用户名: 密码: 验证码:
植物纤维原料化学成分定量分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石化资源的短缺以及人们对高质量生活的不断追求,天然纤维素纤维因其良好的服用舒适性、资源易得性和环境友好性而被大量的应用于纺织领域。同时植物资源作为天然纤维素纤维的重要来源,亦受到重视。
     我国植物资源丰富,纺织用植物纤维原料种类繁多,如棉类、麻类、桑树皮、龙须草、棕叶、各种竹、椰壳、稻草等。目前对植物纤维及其资源化学成分进行定量分析通常采用国家标准GB/T5889-86《苎麻化学成分定量分析方法》。但是该标准是针对苎麻原料来制定的,在分析其它植物纤维原料时难免会存在一些问题,因此需要一种相对准确且普遍适用的方法来对植物纤维原料进行化学成分定量分析。
     针对各种植物纤维原料化学成分含量不同的特点,在苎麻标准的基础上提出了多种定量分析方案,并通过实验对其优选,确立了相对准确的化学成分定量分析方法,最终方案确定为:
     (1)将原料试样粉碎,大小可通过20目分样筛不过60目(1mm左右),用已知重量的200目筛绢布包包裹,并测试样含水率;
     (2)用苯乙醇对测完含水率的试样进行提取,并对提取液进行蒸馏,取残液烘干称重测定脂蜡质含量;
     (3)对提取脂蜡质后的试样进行沸水提取,并对提取液采用紫外-可见分光光度计测定水溶性果胶的含量A和分解的半纤维素的含量B,用试样失重减去(A+B)即为水溶物含量;
     (4)利用草酸铵溶液对提取完水溶物的样品进行处理,并对提取液测试分解的半纤维素的含量C,用试样失重减去C并加上A即为果胶含量;
     (5)对提取完果胶的试样用NaOH溶液处理,失重为半纤维素的含量和小部分木质素的含量D,用氯化法处理残渣,失重为部分木质素的含量E,剩余物为纤维素(含量为G),半纤维素的量就等于试样第一次失重减D再加上B和C;
     (6)另取相同试样粉碎,大小可通过60目分样筛不过200目,烘干称重后用72%硫酸处理,剩余残渣即为总木质素,含量为F,同时木质素含量D就等于F减去E;
     (7)对于含胶率和灰分的测定按照苎麻标准进行。
     实验证明此方法对各种植物纤维原料化学成分的测定相对准确,且具有普遍适用性。但在实际操作过程中,由于步骤繁杂难免存在误差,从而对最终结果造成影响,并且某些化学试剂的应用对人体有一定的不良作用,因此需要进一步优化、完善各步骤或者引入新方法,使植物纤维原料化学成分定量分析更加安全、快捷、准确。
With the oil resource shortage and people's constant pursuit of high-quality live, natural cellulose fibers are utilization to the textile field because of its comfortable dressing, easy to get and environment-friendly properties. At the same time, the plant resources as an important source of natural cellulose fibers have been paid attention by the people.
     The plant resource is rich in our country, and there are many kinds used in the textile, such as Cotton, Hemp, Flax, Jute, Ramie, Chinese Alpine Rush, Mulberry Bark, Palm Leaves, Bamboo, Coconut Shell, Rice Straw and so on. At present, the plant fiber chemical composition quantitative analysis is used to follow the National Standard GB/T5889-86 "the Method of the Ramie Chemical Composition Quantitative Analysis". The different plant has different chemical content, so here makes several plans according to the Ramie Standard, and confirms the final relative exact method, the particular steps as follows:
     (Ⅰ) Mill the raw material samples to the size about 1mm, and bind up them by the 200-mesh sieves which have extracted by the organic solvent and known the weight, test ing the samples Moisture content;
     (Ⅱ) Extract the samples by the Benzene-Ethanol, and distill and dry the residue. Weigh the residue to get the Lipid Classes content;
     (Ⅲ) Extract the samples by the boiling water, the extracting liquid had a test by the UV-visible spectrophotometer, and get the content of the Water-soluble Pectin A and the decomposed Hemicellulose B. The content of Water-solubles equals to the lost weight minus the content of A and B;
     (Ⅳ) Extract the samples by the Ammonium Oxalate, and test the decomposed Hemicellulose C from the extracting liquid. The content of Pectin equals to the lost weight minus the content of C plus the content of A;
     (Ⅴ) Extract the samples by the NaOH liquor, the lost weight are Hemicellulose and a little of Lignin D. Chloridizing the residue, the lost is Lignin E, and the remains is Cellulose G. The content of Hemicellulose equals to the first lost weight minus the content of D plus the content of B and C;
     (Ⅵ) Mill another same samples to the size passing the 60-mesh sub-sample screen, drying and weighing them. Treat the samples by concentrated sulfuric acid, the remains is the Lignin F, the same time, the content of D equaling to the content of F minus the content of E;
     (Ⅶ) To the Cellulose, Gum content and Ash, the testing is conducted according to the Ramie Criterion.
     The experiments prove that this method to test the various plant fibers'chemical composition is relatively accurate, and has a general applicability. However, in actual operation, there is inevitably errors because of the complicated steps, thus affects the final result and the application of some chemical reagents are harm for the people's health to a certain extent, therefore, it needs to have a further optimization and improve the various steps to make the chemical composition quantitative analysis of plant fibers more secure, fast and accurate.
引文
1庄馥萃.植物纤维和纤维植物[J].生物学通报,2001,36(11):16-18.
