用户名: 密码: 验证码:
碘化褐煤、硫酸掺杂聚苯胺纤维、紫茎泽兰活性炭对产价铬离子的吸附研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水是一种最重要和最基本的自然资源,不仅是人类赖以生存的根本,而且是社会和经济持续发展的关键。我国不仅面临着水资源短缺的问题,而且水体的污染也越来越引起人们的关注和重视。铬是重要的工业原料,在生产中得到广泛的应用,而且在众多的领域没有替代的材料。铬的大量使用以及不合理的排放,造成了地表水和地下水的污染。
     通常处理含铬废水的方法有化学沉淀法,电化学法,离子交换法,膜分离法,生物法以及吸附法等,各种方法各有优缺点。吸附法广泛的被用于工业废水的处理。吸附过程操作简单,吸附剂可再生重复使用。需找廉价,吸附能力好的吸附剂用于污水处理已成为国内外研究的热点。考虑到云南省褐煤储量丰富,而磺化煤很早就用作离子交换剂用于硬水的软化,本文用云南先锋褐煤制备磺化煤吸附剂。紫茎泽兰是在云南省大量存在的一种外侵植物。紫茎泽兰生长的地方其他植物不会生长,而且紫茎泽兰传播速度很快。控制紫茎泽兰传播已成为难点,紫茎泽兰本身还有较高的木质素,从变废为宝,变害为宝的思想出发,本文用紫茎泽兰制备活性炭材料。聚苯胺以其良好的热稳定性、化学稳定性和电化学可逆性,优良的电磁微波吸收性能,潜在的溶液和熔融加工性能,原料易得,合成方法简便,还有独特的掺杂现象等特性,成为现在研究进展最快的导电高分子材料之一。国内外将聚苯胺用于重金属废水处理的研究较少,本文以快速混合的制备方法制备了硫酸掺杂聚苯胺纤维。
     本文以含六价铬离子模拟废水为研究对象,研究先锋磺化褐煤、硫酸掺杂聚苯胺纤维和紫茎泽兰活性炭三种吸附材料对水中六价铬离子的去除作用,探讨三种吸附剂对重金属离子的吸附机理。对硫酸掺杂聚苯胺纤维和紫茎泽兰活性炭吸附剂的比表面积、表面形态结构等进行了测定和分析。制备的紫茎泽兰活性炭比表面积为1184.2m2·g-1,分析认为用紫茎泽兰制备活性炭从原料到制备方法是可行的。硫酸掺杂聚苯胺纤维具有较大的比表面积(203.7m2.g-1)、较好的机械性能和较高的热学稳定性能。
     研究了先锋磺化褐煤、硫酸掺杂聚苯胺纤维和紫茎泽兰活性炭对六价铬离子吸附性能。研究包括等温吸附研究,吸附剂用量、pH值、时间、温度因素对吸附的影响。探讨了吸附剂的吸附机理,研究了六价铬离子的吸附热力学和动力学行为。结果表明:
     先锋磺化褐煤吸附Cr(Ⅵ),吸附时间1小时即可达到吸附平衡。在pH为2左右时,先锋磺化煤对Cr(Ⅵ)的去除效果较好。在pH较小时,可能涉及六价铬的还原。吸附过程中,ΔG=-4.43~-5.71kJ·mol-1,ΔH=14.16kJ·mol-1,ΔS=63.42J·K-1mol-1,说明先锋磺化煤吸附水中Cr(Ⅵ)为自发、吸热、熵增过程。Elovich方程能更好地描述Cr(Ⅵ)在先锋磺化煤上的吸附动力学行为,吸附平衡数据符合Langmuir方程,高温有利于吸附。
     硫酸掺杂聚苯胺纤维吸附Cr(Ⅵ),吸附时间1.5h即可达到吸附平衡。在pH小于3时,硫酸掺杂聚苯胺纤维对Cr(Ⅵ)的去除效果较好,去除率达到99%。对于给定的实验条件下4g·L-1的硫酸掺杂聚苯胺纤维是适宜的。吸附过程中,ΔG=-10.76kJ·mol-1~-13.13kJ·mol-1, Δ:23.87kJ·mol-1,ΔS=118.20J·K-1.mol-1,说明硫酸掺杂聚苯胺纤维吸附水中Cr(Ⅵ)为自发、吸热、熵增过程。准二级方程能更好地描述Cr(Ⅵ)在硫酸掺杂聚苯胺纤维上的吸附动力学行为,吸附平衡数据符合Langmuir方程,高温有利于吸附。颗粒内扩散方程研究表明,Cr(Ⅵ)在硫酸掺杂聚苯胺纤维上的吸附不仅仅内扩散是速率控制过程,可能还有其它类型自发进行的动力学控制过程。
     紫茎泽兰活性炭对水中Cr(Ⅵ)的最大吸附量为36.22mmg·g-1,吸附时间40min即可达到吸附平衡。在pH为2左右时,紫茎泽兰活性炭对Cr(Ⅵ)的去除效果较好。吸附过程中,△G=-0.76kJ.mol-1~-2.91kJ·mol-1,ΔH=15.02kJ·mol-1,ΔS=53.85J.K-·mol-1,说明紫茎泽兰活性炭吸附水中Cr(Ⅵ)为自发、吸热、熵增过程。准二级方程能更好地描述Cr(Ⅵ)在紫茎泽兰活性炭上的吸附动力学行为,吸附平衡数据符合Langmuir方程,高温有利于吸附。颗粒内扩散方程研究表明,六价铬在紫茎泽兰活性炭上的吸附前期由颗粒内扩散控制,后期由颗粒内扩散控制与膜扩散共同控制。
Water is one of the most important and basic natural resources. It is not only a fundament of human survival, but also is a key of social and economic sustainable development. China is not only facing the problem of water shortage, water pollution, and more and more cause for concern and attention. Chromium is an important industrial raw material in the production; there is no alternative in many areas of the material. Chromium emissions from extensive use and unreasonable emissions, resulting in surface water and groundwater pollution.
