用户名: 密码: 验证码:
有线电视宽带综合业务网的服务质量保证机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有线电视网拥有丰富的剩余带宽和较高的用户覆盖率,以有线电视网络为基础的HFC宽带接入系统逐渐成为适合我国国情的宽带接入方式。随着现代网络技术、通信技术和多媒体技术的飞速发展,有线电视网不断向宽带综合业务网络平台演进,为广大家庭用户提供数据、语音、图像、视频等宽带多媒体信息的高速传送。宽带综合业务特有的业务属性对网络传输能力具有特定要求,需要网络采取相应的措施对其服务质量进行控制和保证。网络为各种宽带综合业务所提供的服务质量将影响用户的满意程度,对有线电视宽带综合业务网的推广和发展起着决定性作用。传统的有线电视网仅开展广播电视业务,在为交互式多媒体宽带综合业务提供服务质量保证方面的研究和经验相对缺乏。因此,对有线电视宽带综合业务网络的服务质量保证机制进行研究具有重要的实际意义,寻求高效、实用的服务质量保证机制以尽量满足各种综合业务的服务质量要求是有线电视宽带综合业务网必须解决的重要课题之一。
    本文在总结和借鉴国内外有关HFC宽带接入系统和网络服务质量研究成果的基础上,针对有线电视网的自身特点,对有线电视宽带综合业务网的服务质量体系结构和服务质量保证机制进行了深入研究,并提出了一些先进、实用且可靠的新方法。本文的主要研究内容和创造性成果如下:
    (1)对有线电视网的当前发展情况和未来演进方向进行了研究。随着HFC宽带接入技术和宽带IP网络技术的飞速发展,现代有线电视网正不断向宽带综合业务网络平台演进。我国拥有世界第一大有线电视网,将有线电视网发展为宽带综合业务网不仅符合我国现阶段国情,具有现实意义,而且切实可行。
    (2)对有线电视宽带综合业务网中数据业务的服务质量保证机制进行了深入研究。分析了数据业务传输控制协议TCP的流量和拥塞控制机制,论述了有线电视宽带综合业务网的网络非对称特性、上行带宽资源分配策略和上行数据传输调度算法对TCP协议性能和数据业务服务质量造成的影响,对提高非对称网络中数据业务服务质量的方法进行了探讨。提出了基于积极授权的上行信道带宽分配机制和基于下行数据传输速率轮询的上行数据传输调度机制,实验证明本文提出的新机制提高了有线电视宽带综合业务网数据业务的有效吞吐量,为数据业务的服务质量提供了保证。
    (3)对有线电视宽带综合业务网中实时业务的服务质量保证机制进行了深入研究。分析了现有服务质量体系结构和服务质量保证机制存在的问题和不足之处,
    
    提出了适合有线电视宽带综合业务网自身特点的分段服务质量体系结构,在此基础上对资源预留机制进行了改进。论述了在有线电视宽带综合业务网中对各种宽带综合业务实施接纳控制的必要性,并提出了一种基于时延判决的实时业务接纳控制机制。
    (4)对有线电视宽带综合业务网的故障恢复能力进行了深入研究。分析了网络故障恢复状态下电缆调制解调器的初始化测距过程,对网络的故障恢复过程进行了系统建模,并运用排队论方法对网络完成故障恢复的平均时间进行了理论分析,提出了提高有线电视宽带综合业务网故障恢复能力的相应措施。
    (5)对有线电视宽带综合业务网上行信道的噪声干扰及其解决方案进行了研究。分析了上行信道的噪声干扰及其给网络服务质量造成的影响,提出了一种HFC宽带接入系统新方案。该方案采用分级的星型网络结构,并通过集中器将用户端设备与系统核心干线隔离,不仅有效地解决了上行信道的噪声漏斗效应问题,同时提高了HFC系统上行信道的容量和可靠性,为有线电视网开展各种宽带综合业务和网络的服务质量提供了保障。
CATV network has large excess bandwidth and high penetration to the home. The HFC broadband access system based on CATV network is becoming a main broadband access mode according with the situation of our country. With the fast development of modern network, communication and multimedia technologies, CATV network is evolving to a broadband integrated service network plant, and provides high speed transmission service of data, voice, image and video for residential subscribers. Broadband integrated services have special request to the transmission ability of network because of their special service property. Networks need adopting corresponding methods to control and guarantee the quality of these services. Quality of service (QoS) provided by the network for the broadband integrated services will determine whether the subscribers be satisfied or not and affect the growth of CATV broadband integrated service network. Traditional CATV networks only provided broadcasting TV program. Researches and experience on how to provide QoS guarantee for interactive multimedia broadband integrated services are comparatively lacking. Thus, study on the mechanism of QoS guarantee for CATV broadband integrated service network has important practical signification. It is also an important problem which must be solved in the CATV broadband integrated service network.
