to Al_2O_3 is 61:6, was the largest one in 5 samples, and it increased faster than the others with the temperature increasing. It can be concluded that the crystallization of this sample happened easily in all samples. The crystallization form of porous glass-ceramics belong to volume crystallization; the parawollastonite which was the main phase was monocline chain structure ZM type wollastonite, with long needle crystal or short rodlike crytal.
     SiO_22、Al_2O_3 and CaO are the main ingredients of SiO_2-Al_2O_3-CaO family porous glass-ceramics. The varied contents of SiO_2、Al_2O_3 and CaO can affect the properties of Porous glass-ceramics. The relationship between the properties of porous glass-ceramics with the ratios of CaO to SiO_2 and Al_2O_3 to SiO_2 were discussed in this article. The results indicated: the main crystal phase maintained with the increasing of CaO/SiO_2, while the length-diameter ratio of parawollastonite decreased gradually; the compressive strength and the flexural strength of porous glass-ceramics increased to maximum and then decreased with the increasing of CaO/SiO_2; the maximum flexural strength loss rates of l#-5# samples under acid and alkali condition were 0.30 and 0.32, respectively. The main crystal phase maintained with the increasing of Al_2O_3/SiO_2, while the amount of crystals decreased; the compressive strength and the flexural strength of porous glass-ceramics decreased with the increasing of Al_2O_3/SiO_2; and the maximum flexural strength loss rates of 6#-10# samples under acid condition and alkali condition were 0.29 and 0.30, respectively.
     The heat preservation performance of porous glass-ceramics was investigated as well. Considering the internal composition and the porosity of porous glass-ceramics based on pegmatite, three heat conduction ideal equivalent physical models were proposed by the author, and a mathematical formula was deduced to testify the thermal conductivity of porous glass-ceramics. The results showed that the thermal conductivity of porous glass-ceramics obtained from experiments coincided well with the theory value. Along with the porosity increase, the porous glass-ceramics thermal conductivity inclined to decrease. According to the thermal insulation material definition, D# and E# sample's thermal conductivity had met the definition requirements. At present, research on heat conduction performance of porous glass-ceramics is relatively rare.
引文
[1]杨岳清,王文瑛,陈成湖等.福建南平花岗伟晶岩中锡石的矿物学研究[J].福建地质.2006,25(2):75-81
    [2]张汉之.花岗伟晶岩尾矿在制砖陶土料配料中的应用[J].国外非金属矿与宝石.1990,4(2):20-22
    [3]张贵华.利用本地伟晶岩生产细炻器[J].河北陶瓷.1995,23(1):44-45.
    [4]P.W.麦克米伦著.王仞千译.微晶玻璃[M].北京:中国建筑工业出版社,1988.
    [5]韩建军,刘继翔,毛豫兰等.透明微晶玻璃的研究[J].武汉理工大学学报,1997,19(4):23-28.
    [6]Ahmed Wagdi A. EI-Shennawi, Mohamed A. Mandour, et.al. Monopyroxenic Basalt-Based Glass-Ceramics[J]. Am. Ceram. Soc. 1999,82(5):1181-86.
    [7]Luisa Barbiei, Isabella Lancellotti. Tiziano Manfredini, et.al. Design obtainment and Properties of glass-ceramics from coal fly ash[J]. Fuel .1999, 78(2):271-276.
    [8]Maximina Romero and Jwsius Ma. Surface and Bulk Crystallization of Glass-Ceramic in the Na2O-CaO-ZnO-PbO-Fe2O3-Al2O3-SiO2 System Derived from a Goethite Waste[J]. Am. Ceram. Soc. 1999,82(5):1313-17.
    [9]李金平,韩一赤,王立久.组成对硅酸盐玻璃光学性质和密度的影响[J].大连理工大学学报.1992,32(1):11-15.
    [10]王立久,任启芳.工业废渣在微晶玻璃中的应用[J].应用技术.2006,40(2):40-42
    [11]王立久,成世凡.粉煤灰建筑微晶玻璃工业化实验研究[J].新型建筑材料.1994,10(4):4-7
    [12]王宗舞,王立久.粉煤灰微晶玻璃的研究进展[J].专题评述.2006(6):33-35.