     Usually chromium-containing wastewater treatment methods are chemical precipitation, electrochemical method, ion exchange, membrane separation, biological and adsorption; various methods have advantages and disadvantages. Adsorption is widely used in the treatment of industrial wastewater emissions. Adsorption process is simple, repeated use of renewable sorbent. Finding cheap, good adsorption capacity of adsorbent for wastewater treatment has become a hot research at home and abroad. Lignite reserves is very rich in Yunnan Province, and sulphonated coal have been used as ion exchanger for softening hard water long time ago, here sulfonation lignite derived from Yunnan Xianfeng lignite was prepared and investigated. Eupatorium is a kind of weed where it grows no other plant can grow. It spreads fastly and difficulty to control in China. Activated carbon derived from Eupatorium was prepared in this research. With good thermal stability, chemical stability and electrochemical reversibility, polyaniline show good microwave absorption properties of the electromagnetic potential solution and melt processing performance, easy to obtain and simple synthesis method etc. Due to the unique phenomenon of polyaniline doping characteristics, it is now the hottest conductive polymer material. Polyaniline at home and abroad for heavy metal removal from wastewater treatment was less reported, here the sulfuric acid doped polyaniline was prepared by rapid mixing method.
     In this research, hexavalent chromium ion in wastewater was selected as the research object, sulfonated lignite, polyaniline doped with sulfuric acid and activated carbon derived from Eupatorium were used as the sorbent to remove hexavalent chromium ions in water and its adsorption mechanism were studied. The surface area and surface morphology of sulfuric acid doped polyaniline fibers and activated carbon derived from Eupatorium adsorbent were measured and analyzed. The results show that the surface area of activated carbon derived from Eupatorium is1184.19m2·g-1and the preparation method is feasible. Polyaniline doped with sulfuric acid has a large surface area (203.7m2·g-1), good mechanical properties and high thermal stability.
     The properties of sulfuric acid doped polyaniline fibers and activated carbon derived from Eupatorium in removal of hexavalent chromium ion from wastewater were studied in batch studies, including the adsorption isotherms, adsorbent dosage, pH, adsorption time and temperature. The mechanism, thermodynamics and dynamics of the hexavalent chromium ion adsorption were also studied, the results showed that:The adsorption behavavior of Cr (VI) onto the sulfonated lignite show that the time reached adsorption equilibrium is1hour. When the pH is around2, the highest removal efficiency was obtained, maybe involving the reduction of hexavalent chromium in the low pH. Thermodynamic parameters for the adsorption system were determinated, ΔG=-4.43kJ·mol-1to-5.71kJ·mol-1,ΔH=14.16kJ·mol-1, ΔS=63.42J·K-1·mol-1. The positive values of both AH and AS suggest the adsorption process is an endothermic reaction with increasing in randomness at the solid-liquid interface. AG values obtained were negative, indicated that the adsorption of Cr (VI) ion on the sulphonated lignite was a spontaneous adsorption process. The kinetics process can be described by Elovich equation. The adsorption equilibrium data are consistent with Langmuir equation. Adsorption process can be promoted at higher temperature.