    In this dissertation, we gave a thorough study on the QoS architecture and mechanism of QoS guarantee for CATV broadband integrated service network, based on predecessor's researching results related to HFC broadband access system and network's QoS. And we proposed some advanced, reliable and applicable methods. The main contents and creative results of this paper are given as follows:
    (1) Giving some analysis and study on CATV network and its evolutionary trends. With the fast development of HFC broadband access and broadband IP network technology, modern CATV network is developing to a broadband integrated service network plant. We have a greatest CATV network in the world. Developing CATV broadband integrated service network is according with the situation of our country, and has practical signification and feasibility.
    (2) Giving a thorough research on mechanism of QoS guarantee for data service in CATV broadband integrated service network. TCP is the main protocol for controlling
    
    the transmission of data service. We analyzed the traffic and congestion control of TCP, and how its performance and the QoS of data service are affected by the asymmetric character, upstream bandwidth allocation mechanism and upstream data transmission scheduling mechanism in the CATV broadband integrated service network. Methods to improve the QoS of data service in asymmetric networks are discussed. We proposed new upstream bandwidth allocation mechanism—Active Grant and upstream data transmission scheduling mechanism—Poll based on downstream data transmission rate. They improve the throughput and guarantee the QoS of data service in the CATV broadband integrated service network. The experimental results are showed in this paper and proved their function.
    (3) Giving deeply study on mechanism of QoS guarantee for real-time service in CATV broadband integrated service network. Based on analyzing the problem and limitation of proposed architecture and mechanism of QoS guarantee, we proposed a segment QoS architecture for the CATV broadband integrated service network, and improved the mechanism of reserving the network resource. The necessity of admission control to the broadband integrated service is discussed, and an admission control algorithm is proposed for the CATV broadband integrated service network.
    (4) Giving thoroughly research on the fault recovery ability of CATV broadband integrated service network. A mathematical model is built for the initialization ranging process of cable modem, while the network undergoing fault recovery. We emphasized on analyzing the average time of network completely recovering from fault. We proposed some methods to improve the faul
引文
[1] P.W. Shumate, What's happening with fiber to home, Optics & Photonics News, 1996(2): 16-21.
    [2] 韦乐平, 接入网, 北京:人民邮电出版社, 1997. 7
    [3] Alcatel Telecom, Planning of competitive networks, Review, April, 1995.
    [4] 江澄. 奔向21世纪的中国广播电视. 广播电视数字技术专集. 电子工业出版社.1999.
    [5] S.L. Wai, etal. Hybrid fiber-coax system, SPIE Proceedings, Oct. 1995, pp.23-24.
    [6] T. Kwok, ATM: The new paradigm for Internet, Intranet and residential broadband services and applications, New York: Prentice-Hall, 1998.
    [7] ATM Forum Technical Committee, ATM User-Network Interface V3.1, Upper Saddle River, New York: Prentice-Hall, 1995.
    [8] ATM Forum Technical Committee, Traffic management specification V4.0, Mountain View, CA: ATM Forum, 1996.
    [9] J.I Jung, Quality of service in telecommunications-Part I: Proposition of a QoS framework and its application to B-ISDN, IEEE Communication Magazine, Aug. 1996, 34(8): 108-111.
    [10] G.D. Stamoulis, M.E. Anagnoston, A.D. Georgantas, Traffic models for ATM networks: A survey, Computer Communications, June 1994, 17(6): 428-438.
    [11] http://www.davic.org
    [12] http://www.dvb.org
    [13] IEEE, IEEE Project 802.14/a Draft 3 Revision 1, IEEE 802.14 Committee, Apr. 1998.
    [14] MCNS, Data-Over-Cable Service Interface Specifications 1.0 , MCNS Consortium, 1997.
    [15] MCNS, Data-Over-Cable Service Interface Specifications 1.1 , MCNS Consortium, 1999.
    [16] MCNS, Data-Over-Cable Service Interface Specifications2.0 , MCNS Consortium, 1999.