    [13]Duck D A, Mac Dowell J F, Karstetter B R. Crystallization and chemical strengthening of nepheline[J]. Am. Ceram. Soc, 1967,50(3):67-70.
    [14]陈伟民,陈楷,邓再德.氟硅酸盐微晶玻璃的结构与性能[J].硅酸盐通报.1998,15(2):39-42.
    [15]Yong Zhang, J.D. Santos. Microstructural characterization and in vitro apatite formation in CaO-P_2O_5-TiO_2-MgO-Na_2O glass-ceramics[J]. Journal of the European Ceramic Society. 2001(21): 169-175.
    [16]刘明志,袁坚,何峰,全健.米黄色微晶玻璃装饰板的研制[J].佛山陶瓷.2000(3):7-9.
    [17]程金树,肖静.Ni_2O_3着色剂对微晶玻璃装饰板材性能的影响[J].国外建材科技.2000,21(3):1-4.
    [18]程金树,肖静.含Ni_2O_3的微晶玻璃装饰板材热处理制度的确定[J].武汉工业大学学报.2000,22(5):15-18.
    [19]吴鹏.CaO-Al_2O_3-SiO_2系统微晶玻璃表面析晶机理研究[D]:(硕士学位论文).武汉:武汉理工大学,2006.
    [20]Z. Matamoros-Veloza, K. Yanangisawa, J.C. Rendon-Angeles, et.al. Preparation of porous glass-ceramics under different hydrothermal hot pressing conditions[J].Solid State Ionics. 2004(172):597-600.
    [21]王连星,宁青菊,姚治才.多孔陶瓷材料[J].硅酸盐通报.1998(1):41-45.
    [22]陆婵娟,潘晓,焦永峰.多孔陶瓷的制备及应用研究现状[J].江苏陶瓷.2008(41):23-25.
    [23]杨涵崧,朱永长,李慕勤等.多孔陶瓷材料的研究现状与进展[J].佳木斯大学学报.2005,23(1):88-91.
    [24]杨梅,王立久.多孔微晶玻璃的制备、性能及用途[J].材料导报.2007,11(21):418-421.
    [25]Mcmilan P W. Glass Ceramic[M].AcademicPress, London:Academic Press 1979.
    [26]王德平,黄文旵等.载体用多孔Na_2O-TiO_2-P_2O5_2-CaO微晶玻璃的研制[J].建筑材料学报.2003,6(1):45-49.
    [27]王德平,黄文旵等.钙钛磷酸盐微晶玻璃的过析晶作用及其热力学分析[J].无机材料学报.2003,18(6):1169-1176
    [28]王大伟,韦奇.利用尾矿资源制造玻璃陶瓷材料的原理及工业化生产探讨[J].中国物资再生.1998(7):6-8.
    [29]Donald R. Ulrich. Prospects of sol-gel processes[J]. Journal of Non-Crystalline Solids 1988,100(1):174-193.
    [30]Lenza R F S, Vascocelos W L, Jones J R, et al. Surface-modified 3D scaffolds for tissue engineering[J]. Journal of Materials Science: Materials in Medicine.2002,5(13):837-842.
    [31]Pilar Sepulveda, Julian R. Jones, Larry L. Hench. Bioactive sol-gel foams for tissue repair[J]. Journal of Biomedical Materials Research. 2002,59(2):340-348.
    [32]杨为中,周大利等.新型多孔磷灰石/硅灰石生物活性玻璃陶瓷材料的研究[J].生物医学工程学杂质.2004,21(6):913-916.
    [33]杨为中,周大利等.溶胶-凝胶法制备生物活性玻璃陶瓷的研究[J].硅酸盐学报.2004,32(2):171-176.
    [34]苗鸿雁,孙正球等.溶胶-凝胶法制备生物微晶玻璃的研究进展[J].材料导报.2006,20(1),54-56.
    [35]宋开新,俞建长.微晶玻璃的制备与应用[J].山东陶瓷.2002,25(1):17-20.