     The adsorption behavavior of Cr (VI) onto the polyaniline fibers doped with sulfuric acid show that adsorption time is1.5hours to reach the equilibrium. In less than3in the pH, the highest removal efficiency was obtained.4g·L-1of adsorbent is enough for the quantitative removal of Cr (VI) ions for the given experimental conditions. Thermodynamic parameters for the adsorption system is AG=-10.76kJ·mol-1to-13.13kJ·mol-1, ΔH=23.87kJ·mol-1, AS=118.20J·K-1mol-1, which shows the adsorption of Cr (VI) ion on the sulfuric acid doped polyaniline is a spontaneous, endothermic, entropy process. Pseudo second equation can describe the adsorption of Cr (VI) in sulfuric acid doped polyaniline fibers, the adsorption equilibrium data are consistent with Langmuir equation, and adsorption process can be promoted at higher temperature. The results of using intraparticle diffusion equation show that the rate of diffusion is not only the control process; there may be other types of spontaneous dynamic control process.
     The Cr (Ⅵ) maximum adsorption capacity of eupatorium activated carbon is36.22mg·g-1Adsorption time is40minutes to reach that equilibrium. When the pH is around2, the highest removal efficiency was obtained. Thermodynamics parameters for the adsorption system is ΔG=-0.76kJ·mol-1to-2.91kJ·mol-1, AH=15.02kJ·mol-1, ΔS=53.85J·K-1·mol-1, which shows the adsorption of the Cr (Ⅵ) ion on Eupatorium activated carbon is spontaneous, endothermic Pseudo second equation can describe the Cr (Ⅵ) adsorption on the eupatorium activated carbon in dynamic behavior. The adsorption equilibrium data are consistent with Langmuir equation. Adsorption process can be promoted at higher temperature. The results of using intraparticle diffusion equation show that the adsorption of the Cr (Ⅵ) ion on Eupatorium activated carbon is controled by diffusion of particles in the early, and late is controled by diffusion of particles and film diffusion.
引文
[1]徐玉洁,张雁秋.中国水资源现状分析与进展[OL].中国科技论文在线.
    [2]中华人民共和国环境保护部,中国环境状况公报(2010)[OL].http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/201106/t20110602_211577.h tm
    [3]王绍文,姜有凤.重金属废水治理技术[M].北京:冶金工业出版社,1993:16-17.
    [4]杨忠芳,朱立,陈岳龙.现代环境地球化学[M].北京:地质出版社,1999:292-293.
    [5]V. Sarin, K. K. Pant. Removal of chromium from industrial waste by using eucalyptus bark [J]. Biores. Technol.,2006, (97):15-20.
    [6]National Toxicology Program, NTPllth ReportonCarcinogens, Rep. Carcinog., no.11,2005, pp.1-A32.
    [7]梁奇峰.铬与人体健康[J].广东微量元素科学,2006,13(2):67-69.
    [8]Fendoff S, Wielinga B. W, Hansel C M.Chromium transformations in natural environments:The role of biological and abiological processes in chromium (VI) reduction [J].Int. Geol. Rev.2000,42(8):691-701.
    [9]T. O'Brien, J. Xu, S. R. Patierno, Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest [J]. Mol. Cell. Biochem.2001,222 (1-2):173-182.
    [10]李静萍,杜亚利.铬对人体的作用[J].甘肃科技,2003,19(12):1 18-119.
    [11]王晓峰,楼建林,邢鸣鸾等.六价铬致小鼠DNA损伤及肝肾氧化应激的实验研究[J].环境科学学报,2006,26(11):1860-1864.
    [12]袁诗璞.金属毒理学知识讲座,第三讲—铬[J].电镀与涂饰,2011,30(4):56-61.
    [13]徐成斌,裴晓强,马溪平.六价铬对玉米种子萌发及生理特性的影响[J].环境保护科学,2008,34(4):44-47.
    [14]杜良,王金生.铬渣毒性对环境的影响与产出量分析[J].安全与环境学报,2004,4(2):34-37.
    [15]http://www.mep.gov.cn/zwgk/hitj/nb/2008tjnb/.
    [16]冯泽民Achromobacter sp. CH-1菌解毒铬渣的研究[D].中南大学,2009.
    [17]李家柱,林安,甘复兴.取代重污染六价铬电镀的技术及应用[J].电镀与涂饰,2004,23(5):30-33.
    [18]朱跃华.电镀废水治理技术综述[M].北京:中国环境科学出版社,1992:3.
    [19]弓瑞,吕生华,马艳芬.无铬或少铬鞣剂的研究进展[J].西部皮革,2011,33(2):32-36.
    [20]吴浩汀.制革工业废水处理技术及工程实例[M].北京:化学工业出版社,2002:4-8.
    [21]U.S. EPA,2000. In Site Treatment of Soil and Groundwater Contaminated with hromium.EPA/625/R-00/005.
    [22]赵堑,柴立元,王云燕.水环境中铬的存在形态及迁移转化规律[J].工业安全与环保,2006,32(8):1-3.