    [17] 田逢春、吴资玉、龚波等译, 电缆数据传输业务接口规范-DOCSIS射频接口规范, 北京: 中国物资出版社, 2001.
    [18] George Abe, Residential broadband, 北京: 电子工业出版社, 1998.
    [19] J. Dail, M. Dajer, Li Chia-Chang, et al, Adaptive digital access protocol: A MAC protocol for multi-service broadband access networks. IEEE Communications Magazine, Mar. 1996, pp.104-113.
    [20] C. Bisdikian, B. McNeil, R. Norman, et al, MLAP: A MAC level access protocol for the HFC 802.14 network, IEEE Communications Magazine, Mar. 1996, pp. 114-121.
    
    
    [21] M. Laumbach, K. Nochols, The upstream protocol for HFC networks Revision2, http://www.workingdog.com , 1996.
    [22] P.V. Grinsven, N. Golmie, L. Gun, et al, An example of a MAC based on the convergence agreements (CMAC), http://www.workingdog.com, 1996.
    [23] W.M. Yin, Y.D. Lin, Statistically optimized minislot allocation for initial and collision resolution in hybrid fiber coaxial networks, IEEE JSAC, 2000. 18(9): 1764-773.
    [24] Y.D. Lin, C.Y. Huang, W.M. Yin, Allocation and scheduling algorithm for IEEE802.14 and MCNS in hybrid fiber coaxial networks, IEEE Trans. on Broadcasting, 1998, 44(4): 427-435.
    [25] N. Golmie, Y. Saintillan, D. Su, A review of contention resolution algorithms for IEEE802.14 networks, http://www.corraoe.org/pubs/surveys, First Quarter 1999.
    [26] D. Sala, J.O. Limb, Comparison of contention resolution algorithms for a cable modem MAC protocol. International Zurich Seminar on Broadband Communications, Zurich, Switzerland, Feb. 1998.
    [27] D. Sala, J.O. Limb, Scheduling disciplines for HFC systems: What can we learn from ATM scheduling. Third International Workshop in Community Networking, Antwerpen (Belgium), May 1996, pp. 13-18.
    [28] M. Ivannovich, M. Zukerman, Evaluation of priority and scheduling scheme for an IEEE802.14 MAC protocol loaded by real traffic, Proceedings of IEEE INFOCOM'98, San Francisco, California, 1998: 1384-1392.
    [29] M. Droubi, N. Idirene, C. Chen, Dynamic bandwidth allocation for the HFC DOCSIS MAC protocol, Proceedings Ninth International Conference on Computer Comnmnications and Networks. Las Vegas, Nevada, 2000: 54-60.
    [30] C. Bisdikian, M.D. Corner, D.H. Su, A priority scheme for the IEEE802.14 MAC protocol for hybrid fiber-coax networks. IEEE/ACM Trans. on Networking, Apr. 2000, 8(2): 200-211.
    [31] S.M. Ju, G.G. Bi, The utilization of the redundancy bandwidth of upstream channel in HFC network, IEEE transactions on broadcasting, 1998, 44(2): 216-221.
    [32] R. Braden, D. Clark, S. Shenker, Integrated service in the Internet architecture: An overview, IETF RFC 1663, June 1994.
    [33] S. Blake, D. Black, M. Carlson, et al, An architecture for differentiated services, IETF RFC 2475, July, 1998.
    [34] S. Shenker, C. Partridge, R. Guerin, Specification of guaranteed quality of service, IETF RFC 2212, Dec. 1997.
    [35] J. Wroclawski, Specification of the controlled-load network element service, IETF RFC 2211, Sep. 1997.
    
    
    [36] R. Braden, L. Zhang, S. Berson, et al, Resource Reservation Protocol (RSVP)-Version 1, Function specification, IETF RFC 2205, September 1997.
    [37] F. Baker, R. Braden, Resource Reservation Protocol (RSVP)-Version 1, Applicability Statement, IETF RFC 2208, Sep. 1997.
    [38] K. Nichol, V. Jacobson, L. Zhang, et al. A two-bit differentiated services architecture for the Internet, IETF RFC 2638, July 1997.
    [39] D. Clark, W. Fang, Explicit allocation of best-effort packet delivery service, IEEE/ACM Transaction on Networking, 1998, 6(4): 362-373.