    [36]Jerzy Zarzycki. Past and Present of sol-gel Science and Technology[J]. Journal of sol-gel Science and Technology .1997,8(2): 17-22.
    [37]翟凤瑞.多孔陶瓷材料及其应用前景[J].红河学院学报.2005,3(3):22-24.
    [38]刘辉,孙伟,覃文庆等.多孔陶瓷材料的应用及发展前景[J].矿冶工程.2003,23(6):69-71.
    [39]黄光锋,卢安贤.多孔玻璃应用研究的新进展[J].玻璃与搪瓷.2006,34(4):49-52.
    [40]王德平,黄文旵等.多孔微晶玻璃作为缓释药物载体的体外实验研究[J].中国修复重建外科杂志.2002,16(5):322-324.
    [41]王德平,黄文旵等.多孔微晶玻璃作为药物载体材料的制备及其体外释药研究[J].无机材料学报.2001,16(6):1195-1198.
    [42]刘军,严肃,贺英.微晶玻璃在建材领域的应用及发展前景[J].房材与应用.1997(1):16-19.
    [43]黄光锋,卢安贤.多孔玻璃应用研究的新进展[J].玻璃与搪瓷.2006,34(4):49-52.
    [44]Oyama S T, Lee D, Hacarlioglu P,et,al. Nanostructure of a high-permeability, hydrogen-selective inorganic membrane[C]. Technical Proceedings of the 2004 NSTI Nanotechnology Conference and Trade Show. London, 2004(3):272-275.
    [45]程金树,李宏,汤李缨等.微晶玻璃[M].北京:化学工业出版社,2006.
    [46]刘培生.多孔材料引论[M].北京:清华大学出版社,2004.
    [47]刘健.CaO/SiO_2比对钙铝硅系微晶玻璃玻璃结构与性能影响的研究[D]:(硕士学位论文).武汉,武汉理工大学,2006.
    [48]程金树,王怀德,赵前等.Na_2O对微晶玻璃装饰板烧结和析晶的影响[J].武汉工业大学学报.1996,18(1):20-22.
    [49]赵前,王怀德,全健.微晶玻璃板基础成分对烧结及析晶性能的影响[J].现代技术陶瓷.1997,73(3):6-11.
    [50]冯小平,何峰,李立华.CaO-Al_2O_3-SiO_2系统微晶玻璃晶化行为的研究[J].武汉理工大学学报.2001,23(3):22-28.
    [51]王立久,杨梅.烧结法制多孔玻璃陶瓷的微观结构和性能研究[J].建筑材料学报.2008,11(2):235-240.
    [52]Villeags M A, Depabos A. Structural and micro structural study of glasses in the Li2O-TiO2-SiO2 system[J]. Journal of Material Science. 1995,30(4):995-999.
    [53]Okada K, Ban T. Immiscibility phase-separation in Al2O3-SiO2 system and crystallization of mullite[J]. European. J. solid and inorganic chemistry. 1995,32(6):683-692.
    [54]王培铭,许乾慰.材料研究方法[M].北京:科学出版社,2005.
    [55]T.W.Cheng, Y.S.Chen. Characterization of glass ceramics made from incinerator fly ash[J]. Ceramic Intemarional. 2004(30): 343-349.
    [56]J.P.Chu,I.J.Hwang, C.C.Tzeng, Y.Y.Kuo et al. Characterization of vitrified slag from mixed medical waste surrogate streated by a thermal plasma system[J]. Journal of Hazardous Materials. 1998, 58(1-3): 172-192.
    [57]吴凤清,阮圣平.纳米TiO_2的制备、表征及光催化性能的研究[J].功能材料.2001,32(1):69-71.
    [58]张亚涛.赤泥装饰用微晶玻璃的研制[D]:(硕士学位论文).武汉:武汉理工大学,2006.
    [59]Jonhson W A , Mehl RF. Resction kineics in Processes of nucleation and growth[J].Trans Amer Inst Min Eng.l939,135(5):416-442.
    [60]Avrami M. Kinetics of phase change(Ⅰ)-General theory[J]. The Journal of Chemical Physics. 1939,7(12): 1103-1112.