    [23]Sengupta, A. K., Clifford, D. A. Important Process Variables in Chromate Ion Exchange [J]. Environ. Sci. Tech.1986,20 (2):149-55.
    [24]CISSO KO Naman,周密,张珍等.HA对铁屑还原去除水中六价铬的影响[J].浙江大学学报(理学版),2009,36(8):463-469.
    [25]谢少雄,黄功浩,黄美燕.铁屑法处理电镀含铬废水的试验及应用[J].工业水处理,2003,23(6):28-30.
    [26]Mirbagheri, S. A., Hosseini, S. N. Pilot plant investigation on petrochemical wastewater treatment for the removal of copper and chromium with the objective of reuse[J]. Desalination,2004,171(1):85-93.
    [27]李雅,张增强,唐次来等.Fe0去除地下水中六价铬的研究[J].中国农业大学学报,2011,16(2):160-164.
    [28]袁诗璞.重议含六价铬废水的钡盐法处理[J].涂装与电镀,2011,(2):40-43.
    [29]E. Barrado, F. Prieto, M. Vega, F. Fernandez-Polanco. Optimization of the operational variables of a medium-scale reactor for metal-containing wastewater purification by ferrite formation [J]. Water Res.,1998,32 (10):3055-3061.
    [30]夏璐.鲁栋梁,何正旭.铁氧体法处理废水中Cr6+,Cu2+的实验研究[J].环境科学与技术,2009,32(6):52-55.
    [31]卢炯元,王三反.铁氧体法处理含铬废水的研究[J].兰州交通大学学报,2009,28(3):155-158.
    [32]常军霞,王三反,王挺等.化学共沉淀-铁氧体法对含铬废水的处理工艺[J].净水技术,2009,29(6):36-39.
    [33]王章霞,黄瑞敏,林德贤.微电解法在电镀混合废水处理中的应用及研究[J].电镀与涂饰,2005,24(9):46-48.
    [34]Olmez, T. The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology [J]. J. Hazard. Mater.2009,162(2-3):1371-1378.
    [35]唐树和,徐芳,王京平.离子交换法处理含Cr(Ⅵ)废水的研究[J].应用化工,2007,36(1):22-24.
    [36]沈秋仙,舒增年.D201x4树脂吸附铬(Ⅵ)的研究[J].化学研究与应用,2002,14(4):463-466.
    [37]Edebali S., Pehlivan E., Evaluation of Amberlite IRA96 and Dowex 1×8 ion-exchange resins for the removal of Cr(VI) from aqueous solution[J]. Chem. Eng. J.2010,161 (1-2):161-166.
    [38]吴克明,曹建保.离子交换树脂处理钢铁钝化含铬废水的研究给水排水动态[J].2005,1(1):29-31.
    [39]邵刚.膜法水处理技术(第二版)[M].北京:冶金工业出版社,2000:1-2.
    [40]Pugazhenthi, G., Sachan, S., Kishore, N. et al. Separation of chromium (VI) using modified ultrafiltrationcharged carbon membrane and its mathematical modeling [J]. J. Membr. Sci.2005,254(1-2):229-239.
    [41]Dzyazko, Y. S., Mahmud, A., Lapicque, F. et al. Cr (VI) transport through ceramic ion-exchange membranes for treatment of industrial wastewaters [J]. J. Appl. Electrochem.2007,37(2):209-217.
    [42]Aroua, M. K., Zuki, F. M., Sulaiman, N. M. Removal of chromium ions from aqueous solutions by polymer enhanced ultrafiltration [J]. J. Hazard. Mater.2007,147(3):52-758.
    [43]Muthukrishnan, M., Guha, B. K. Effect of pH on rejection of Cr (Ⅵ) by Nanofiltration [J]. Desalination,2008,219 (1-3):171-178.
    [44]Bohdziewicz, J. Removal of chromium ions (VI) from underground water in the hybrid complexation-ultrafiltration process [J]. Desalination,2000,129(3):227-235.
    [45]张卫东,马竞男,任钟旗等.大块液膜技术处理含六价铬废水[J].电镀与涂饰,2007,26(12):31-33.
    [46]马文静,程迪,胥维昌.液膜分离技术处理含Cr6+废水的研究[J].化工环保,2006,26(2):103-106.
    [47]Djane, N. K., Ndung'u, K., Johnsson, C. et al. Chromium speciation in natural waters using serially connected supported liquid membranes[J]. Talanta,1999,48(5):1121-1132.
    [48]瞿建国,申如香,徐伯兴等.微生物法处理含铬(Ⅵ)废水的研究[J].化工环保,2005,25(1):1-4.
