用户名: 密码: 验证码:
赤泥—粉煤灰加气混凝土新型自保温墙体材料的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤泥是氧化铝冶炼工业生产过程中排出的大量固体废渣,随着氧化铝生产规模的日益扩大,赤泥的堆放量也是逐年增加,这不仅占用大量良田,还严重破坏了生态环境,对资源也是一种浪费。新型建筑材料的产生与发展,对大量堆存的工业废渣的有效回收实现了环境效益和经济效益的双赢。本文以拜耳法赤泥、低等级粉煤灰、干排法电石渣、激发剂等为原料制备加气混凝土,开发研究新型墙体材料。
     试验首先研究了赤泥加气混凝土立方体抗压强度和干密度与各胶凝材料掺量和料水比的线性相关性。研究结果表明:通过回归分析得出,立方体抗压强度和干密度与各胶凝材料掺量和料水比存在十分显著的线性关系,并且加气混凝土中的气孔特点和水的分布形式使得料水比成为影响立方体抗压强度的主要因素,而赤泥中的碱含量对浆体的碱度影响,以及对铝粉发气的影响使得赤泥掺量成为影响干密度的主要因素。在此基础上,考虑赤泥的放射性影响,加气混凝土中降低赤泥掺量的同时,加入强碱性工业废料电石渣,有效地激发加气混凝土中粉煤灰的火山灰效应,并研究各因素水平对加气混凝土制品性能的影响程度。研究结果表明:当赤泥掺量控制在20%以下时,加气混凝土放射性检测,内照射指数为0.76,外照射指数为1.13,达到GB6566-2001《建筑材料放射性核素限量》要求。最后通过对制备的赤泥加气混凝土立方体采取不同的养护工艺进行比较分析,发现不同的养护工艺直接影响着制品的饱水抗压强度、后期强度和干密度。
     通过对赤泥加气混凝土热工性能试验研究表明,赤泥加气混凝土导热系数为0.24W/m·K,热阻值为1.00m2·K/W,密度为864kg/m3,与其他几种常用保温隔热砌体材料相比,导热系数最低,密度最小,说明采用较小厚度的赤泥加气混凝土砌体即可获得较大的热阻值,则赤泥加气混凝土具有良好的保温性能。
     最后通过对样品SEM扫描电镜分析显示,赤泥加气混凝土水化反应生成的主要矿物是针棒状的钙矾石,也是赤泥加气混凝土强度的主要贡献者,同时还有纤维状、网状C-S-H胶凝水化产物。
Red mud is the largest solid waste generated during aluminum production from bauxite. With the increasing of alumina output, the amounts of Red mud keep growing; it takes the massive lands in the stack process, but also has caused the serious pollution to the natural environment, and the waste to the natural resource. The appearance and development of new building material is good news to thousands of various industrial wastes residue of which effective recycling can realize a win-win of environmental and economic benefits. This paper select the Bayer process red mud , low grade fly-ash, dry process calcium carbide sludge, activation and so on for main raw material to produce Aerated Concrete, which was developed and studied as new wall material.
     At the first, the experiment studied the linear dependence between compressive strength, dry density of red mud aerated concrete cube and a variety of gelled material, the ratio of nutriment. The results shown that, by means of regression analysis, it existing significantly linear correlation between compressive strength, dry density of red mud aerated concrete cube and a variety of gelled material, the ratio of nutriment. The main factor of influencing compressive strength concrete cube was the ratio of nutriment, because of the characteristics of stomata and the distributions of water in aerated concrete. The main factor of influencing dry density concrete cube was the admixture of red mud, because the alkali content of red mud influenced basicity in slurry, and the producing gas of aluminum. on this basis, according to the influence of radium activity on red mud, aerated concrete decreased the content it, meanwhile, mixed the calcium carbide sludge that was industrial waste residue of strongly alkaline, which effectively aroused aerated concrete in pozzolanic effect of fly-ash. It studied the factors of all kinds of level influence on the aerated concrete performance of products. The results shown that when content of red mud has below 20 percent the ratio active inspection of aerated concrete could achieve the standard GB6566-2001“Building Material Radionuclide Limits”, which the inside illuminate index was 0.76, and the outside illuminate index was 0.76. Finally, analyzed and coMPared with various kinds of curing technique on red mud aerated concrete cube shown different maintenance technique directly effected the saturated compressive strength, later development and dry density on performance of products.