    [40] G. Harry, K. Perros, M. Elsayed, Call admission control schemes: a review, IEEE Comm. Magazine, Nov. 1996. pp. 82-91
    [41] S. Jamin, P.B. Danzig, S. Shenker, et al. A measurement-based admission control algorithm for integrated services packet networks, ACM SIGCOMM'95, Sept.1995.
    [42] M. Grossglauser, T. David, A framework for robust measurement-based admission control, ACM SIGCOMM'97, 1997. pp. 237-248
    [43] S. Jamin, Comparison of measurement-based admission control algorithms for controlled-load service, IEEE INFOCOM'97, 1997. pp. 973-989.
    [44] K. Liu, D.W. Peter, C. Braun, A measurement-based CAC strategy for ATM networks, ICC'97, 1997. pp. 1714-1718.
    [45] M. Zukerman, An adaptive connection admission control scheme for ATM networks, ICC'97, 1997. pp. 1153-1157.
    [46] 叶栋、高宏、丁炜, 一种新型的基于测量的 CAC方法, 北京邮电大学学报, 2002, 25(2): 88-92.
    [47] J. Heinanen, R. Guerin, A single rate three color marker, Internet Draft, draft-heinanen-diffsev- srtcm-01, May 1999.
    [48] J. Heinanen, R. Guerin, A two rate three color marker. Internet Draft, draft-heinanen-diffsev- trtcm-01, May 1999.
    [49] S. Floyd, V. Jacobson, Random early detection gateways for congestion avoidance, IEEE/ACM Transaction on Networking, Aug. 1993. 1(4): 397-413.
    [50] W. Feng, D. Kandlur, D. Saha, et al, A self-configure RED gateway, IEEE INFOCOM'99, March, 1999.
    [51] D. Lin, R. Morris, Dynamics of random early detecting. ACM SIGCOMM'97, Cannes, France, Oct. 1997 pp.127-137.
    [52] V. Lakshman, A. Neidhardt, J. Ott, The drop from front strategy in TCP over ATM and its interworking with other control features, IEEE INFOCOM'96, 1996. pp.1242-1250.
    
    
    [53] E. Hahne, R. Gallager, Round robin scheduling for fair flow control in data communications networks, IEEE INFOCOMM'86, 1986.
    [54] M. Shreedhar, G. Varghese, Efficient fair queuing using deficit round robin. IEEE/ACM Transaction on Networking, June, 1996. pp. 375-385
    [55] L. Zhang, Virtual clock: a new traffic control algorithm for packet switching networks. Proc. ACM SIGCOMM'90, 1990. pp. 19-29
    [56] S. Suri, G. Varghese, G. Chandranmcnon, Leap forward virtual clock: a new fair queuing scheme with guaranteed delays and throughput fairness. Proc. IEEE INFOCOMM'97, 1997 pp.557-565
    [57] N.R. Figueira, J. Pasquale, An upper bound on delay for the virtual clock service discipline. IEEE/ACM Trans. Networking, 1995, 3(4): 399-408
    [58] H. Balakrishnan, V. N. Padmanabhan, "How Network Asymmetry Affect TCP", IEEE Communica- tions Magazine, 2001, 4: 2-9.
    [59] H. Balakrishnan, V. N. Padmanabhan, R. H. Katz, The Effects of Asymmetry on TCP Performance, ACM Mobile Networks and Applications (MONET) Journal, Vol. 4, No. 3, 1999.
    [60] H. Balakrishnan, V. N. Padmanabhan, TCP Performance Implications of Network Asymmetry, Internet-Draft, http://www.ieft.org .
    [61] V. Sdralia, C. Smythe, S. Cvetkovic, Performance Characterization of MCNS DOCSIS1.0 CATV Protocol with Prioritized First Come First Served Scheduling, IEEE transactions on broadcasting, 1999, 45(2): 196-205.
    [62] R. Cohen, S. Ramanathan, Tuning TCP for high performance in hybrid fiber coax networks. IEEE Trans. on Networking, Feb. 1998, Vol.6 No.1.
    [63] R. Cohen. Using proxies to enhance TCP performance over hybrid fiber coaxial networks. HP Lab, Technical Report HPL-97-25, Sep. 1997.
    [64] C.A. Eldering, N. Himayat, F.M. Gardner, CATV Return Path Characterization for Reliable Communications, IEEE Communications Magazine, Aug. 1995, 33(8): 62-69.
    [65] 陈惠芳、谢磊、仇佩亮. HFC上行资源预约申请多址接入的性能分析. 通信学报. Vol.22(8) 2001 pp.60-65.