    [49]陈建春,林玉满,陈祖亮.六价铬还原菌的筛选及其还原特性研究[J].福建师范大学学报(自然科学版),2010,26(2):78-82.
    [50]Laxman R S, More S. Reduction of hexavalent chromium by Streptomyces griseus [J]. Miner. Eng.2002,15(11):831-837.
    [51]Romanenko V L.Patent Specification (Ⅱ) 1475369, the patent office London,1997.
    [52]吴淼,汤岳琴,于萍等.Cr(Ⅵ)抗性菌株的筛选及其Cr(Ⅵ)去除特性研究[J].岩石矿物学杂志,2009,28(6):520-526.
    [53]Allen, S. J., Gan, Q., Matthews, R., & Johnson, P. A. Kinetic modeling of the adsorption of basic dyes by kudzu [J]. J. Colloid Interface Sci. 2005,286(1):101-109.
    [54]Ravikumar, K., Deebika, B., & Balu, K. Decolourization of aqueous dye solutions by a novel adsorbent:Application of statistical designs and surface plots for the optimization and regression analysis [J]. J. Hazard. Mater.2005,122 (1-2):75-83.
    [55]Hashem, A., Akasha, R. A., Ghith, A. et al. Adsorbent based on agricultural wastes for heavy metal and dye removal:A review [J]. Energy Edu. Sci. Technol.2007,19(2):69-86.
    [56]Chingombe, P., Saha, B., Wakeman, R. J. Surface modification and characterisation of a coal-based activated carbon [J]. Carbon,2005, 43(15):3132-3143.
    [57]Babel, S., Kurniawan, T. A. Low-cost adsorbents for heavy metals uptake from contaminated water:a review[J]. J. Hazard. Mater.2003, 97(1-3):219-243.
    [58]Barkat, M., Nibou, D., Chegrouche, S. et al. Kinetics and thermodynamics studies of chromium (VI) ions adsorption onto activated carbon from aqueous solutions [J]. Chem. Eng. Process.2009, 48(1):38-47.
    [59]Ahmed El Nemr, Azza Khaled, Ola Abdelwahab et al.Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed [J]. J.Hazard.Mater.2008,152(1): 263-275.
    [60]Hong Zhang, Yi Tang, Dongqing Cai et al.Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon:Equilibrium and kineticstudies[J]. J. Hazard. Mater. 2010,181(1-3):801-808.
    [61]Lee, H. S., Volesky, B. Interaction of light metals and protons with seaweed biosorbent [J]. Water Res.1997,31(12):3082-3088.
    [62]Basso, M. C., Cerrella, E. G., Cukierman, A. L. Lignocellulosic materials as potential biosorbents of trace toxic metals from wastewater [J]. Ind. Eng. Chem. Res.2002,41(15):3580-3585.
    [63]Park, D., Yun, Y. S., Jo, J. H. et al.Biosorption process for treatment of electroplating wastewater containing Cr (VI):Laboratory-scale feasibility test [J]. Ind. Eng. Chem. Res.2006,45(14):5059-5065.
    [64]Ahalya,N.,Ramachandra,T.V., & Kanamadi, R. D. Biosorption of heavy metals[J]. Res. J. of Chem. Environ.2003,7(4):71-79.
    [65]李会东,周建红,张大为等.水体中六价铬生物吸附与解吸附条件与特性[J].湖南科技大学学报(自然科学版),2010,25(2):122-124.
    [66]杨剑梅,高慧,李庭等.稻草秸秆对水中六价铬去除效果的研究[J].环境科学与技术,2009,32(10):78-82.
    [67]Saroj S. Baral, Surendra N. Das, Pradip Rath et al. Chromium (Ⅵ) removal by calcined bauxite [J]. Biochem. Eng. J.2007,34(1):69-75.
    [68]吕晓军,何婵.超细粉煤灰对含铬废水的吸咐性能和机理研究[J].煤矿环保,2008,14(3):84-87.
    [69]Srivastava, S. K., Pant, N., & Pal, N. Studies on the efficiency of a local fertilizer waste as a low cost adsorbent[J]. Wat. Res.1987,21. (11): 1389-1394.
    [70]李鑫金,赵景联.微波煅烧活化赤泥处理含铬废水的研究[J].轻金属,2005,9:16-19.
    [71]孙霞,吴益梅,王琪瑶.碱溶粉煤灰对废水中六价铬的吸附试验研究[J].煤炭科学技术,2010,38(10):124-128.
    [72]陈芳艳,钟宇,唐玉斌.炉渣去除废水中六价铬[J].化工环保,2008,28(3):209-213.
    [73]Vinod K. Gupta, Arshi Rastogi, Arunima Nayak. Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material [J]. J. of Colloid Interface Sci. 2010,342(1):135-141.