     Through testing aerated concrete thermal performance, the result of experimentation shown that, the coefficient of thermal conductivity of red mud aerated concrete, thermal resistance and dry density was 0.24W/m·K, 1.00m2·K/W, and 864kg/m3, so using thin red mud aerated concrete could obtain bigger thermal resistance, it just proved that red mud aerated concrete had favorable performance of thermal insulation.
     At the last, through the samples of SEM analysis shown that hydration products of red mud aerated concrete caused main mineral that was Ettringite of needle bar, which contributes mostly to the strength of the aerated concrete. At the same time, there were gelatinous hydration products with the form of fibrous, netty CSH.
引文
[1]毕诗文,于海燕.氧化铝生产工艺.化学工业出版社.2006(1):1~9.
    [2]刘桂华,刘云峰.拜耳法溶出过程降低赤泥碱耗.中国有色金属学报.2006(3):555~5.
    [3]黄迎超,王宁.赤泥综合利用及其放射性调控技术初探.矿物岩石地球化学通报.2009(02):128~3.
    [4] Mishra B,Staley A.Recovery of value added products from red mud [J].Minerals and metallurgical Processing society for mining,Metallurgy and Exploration,2002,19(2):87—89.
    [5] Mishra B,Staley A,Kirkpatriek D.Recovery and utilization of iron from red mud[J].Light Metal:proceeding of Sessions,TMS Annum Meeting(Warren dale,Pennsylvania)Feb 11 Nov 15 2000:149~156.
    [6]司秀芬,邓佐国,徐廷华.赤泥提钪综述[J].江西有色金属[J].2003.17 (2).
    [7]赖兰萍,周李蕾.赤泥综合回收与利用现状及进展.四川有色金属.2008(01):43~06.
    [8]张培新.赤泥制作瓷砖黑色颗粒料的研究[J].矿产综合利用.2000(3):41-43.
    [9] Nevin Y, Vahdettin S. Utilization of bauxite waste in ceramic glazes [J] . Ceramics International,2000,(26): 485– 490.
    [10]王梅,杨家宽,侯健.赤泥粉煤灰免烧免蒸砖的原料与制备[J].矿物综合利用.2005(4):30-34.
    [11]徐晓虹,钟文波,吴建锋等.用工业废渣赤泥研制微晶玻璃[J].玻璃和搪瓷.2006(2):28-31.
    [12]邢净,李金洪,张凯.利用赤泥制备钙铝榴石微晶玻璃的实验研究[J].矿物岩石地球化学通报,2007(2):181-184.
    [13] Cengeloglu Y, Kir E. Ersoz M. Removal of fluoride from aqueous solution by using red mud [J] . Separation and Purification Technology, 2002, (28):81– 86.
    [14] Ahundogan H S. Ahundogan S, Tureen F. eta1. Arsenic adsorption from aqueous solutions by activated red mud [J]. Waste Managexnent, 2002, (22):357– 363.
    [15]孙道兴,王馥琴.赤泥脱除废水中重金属离子的研究[J].无机盐工业,2008(8).
    [16]韩毅,王京刚,唐明述.用改性赤泥吸附废水中的六价铬[J].化工环保,2005(2).
    [17]文小年,王林江,谢襄漓.赤泥对水体中铅离子的吸附[J].桂林工学院学报,2005(2).
    [18]王林江,文小年,谢襄漓.赤泥处理含镉废水的影响因素[J].桂林工学院学报,2006(4).
    [19]李湘洲.国外节能建筑发展的若干动向.墙体革新与建筑节能.2004.4.
    [20]朱盈豹.保温材料在建筑墙体节能中的应用.[D]中国建材工业出版社.2004.
    [21]顾天舒,谢连玉,陈革.建筑节能与墙体保温[J].工程力学.2006(23).167-184.
    [22]邱勇.建筑外墙自保温材料及体系研究[D].杭州.浙江大学.2007,6.
    [23]陈杰.B05级加气混凝土制备及其热工分析[D].湖北.武汉理工大学.2008,5.
    [24]闫振甲,何艳君.工业废渣生产建筑材料实用技术.[D]化学工业出版社.2003.
    [25]崔琪,姚燕,李清海.新型墙体材料.[D]化学工业出版社.2004.