    [66] 景新幸等. 宽带HFC网络回传通路噪声抑制的研究. 电子学报. Vol.30(2) 2002 pp.153-155.
    [67] 孙晓东、冯振明、陆明泉. HFC网络中上行信道的MAC层协议性能分析. 电子学报. 2002.2. 30(2): 187-190
    [68] 李宏乔、杨峰, 宽带网络技术原理, 北京:机械工业出版社, 2002.
    [69] 彭向军、张武平、杨学良, 基于DOCSIS1.1规范的HFC双向网的QoS分析, 计算机科学, 2002.5. 29(5): 43-45
    
    
    [70] 李杰、童明俶, HFC技术及宽带接入中的应用, 工程设计CAD与智能建筑, 2002(5): 57-59
    [71] 广播电影电视总局, GY/T106-99标准, 1999.
    [72] 蔡翔云, 姜麟, 王剑, HFC宽带接入网技术探讨, 昆明理工大学学报, 2002.4. 27(2): 43-47.
    [73] 尹岗, 大电视网构想—中国大电视网, 中国有线电视, 1998.6. pp. 8-10.
    [74] 林泽权, 有线电视网络在个人通信接入网中的应用, 中国有线电视, 1999.1. pp. 16-17.
    [75] 郑凯, CATV产业形式分析, 中国有线电视, 1999.2. pp. 4-7.
    [76] 罗万明、林闯、阎保平. TCP/IP拥塞控制研究. 计算机学报, 2001, 24(1): 1-18.
    [77] J. Postel. Transmission Control Protocol. IETF Internet RFC793, Sep, 1981.
    [78] V. Jacbson, Congestion Avoidance and Control. IEEE/ACM Transaction Networking, 1988, 6(3): 314-329.
    [79] V. Jacobson, Modified TCP congestion avoidance algorithm. ftp://ftp.isi.edu/end2end/end2end -interest.1990.mail, Apr. 1990.
    [80] H. Zhang, Traffic control and QoS management in the Internet. http://www.cs.cmu.edu/ ~hzhang/
    [81] M. Mathis, J. Mahdavi, TCP Selective Acknowledgment Options. IETF Internet RFC2018, 1996
    [82] W. Stevens, TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast Recovery Algorithms. IETF Internet RFC2001, 1997
    [83] A. Kumar, "Comparative performance analysis of versions of TCP in a local network with a lossy link," IEEE/ACM Trans. Networking, vol. 6, Aug. 1998. pp. 485-498
    [84] S. Shenker, L. Zhang, D.D. Clark, Some observations on the dynamics of a congestion-control algorithm, Comput. Comm. Rev., Oct. 1990. pp. 30-39
    [85] L. Zhang, S. Shenker, D.D. Clark, Observations on the dynamics of congestion control algorithm: The effect of two way traffic, in Proc. ACM SIGCOMM'91, 1991. pp. 133-147
    [86] T.V. Lashman, U. Madhow, Performance analysis of window-based flow control using TCP/IP: The effect of high bandwidth-delay products and random loss, in IFIP Trans. C-26, High Performance Networking, 1994, pp. 135-150.
    [87] Song Jun, Gan Yuyu, Wu Ziyu. Improving the Performance of Asymmetric Data Applications over the HFC Networks. ICCT'2003, Beijin, Apr. 2003.
    [88] 盛友招, 排队论及其在计算机通信中的应用, 北京:北京邮电大学出版社, 1998.
    [89] 川岛幸之助等著、岳五一等译, 通信流理论基础与多媒体通信网, 清华大学出版社, 2000.
    [90] 陆大金, 随机过程及其应用,清华大学出版社, 2001.
    [91] 宋军、甘育裕、吴资玉. 一种提高有线电视宽带网数据业务性能的算法. 重庆大学学报(自然科学版). 2002.25(2): 91-94
    
    
    [92] 宋军、甘育裕、吴资玉. HFC宽带接入网上行带宽分配策略的改进. 计算机科学. 2003. (已收录,稿件号0030165).
    [93] L. Kalampoukas, A. Varma, K.K. Ramakrishman, Two-way TCP Traffic over ATM: Effect and Analysis. In Proc. Infocom'97, Japan, Kobe, Apr. 1997.
    [94] D. Katz, IP router alert option, IETF RFC 2208, RFC2113.