    [74]谢志刚,吉芳英,邱雪敏等.柑橘渣吸附剂对六价铬的吸附性能[J].重庆大学学报,2009,32(2):192-196.
    [75]程永华,闰永胜,王智博.壳聚糖高效吸附处理含铬废水的研究[J].华中技大学学报(城市科学版),2005,22(4):51-53.
    [76]Z. Sadaoui, S. Hemidouche, O. Allalou. Removal of hexavalent chromium from aqueous solutions by micellar compounds[J]. Desalination,2009,249(2):768-773.
    [77]曹春艳.改性膨润土吸附处理含六价铬废水的研究[J].化学工程师,2008,157(10):43-45.
    [78]Udaybhaskar, P., Iyengar, L., & Rao, A. V. S. P. Cr (Ⅵ) interaction with chitosan [J]. J. Appl. Polym. Sci.1990,39(3):739-747.
    [79]Li Tang, TaoWu, Jinqing Kan. Synthesis and properties of polyaniline-cobalt coordination polymer[J]. Synth.Met.2009,159(15): 1644-1648.
    [80]Xin-Gui Li, Rui Liu, and Mei-Rong Huang. Facile Synthesis and Highly Reactive Silver Ion Adsorption of Novel Microparticles of Sulfodiphenylamine and Diaminonaphthalene Copolymers[J]. Chem. Mater.2005,17(22):5391-5602.
    [81]Xin Gui Li, Mei Rong Huang, Sheng Xian Li. Facile synthesis of poly (1,8-diaminonaphthalene) microparticles with a very high silver-ion adsorbability by a chemical oxidative polymerization [J]. Acta Mate. 2004,52(18):5363-5374.
    [82]孙康,蒋剑春,李静等.紫茎泽兰制备活性炭及其性质[J].林业科学,2010,46(3):178-182.
    [83]夏洪应,彭金辉,杨坤彬等.微波辐射紫茎泽兰制备优质活性炭的研究[J].离子交换与吸附,2008,24(1):16-24.
    [84]L. Zhang, M. Wan. Self-assembly of polyaniline—from nanotubes to hollow microspheres [J]. Adv. Funct. Mater.2003,13(10):815-820.
    [85]P. Rannou and M. Nechtschein.Aging Studies on Polyaniline: Conductivity and Thermal Stability [J]. Synth Met.1997,84(1-3): 755-756.
    [86]Guicun Li, Zhikun Zhang, Synthesis of dendritic polyaniline nanofibers in a surfactant gel [J]. Macromolecules,2004,37(8):2683-2685.
    [87]Sofia Trakhtenberg, Yelda Hangun-Balkir, John C. Warner et al.Photo-cross-linked immobilization of polyelectrolytes for enzymatic construction of conductive nanocomposites [J]. J. Am. Chem. Soc. 2005,127(25):9100-9104.
    [88]Wen guang Li, Q. X. Jia, Hsing Lin Wang. Facile synthesis of metal nanoparticles using conducting polymer colloids [J]. Polymer,2006, 47(1):23-26.
    [89]Hesheng Xia, Qi Wang. Ultrasonic irradiation:A novel approach to prepare conductive polyaniline/nanocrystalline titanium oxide composites [J]. Chem. Mater.2002,14(5):2158-2165.
    [90]Foley Henry C. Carbogenic Molecule Sieves:Synthesis, properties and applications [J]. Microporous Mater.1995,4(6):407-433.
    [91]卢璐.石墨纳米纤维作质子交换膜燃料电池催化剂载体的研究[D].大连交通大学,2007.
    [92]Miyamoto J, Kanoh H., Kaneko K. The addition ofmesoporisty to activated carbon fibers by a simple reaction process [J]. Carbon,2005, 43(4):855-857.
    [93]Barrett E Joyner L GHalenda P P. The determination of pore volumes and area distributions in porous substances [J]. J. Am. Chem. Soc.1951, 73(1)373-380.
    [94]张超,高才,鲁雪生等.多孔活性炭孔径分布的表征[J].离子交换与吸附,2006,22(1):187-192.
    [95]Nguyen C, Do D. D. Preparation ofearbon molecule sieve from macadamia nut shells[J]. Carbon,1995,33(12):1717-1725.
    [96]Rouquerol, J., Avnir, D., Fairbfidge, C. W. et al. Recommendations for the characterization of porous solids [J]. Pure AppL. Chem.1994, (66): 1739-1758.
    [97]I. Langmuir, The constitution and fundamental properties of solids and liquids [J]. J. Am. Chem. Soc.1916,38:2221-2295.
    [98]H. M. F. Freundlich. U" ber die adsorption in losungen, Zeitsch. Phys. Chem.1906,57(A):385-470.