    [61]Avrami M. Kinetics of phase change(Ⅱ)-Transformation-time relations for random distribution of nuclei[J]. The Journal of Chemical Physics. 1940,8(12):212-224.
    [62]Avrami M. Kinetics of phase change(Ⅲ)-Gramllation phase change and microstructure[J]. The Journal of Chemical Physics. 1941,9(2):177-184.
    [63]Bansal N P, Doremus R H, Bruce A J, et al. Kinetics of crystallization of ZrF4-BaF2-LaF3 glass by differential scanning calorimetry[J].J Am Ceram Soc.. 1983,66(4):233-238.
    [64]Ozawa T. Kinetics of glass Crystallization[J]. J Thermal Anal.1970,5(2):301-305.
    [65]AUGIS J A,BENNETT J E. Calculation of the avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method[J].J Therm Analy.1978,13(3):283-292.
    [66]后藤直雪,中岛耕介,石冈顺子.用于磁信息存储媒体的高刚性玻璃陶瓷基片.中国,化学,CN99101290[P].1999.
    [67]胡丽丽,姜中宏.玻璃析晶难易的一种新判据[J].硅酸盐学报.1990,18(4):315-321.
    [68]马明生,倪文,王亚利.镍渣制备微晶玻璃的结晶动力学及结晶化过程[J].北京科技大学学报.2007,29(2):168-172.
    [69]陈禾,梁开明,李力军等.CaO-A1_2O_3-SiO_2系统烧结微晶玻璃的结晶过程[J].清华大学学报(自然科学版),1999,29(10):15-17.
    [70]何峰.CaO-Al_2O_3-SiO_2系统微晶玻璃工艺及结构研究[D]:(硕士学位论文).武汉:武汉工业大学,1997.
    [71]赵前,王怀德,全健.微晶玻璃板基础成分对烧结及析晶性能的影响[J].现代技术陶瓷.1997,73(3):6-11.
    [72]张为军,杜永国,陈朝辉等.微晶玻璃及其在电子元件中的应用[J].电子元件与材料.2002,21(8):26-28.
    [73]钮峰.钙铝硅系微晶玻璃结构与耐磨性的研究[D]:(硕士学位论文).武汉:武汉理工大学,2005.
    [74]李汉章.建筑节能技术指南[M].北京:中国建筑工业出版社.2006.
    [75]Russell H W. Prnciplcs of heat flow in porous insulators[J]. J Am Ceram Soc.l935,18(1):1-5.
    [76]Loeb A L. Thermal conductivity Ⅷ:a theory of thermal conductivity of porous materials[J]. J Am Ceram Soc.1954, 37(2):96-99.
    [77]朱盈豹.保温材料在建筑墙体节能中的应用[M].北京:中国建材工业出版社,2003.
    [78]朱盈豹.节能建筑设计关键是要好保温材料及设计保温构造[G].北京:民用建筑节能技术资料汇编.1997.
    [79]王家俊.聚酞亚胺/氮化铝复合材料的导热性能[D]:(博士学位论文).杭州:浙江大学,2001.
    [80]Touloukian Y. S., Thermophysical Properties of Matter. IFI/Plenum Press, New York-Washington, 1970.
    [81]周文英.高导热绝缘高分子复合材料研究[D]:(博士学位论文).西安:西北工业大学.2007.
    [82]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    [83]田荫棠.热物理学[M].西安:西北工业大学出版社,1991.
    [84]张正荣.传热学[M].北京:高等教育出版社,1989.
    [85]奥齐西克,俞昌铭.热传导[M].北京:高等教育出版社,1983.
    [86]陈则韶,葛新石,顾沁.量热技术和热物理性测定[M].合肥:中国科学技术大学出版社,1990.
    [87]周文英.高导热绝缘高分子复合材料研究.博士论文.西北工业大学.2007年
    [88]Cheng S. X.. An accurate transient calorimeter for measuring the total hemispherical emissivity of metals and alloys[J]. High Temp High Press. 1984,7(6):459-468.