    [26] N. Narayanan, K. Ramamurthy. Structure and Properties of aerated concrete. a review. Cement and Concrete Composites 22.2000.321~329.
    [27]中国墙体信息网.墙体材料工业废弃物利用调研分析. http://www.brick-tike.com/news/guonei/150331363.htm.
    [28]齐健召,杨家宽,王梅.赤泥做道路基层材料的试验研究[J].公路通科技.2005.22(6):30-33.
    [29]齐健召.赤泥道路材料的试验研究[D].武汉.华中科技大学硕士学位论文.2005.
    [30]胡曙光,王发洲.轻集料混凝土[M].化学工业出版社.2006.
    [31]王瑞燕.高性能混凝土配合比设计方法研究[J].重庆交通学院学报.2008.27(2):252-03.
    [32]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社.2005.
    [33]岳涛.免蒸压粉煤灰加气混凝土开发研究.[D]重庆交通大学.2010.4.
    [34]王秀芬.加气混凝土性能及优化的试验研究.[D]西安建筑科技大学.2006.3.
    [35]汪远波,沈岳松.电石渣的资源化利用.[J]环境工程.2008.
    [36]刘春英,彭书传.谈电石渣的最佳资源化方向与途径.建材技术与应用.2007 (3) :20– 22 .
    [37]王慧青,童继红,沈立平.电石渣的资源化利用途径.化工生产与技术.2007 .14 (1) :47– 51.
    [38]叶东忠,张亮,黄太松.电石渣作混合材对水泥结构与性能影响的试验研究[J].福州大学学报(自然科学版).2004.32(1) 1.
    [39]叶东忠,郑庆定.减水剂对掺电石渣水泥强度与结构影响的研究[J].福州大学学报(自然科学版).2006.34(4) 1.
    [40]邱树恒,袁罡,林秀娟.用改性电石渣取代石膏磨制硅酸盐水泥的研究[J].水泥. 2004.(3) 1.
    [41]梁嘉琪.话说碳化砖[J].砖瓦世界.2006.(6) 1.
    [42]梁嘉琪.利用电石渣生产碳化砖的工艺与技术[J].新型墙体. 2006.(4) 1.
    [43]李忠金,谌天,谢琴.环保高压免烧电石渣砖及其制造方法.公开号CN16731511.2005 :1.
    [44]张日红,倪敏怡.电石渣混凝土步道砖及其制作方法.公开号CN1978366.2007 :1– 6.
    [45]孙学妙,朱清,黄向东.电石渣混凝土小型空心砌块.公开号CN10876951.1994 :1– 6.
    [46]胡树静,张树增,王键红.电石渣的综合利用[J].聚氯乙烯.2006.(8) 1.
    [47]刘春英.工业废弃物—电石渣的国内现状及其资源化方向.水泥技术.2005 (6) :60– 62.
    [48]马保国,郝先成.蒸压电石渣粉煤灰砖的制备和性能[J].武汉理工大学学报.2006(02):20-03.
    [49]程传武.电石渣和粉煤灰的综合利用[J].聚氯乙烯.2008.(2) :40-05.
    [50]漆贵海.碱磷渣加气混凝土制备研究[D].重庆.重庆大学.2008.4.51~53.
    [51]张黎星.蒸压加气混凝土砌块生产工艺及质量控制要点[J].墙材革新与建筑节能.2007(4):29-30.
    [52]刘洪兴,王仁生.利用选金尾矿生产加气砼砌块[J].黄金.2004.25(9):51-53.
    [53]周书林,苗存贤.热工性能应成为外墙砖产品质量的重要指标[J].中国建材科技.2008(6):41-44.
    [54]陈杰,陈友治.B05级加气混凝土制备及其热工分析[D].湖北.武汉理工大学.2009.5.
    [55]顾天舒,谢连玉,陈革.建筑节能与墙体保温[J].工程力学.2006.23(增刊Ⅱ):167-184.
    [56]邱勇.建筑外墙自保温材料及体系研究.[D].浙江大学.2007.6.
    [57]高鑫.加气混凝土的水化硅酸钙结晶度与强度、收缩性能的关系.第十届全国水泥和混凝土化学及应用技术会议文摘要集.2007.
    [58]钱觉时.粉煤灰特性与粉煤灰混凝土[M].北京.科学出版社.2002.145~147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700