    [95] A. Neogi, Performance analysis of an RSVP-capable router, IEEE network, Sep./Oct. 1999.
    [96] A. Demers, et al, Analysis and simulation of a fair queueing algorithm, Journal of Internetworking Research and Experience, Oct. 1990: 3-26.
    [97] A.K. Parekh, et al, A generalized processor sharing approach to flow control in integrated services networks—the single node case, IEEE/ACM Transaction on Networking, 1993,1(3): 344-357.
    [98] Recommendation I.371-1999. Traffic control and congestion control in B-ISDN.
    [99] ATM Forum -1996. Traffic management specification version 4.0.
    [100] G.D. Stamoulis, etal, Traffic source models for ATM networks: a survey, Computer Comm., 1994, 17(6): 428-438.
    [101] P. Sen, etal, Models for packet switching of variable bit rate video sources, IEEE JSAC, 1989, 7(5): 865-869.
    [102] T. Yang, H.K. Tsang, A novel approach to estimating the cell loss probability in an multiplexer with homogeneous on-off sources, IEEE Trans Communication, 1995, 43(1): 117-126 .
    [103] J.P. Cosmas, G.H. Petit, R. Lehnert, etal, A review of voice, data and video traffic models for ATM, ETT, 1994, 5(2): 11-26.
    [104] N. Yin, etal, Analysis of the leaky bucket algorithm for on/off data source, IEEE Globlecom'91, 1991, pp. 254-260.
    [105] 蒋志刚、李乐民, ATM网络中突发业务的漏桶算法分析, 电子学报, 1995, 23(1): 8-14.
    [106] J.M. Hyman, A.A. Lazer, G. Pacifici, Real-time scheduling with quality of service constraints, IEEE JSAC, 1991, 9(7): 1052-1991.
    [107] P. Maryni, G. Pacifici, Real-time estimation of the link capacity in multimedia networks, In: IFIP'1997, Building QoS into Distributed Systems, 1997: 101-112.
    [108] B. Maglaris, D. Anastassion, P. Sen, etal. Performance models of statistical multiplexing in packet video communications, IEEE Trans. on Comm. , 1988, 37(7): 834-843.
    [109] P.A. Skelly, etal. A histogram-based model for video traffic behavior in an ATM multiplexer, IEEE/ACM Trans. on Networking, 1993, 1(4): 446 - 459.
    [110] D. Anick, D. Mitra, M. Sondhi, Stochastic theory of a data-handling system with multiple sources, AT&T Bell Lab Technique Journal, 1982, 61(8): 1871-1894.
    
    
    [111] J.N. Daigle, J.D. Langford, Models for analysis of packet voice communications system, IEEE JSAC, 1986, 4(6): 847-855.
    [112] 徐树公、黄载禄, 基于缓冲区门限的 ATM网流量控制策略分析, 通信学报, 1996, 17(5): 74-79.
    [113] 徐树公、黄载禄, ATM网中具有优先级管理的漏桶监管器性能分析, 电子科学学刊, 1998, 20(1): 87-92.
    [114] M. Schwartz, Broadband Integrated Networks. Prentice Hall PTR, 1996, pp.32-45.
    [115] G. Gallassi, etal. ATM: bandwidth assignment and bandwidth enforcement policies. In: Conference Record of GLOBECOM'89. USA: IEEE, 1989. 1788-1793
    [116] M. Decina, T. Toniatti, On bandwidth allocation to bursty virtual connections in ATM networks. In: Conference Record ICC'90. USA: IEEE, 1990. 844-851
    [117] H. Suzuki, etal, A simple and burst-variation independent measure of service quality for ATM traffic control. Proc 7th ITC Specialist Seminar, 1990
    [118] H. Suzuki, etal, A bursty traffic control strategy for ATM networks, In: Conference Record of GLOBECOM'90. USA, IEEE, 1990. 874-878
    [119] T. Murase, etal, A call admission control for ATM networks based on individual multiplexed traffic characteristics, In: Conference Record of ICC'91, USA, IEEE, 1991, pp. 193-198
    [120] T. Murase, etal, A call admission control scheme for ATM networks using a simple quality estimate, IEEE JSAC, 1991, 9(9):1461-1470
    [121] Guerin R, et al. Equivalent capacity and its application to bandwidth allocation in high-speed networks. IEEE JSAC, 1991, 9(7): 968~981
    [122] M. Decina, T. Toiatti, On bandwidth allocation to bursty virtual connections in ATM networks. in Proc. ICC'90, 1990, pp.844 -851.