    [99]K. W. Kolasniski. Surface Science, Wiley, Chister, UK (2001).
    [100]Ajay Kumar Meena, K. Kadirvelu, G. K. Mishra et al.Adsorptive removal of heavy metals from aqueous solution by treated sawdust (Acacia arabica) [J]. J. Hazard. Mater.2008,150(3):604-611.
    [101]Allergens, S. About the theory of so-called adsorption of soluble substances, Kungliga Svenska Vetenskapsakademiens[J]. Hcmdlingar, 1898, Band 24, (4):1-39.
    [102]W. Rudzinski, W. Plazinski. Kinetics of solute adsorption at solid/solution interfaces:a theoretical development of the empirical pseudo-first and pseudo second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport [J]. J. Phys. Chem. B 2006,110(33):16514-16525.
    [103]Y.S. Ho, G. McKay. The kinetics of sorption of divalent metal ions onto sphagnum moss peat [J].Water Res.2000,34(3):735-742.
    [104]S. Azizian. Kinetic models of sorption:a theoretical analysis [J]. J. Colloid Interface Sci.2004,276(1):47-52.
    [105]S. H. Chien, W. R. Clayton. Application of Elovich equation to the kinetics of phosphate release and sorption on soils [J]. Soil. Sci. Soc. Am. J.1980,44(2):265-268.
    [106]Weber, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution [J]. J. Sanit. Eng. Div. ASCE,1963,89(2):31-60
    [107]李克斌,刘维屏.重金属离子在腐植酸上吸附的研究[J].环境污染与防治,1997,19(1):9-11.
    [108]Eligwe, C. A. and Okolue B. N. Adsorption of iron (Ⅱ) by a Nigerian brown coal [J]. Fuel,1994,73(4):569-572.
    [109]张怀成,王在峰,李建义.褐煤经磺化及碱化处理对重金属离子的吸附性能研究[J].环境化学,1999,18(5):482-487.
    [110]A. K. Bhattacharya, S. N. Mandal, S. K. Das. Adsorption of Zn (II) from aqueous solution by using different adsorbents [J]. Chem. Eng. J. 2006,123(1-2):43-51.
    [111]邹卫华.锰氧化物改性过滤材料对铜和铅离子的吸附研究[D].湖南大学,2006.
    [112]Loukidou, M. X., Zouboulis, A. I., Karapantsios, T. D. et al. Equilibrium and kinetic modeling of chromium (Ⅵ) biosorption by Aeromonas caviae[J]. Colloids Surf. A:Physicochem. Eng. Aspects. 2004,242(1-3):93-104.
    [113]Arselan, G., and Pehlivan, E. Batch removal of chromium (Ⅵ) from aqueous solution by Turkish brown coal [J]. Bioresour. Technol.2007, 98(15):2836-2845.
    [114]S. S. Banarjee, M. V. Joshi, R.V. Jayaram. Removal of Cr (Ⅵ) and Hg (II) from aqueous solutions using fly ash and impregnated fly ash [J]. Sep. Sci. Technol.2004,39(7):1611-1629.
    [115]M. Dakiky, M. Khamis, M. Manassra et al. Selective adsorption of Chromium(Ⅵ) in industrial waste water using low cost abundantly available adsorbents [J]. Adv. Environ. Res.2006,6(4):533-540.
    [116]V. K. Singh, P. N. Tiwari. Removal and recovery of chromium (Ⅵ) from industrial wastewater [J]. J. Chem. Technol. Biotechnol.1997, 69(3):376-382.
    [117]S. Mor, K. Ravindra, N. R. Bishnoi. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal [J]. Bioresour. Technol.2007,98(4):954-957.
    [118]D. Mohan, K. P. Singh, V. K. Singh. Removal of Hexavalent Chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth [J]. Ind. Eng. Chem. Res.2005,44(4):1027-1042.
    [119]C. Namasivayam, D. Sangeetha. Removal of chromium (Ⅵ) by ZnCl2 activated coir pith carbon[J]. Toxicol. Environ. Chem.2006,88 (2): 219-233.
    [120]Z. C. Di, J. Ding, X. J. Peng et al. Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles[J]. Chemosphere, 2006,62(5):861-865.
    [121]马利,汤琪.导电高分子材料聚苯胺的研究进展[J].重庆大学学报,2002,25(2):124-127.
    [122]李新贵,窦强,黄美荣.聚苯胺及其复合物对重金属离子的高效吸附性能[J].化学进展,2008,20(2):227-232.
    [123]Potsangbam Albino Kumara, Saswati Chakraborty, Manabendra Rayb. Removal and recovery of chromium from wastewater using short chain polyaniline synthesized on jute fiber [J]. Chem. Eng. J.2008, 141(1-2):130-140.