    [89]Watt D A.. Theory of thermal diffusivity by pulse technique[J]. J Appl Phys.l986,37(5):231-240.
    [90]Hara S, Toshima N..Electrochemical polymerization of benzene using a composite electrolyte of aluminum chloride and copper chloride[J]. Chemistry letters. 1989,28(4):1437-1440.
    [91]徐龙,阎西林,贾宇明等.材料物理导论[M].西安:西安电子科技大学出版社,1995.
    [92]关振铎,张中太,焦金生.无机材料物理性能[M].北京:清华大学出版社,1992.
    [93]刘静.微纳米尺度传热学[M].北京:科学出版社出版社,2001.
    [94]奚同庚.无机材料热物性学[M].上海:上海科学技术出版社,1981.
    [95]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社,1991.
    [96]翟海潮,李印柏,林新松.粘接与表面粘涂技术[M].北京:北京化学工业出版社,1993.
    [97]陈根座.胶粘剂应用手册[M].北京:北京电子工业出版社,1994.
    [98]蔡永源.胶粘剂制备及应用.北京:北京化学工业部科学技术情报研究所,1989.
    [99]陈树川,陈凌冰.材料物理性能[M].上海:上海交通大学出版社,1999.
    [100]阎守胜.固体物理基础[M].北京:北京大学出版社,2003.
    [101]马庆芳.实用热物理性质手册[M].北京:中国农业机械出版社,1986.
    [102]博克里斯,卡恩.量子电化学[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [103]田荫棠.热物理学[M].西安:西北工业大学出版社,1991.
    [104]张正荣.传热学[M].北京:高等教育出版社,1989.
    [105]奥齐西克,俞昌铭.热传导[M].北京:高等教育出版社,1983.
    [106]奚同庚.固体热物理性质导论[M].北京:中国计量出版社,1987.
    [107]曲远方.无机非金属材料专业实验[M].天津:天津大学出版社,2003.
    [108]I. H. Tavman. Effective Thermal Conductivity of Granular Porous Materials[J]. Int Comm. Heat Mass Transfer.l996,23(2):169-176.
    [109]Maxwell J C. A Trearise on electricity and magnetism[M]. New York : Dover, 3~(rd),1954.
    [110]Russell H W. Principles of heat flow in porous insulators[J]. J Am Ceram Soc. 1935,18(1):1-5.
    [111]Francl J, Kingery W D. Thermal conductivity: IX, Experimental invesrigarion of effect of porosity on thermal conductivity[J]. J Am Ceram. Soc. 1954.37(2):99-104.
    [112]Loeb A L. Thermal conductivity Ⅷ: a theory of thermal conductivity of porous materials[J]. J Am Ceram. Soc. 1954.37(2):96-99.
    [113]吕兆华.泡沫型多孔介质等效导热系数的计算[J].南京理工大学学报.2001,25(3):257-261.
    [114]奚同庚.无机材料热物性学[M].上海:科学技术出版社,1991.
    [115]Gibson L J, Ashby M F. Cellular Solids: Structure and Properties-Second Edition [M]. Cambridge: Cambridge University Press, 1997.
    [116]刘培生.多孔材料孔径及孔径分布的测定方法[J].钛工业进展.2006(23)2:29-34.
    [117]宝鸡有色金属研究所编.粉末冶金多孔材料[M].北京:冶金工业出版社,1979.
    [118]曾汉民.高技术新材料要览[M].北京:中国科技出版社,1993.
    [119]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [120]夏春.汞压法对水泥浆和掺合料水泥浆孔隙分析[J].混凝土.2004(3):36-37.
    [121]宝鸡有色金属研究所.粉末冶金多孔材料(下册)[M].北京:冶金工业出版社,1979.
    [122]陈开敏.汞压测孔技术及其在化学电源中的应用[J].电源技术.1986,55(6):31-36.
    [123]韩风麟主译.金属手册:粉末冶金[M].北京:机械工业出版社,1994.
    [124]薛莹莹.隔热材料导热系数预测及其在发动机排气管隔热中的应用[D]:(硕士学位论文).大连:大连理工大学.2006年.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700