    [123] K. Sohraby, On the asymptotic behavior of heterogeneous statistical multiplexer with applications, in Proc. INFOCOM'92, 1992, pp.839- 847.
    [124] H. Saito, Call admission control in an ATM network using upper Bound of cell loss probability, IEEE Trans. on Comm. , 1992, 40, pp.1512-1521.
    [125] R. Guerin, H. Ahmadi, M. Naghshineh, Equivalent capacity and its application to bandwidth allocation in high-speed networks, IEEE JSAC, 1991, 9(7): 968- 981.
    [126] G. Perros, M. Elsayed, Call admission control schemes: a review, IEEE Communication Magazine, 1996, 34(11): 82 - 91.
    [127] A. Elwalid, D. Mitra, H. Wentworth, A new approach for allocating buffers and bandwidth to heterogeneous, regulated traffic in an ATM node, IEEE JSAC, 1995,13(6): 1115 - 1127.
    [128] P. Maryni, Real-time estimation of the link capacity in multimedia networks, in Proc. IFIP'97,
    
    Building QoS into Distributed Systems, 1997, pp.101-112.
    [129] W. White, Heavy traffic approximations for service systems with blocking, AT&T Bell Lab Technique Journal, 1984, 63(5): 689-708.
    [130] S. Shioda, H. Saito, Connection Admission Control Guaranteeing Negotiated Cell-loss Ratio of Cell Streams Passing through Usage Parameter Control, IEICE Trans. Commun., 1997, ES0-B(3): 399-409
    [131] J.T. Lewis, R. Ressell, Practical Connection Admission Control for ATM Networks Based on On-line Measurements, Computer Communication, 1998(12): 1585-1596.
    [132] 宋军、甘育裕、吴资玉, HFC网故障恢复能力的研究, 计算机科学, 2003.3. 30(3):
    [133] 朱洪波、傅海阳、吴志忠等编著. 无线接入网. 北京. 人民邮电出版社. 2000.
    [134] Kleinrock L, Tobagi A, Packet switching in radio channels - Part I: carrier sense access mode and their throughput-delay characteristics, IEEE Tans. Comm., Vol. 23, Dec. 1975.
    [135] 谢希仁,陈鸣,张兴元,计算机网络,电子工业出版社,1994
    [136] Sala D, Hartman D, Limb J O, Comparison of algorithms for stations registration on power-up in an HFC network, IEEE802.14 Working Group, Jan. 1996.
    [137] 田长国, 有线电视双向HFC网络上行信道噪声分析, 电视技术, 2002.3. pp. 35-37
    [138] 黄吴明, 有线电视技术, 北京:北京广播学院出版社, 1992
    [139] 赵问道、宋耀光、姚庆栋, 同轴电缆网络的回波反射及其产生的码间干扰分析, 浙江大学学报, 1999.33(5): 509-514
    [140] A.E. Charles, H. Nageen, M.C. Floyd, CATV return path characterization for reliable communication, IEEE Comm. Mag. 1995, 8(5): 62-69
    [141] 赵问道、宋耀光、姚庆栋, 同轴电缆网络上行信道噪声漏斗效应及其对调制技术的影响分析, 浙江大学学报, 1999, 33(5): 535-539
    [142] 江宇、刘坤, HFC接入网回传信道的分析及噪声抑制, 中国有线电视, 2001.5: 6-9.
    [143] 沈允春, 扩谱技术, 国防工业出版社, 1995.
    [144] 朱近康, 扩展频谱通信及其应用, 中国科学技术大学出版社, 1993.
    [145] A.J. 维特比著, 王守仁译, CDMA扩频通信原理, 人民邮电出版社, 1997.
    [146] Y. Jong, R. Wolters, H.Boom, A CDMA based bi-directional communication system for hybrid fiber coax CATV network, IEEE Transaction on Broadcasting, June 1997. 43(2): 127-135.
    [147] R. Wolters, G.D. Khoe, J. Otterbach, An initialization protocol for a CDMA based communication scheme for HFC CATV network, IEEE Transaction on Broadcasting, 1996. 43: 329-338.
    [148] 徐江山, 万户光节点HFC双向网络反向噪声分析, 广播与电视技术, 1997(11): 79-88
    [149] 林定祥, 反向通道应用中的噪声问题.广播与电视技术, 1998(8): 20-28

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700