    [124]Majid Riahi Samania, Seyed Mehdi Borgheib, Ali Oladc et al. Removal of chromium from aqueous solution using polyaniline-poly ethylene glycol composite[J]. J. Hazard. Mater.2010,184(1-3): 248-254.
    [125]Yas ar Andelib Aydin, Nuran Deveci Aksoy. Adsorption of chromium on chitosan:Optimization, kinetics and thermodynamics [J]. Chem. Eng. J.2009,151(1-3):188-194.
    [126]Jun Fang, Zhiming Gu, Dianchen Gang et al. Cr (VI) Removal from Aqueous Solution by Activated Carbon Coated with Quaternized Poly (4-vinylpyridine)[J]. Environ. Sci. Technol.2007,41(13):4748-4753.
    [127]Peng Yuan, Mingde Fana, Dan Yang et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr (VI)] from aqueous solutions[J]. J. Hazard. Mater.2009,166(2-3): 821-829.
    [128]Jingyi Qiu, Ziyue Wang, Huibo Li et al. Adsorption of Cr (VI) using silica-based adsorbent prepared by radiation-induced grafting [J]. J. Hazard. Mater.2009,166(1):270-276.
    [129]夏忠敏,金星,刘昌权.紫茎泽兰在贵州的发生危害情况及防除对策[J].植保技术与推广,2002,22(12):34-35.
    [130]何美军.紫茎泽兰的研究进展[J].黑龙江生态工程职业学院学报,2006,19(5):9-11.
    [131]陶正钢.紫茎泽兰对草地危害及防除对策[J].四川畜牧兽医,2002,(6):25-26.
    [32]郝立勤.关于加强控制紫茎泽兰疯狂蔓延危害的建议[J].科技发展研究.2001(4):23-25.
    [133]向业勋.紫茎泽兰的分布、危害及防除意见[J].杂草科学,1991,(4):10-11.
    [134]周俗,谢永良.紫茎泽兰的防治对策和综合防治措施[J].试验研究,1999,(12):24-27.
    [135]鲁萍,桑卫国,马可平.外来入侵种紫茎泽兰研究进展与展望植物生态学报,2005,29(6):1029-1037.
    [136]孙康,蒋剑春,李静等.紫茎泽兰制备活性炭及其性质[J].林业科学,2010,46(3):178-182.
    [137]炭素材料学会.活性炭基础与应用[M].北京:中国林业出版社,1984:210-216.
    [138]吴新华.活性炭生产工艺原理与设计[M].北京:中国林业出版社,1994:1-5.
    [139]H. Tamon, M. Okazaki. Influence of acidic surface oxides of activated carbon on gas adsorption characteristics [J]. Carbon,1996,34(6): 741-746.
    [140]Atia, A. A., Donia, A. M., Yousif, A. M. Removal of some hazardous heavy metals from aqueous solution using magnetic chelating resin with iminodiacetate functionality [J]. Sep. Purif. Technol.2008,61(6): 348-357.
    [141]Guibal, E., Milot, C., Tobin, J. M. Metal-anion sorption by chitosan beats:equilibrium and kinetic studies [J]. Ind. Eng. Chem. Res.1998, 37(4):1454-1463.
    [142]J. Anandkumar, B. Mandal. Removal of Cr (VI) from aqueous solution using Bael fruit (Aegle marmelos correa) shell as an adsorbent [J]. J. Hazard. Mater.2009,168(2-3):633-640.
    [143]K. Mohanty, M. Jha, B. C. Meikap et al. Removal of chromium (VI) from dilute aqueous solutions by activated carbon developed from Terminalia arjuna nuts activated with zinc chloride[J]. Chem. Eng. Sci. 2005,60(11):3049-3059.
    [144]M. Owlad, M. K. Aroua, W. A. W. Daud, Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine, Bioresour. Technol.2010,101(14):5089-5103.
    [145]F. Haghesresht, G. Lu, Adsorption characteristics of phenolic compounds onto coal-reject-derived adsorbents [J]. Energy Fuels, 1998,12(6):1100-1107.
    [146]O". Yavuz, Y. Altunkaynak, F. Gu"zel, Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite [J]. Water Res.2003,37(4):948-952.
    [147]Altundogan, H. S., Bahar, N., Mujde, B. et al. The use of sulphuric acid carbonization products of sugar beet pulp in Cr (VI) removal [J]. J. Hazard. Mater.2007,144(1-2):255-264.
    [148]Liu, S. X., Chen, X., Chen, X. Y. et al. Activated carbon with excellent chromium (VI) adsorption performance prepared by acid-base surface modification [J]. J. Hazard. Mater.2007,141(1): 315-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700