    2杨淑蕙.植物纤维化学[M].北京:中国轻工业出版社,2001,4-20,43,50,69,112,163,214.
    3郭建欣,王高升,陈夫山.植物纤维原料的液化及其应用[J].世界林业研究,2007,2,20(1):55-60.
    4荆学谦.陕南地区桑皮纤维的结果与性能研究[D].西安:西安工程大学,2007,1-7.
    5张素梅.天然植物纤维[J].中国纤检,2004,11:45-47.
    6向新柱,曾莹,杨明等.构树韧皮的化学成分定量分析[J].纺织科技进展,2007,5:1.
    7王维明,蔡再生.黄麻纤维化学脱胶工艺的研究[J].印染助剂,2008,9,25(9):21-23.
    8 Ishikawa A, Okano T, Sugiyama J. Fine structure and tensile properties of ramie fibers in the crystalline form of cellulose Ⅰ,Ⅱ,Ⅳ and Ⅳ[J]. Polymer,1997,38(2):463.
    9张延辉,郁崇文.龙须草的化学脱胶工艺初探[J].纺织科技进展,2005,5:54-56.
    10于丽红,唐淑娟,韩连顺.乌拉草——一种新型的纺织纤维材料[J].山东纺织科技,2006,1:54-56.
    11姜伟.基于近红外技术的苎麻化学成分快速定量分析研究[D].青岛:青岛大学,2009,2-9,15-26
    12谭仁祥.植物成分分析[M].北京:科学出版社,2002,597-610.
    13 GB/T 2677.1-10.造纸国家标准[S].北京:中国标准出版社,1993-1996.
    14裴华强,翟耀华.棉秆皮纤维化学脱胶工艺初探[J].山东纺织科技,2008(4):30-32.
    15 X. Philip Ye, Lu Liu, Douglas Hays. Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques[J]. Bioresource Technology 99 (2008) 7323-7332.
    16龚惠和.苎麻韧皮纤维化学成分定量分析方法简介[J].纤维标准与检验,1988,12:8-9.
    17 FZ/T 30001-92.苎麻主要化学成分系统定量分析方法[S].北京:中国标准出版社,1993.
    18冷娟,程毅,肖爱平等.苎麻化学成分微波快速测定[J].中国麻业科学,2009,31(3):211-214.
    19蒋少军,吴红玲,李志忠等.胡麻纤维化学成分定量分析方法和性能的研究[J].兰州理工大学学报,2005,2,31(1):78-81.
    20赵小峰,张军,李素波等.亚麻纤维化学成分定量分析方法研究[J].上海纺织科技,2008,2,36(2):49-51.
    21 James S. Han, Jeffrey S. Rowell. Paper and composites from agro-based resources-Chapter 5:Chemical Composition of Fibers[M].Boca Raton:CRC/Lewis Publishers,1997,84-106.
    22 Stephen S. Kelley, Roger M. Rowell, Mark Davis, et al. Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry[J]. Biomass and Bioenergy 27(2004) 77-88.
    23吴军.近红外反射光谱法分析玉米秸秆纤维素含量的研究[J].分析化学研究简报, 2005,33(10):1421-1423.
    24聂志东等.近红外反射光谱法测定苜蓿干草主要纤维成分的研究[J].光谱学与光谱分析,2008,28(5):1045-1048.
    25 Zaldivar, Nielsen J, Olsson L. Fuel ethanol production from lignocellulose:A challenge for metebolic engineering and process integration[J]. Applied Microbiology and Biotechnology,2001,56 (1-2):17-34.
    26杜瑛,齐卫艳,苗霞等.毛竹的主要化学成分分析及热解[J].化工学报,2004,12,55(12):2099-2101.
    27瞿彩莲,窦明池,王波.几种新型植物纤维及其应用[J].中国纤检,2006(5):32-34.
    28张之亮,张元明,章悦庭等.几种新型植物纤维的开发利用现状[J].中国麻业,2004,26(2):91-93.
    29姜繁昌,邵宽.GB/T 5889-1986苎麻化学成分定量分析方法[S].北京:中国标准出版社,2000.
    30姚穆等.纺织材料学[M].北京:中国纺织出版社,2004,10:322.
    31陈雪.纺织材料学[EB/OL]. http://user.qzone.qq.com/764313038,2009.6.5.
    32祝枝峰,邵宽.对GB5889-86苎麻残胶率测试方法的修正意见[J].中国纺织大学学报.1992,18(5):8-14.
    33董政娥,管映亭.一种野生麻纤维脱胶初[J].印染助剂,2003,6,20(3):23-25.
    34穆光照.实用溶剂手册[M].上海:上海科学技术出版社,1990:451.
    35魏鹏月,杨妍飞.GB/T 2677.6-94造纸原料有机抽出物含量的测定[S].北京:中国标准出版社,1995.
    36李红.煮练酶在棉散纤维前处理中的应用[J].印染,2004,11:16-17.
    37张元明.苎麻原麻脂蜡质含量及精干麻含油率测试方法的探讨[J].纺织学报,1985,6(10):615-617.
    38姜伟,刘迪,张元明.植物纤维原料脂蜡质成分定量分析方法初探[OL].中国科技论文在线(http://www. paper.edu.cn).2008.
    39 GB/T2677.6-94造纸原料有机溶剂抽出物含量的测定[S].北京:中国标准出版社.1995.
    40方桂珍.20种树种木材化学组成分析[J].中国造纸,2002(6):79-80.
    41 ZUO Song-Iin, GAO Shang-yu, YUAN Xi-gen, etal. Carbonization mechanism of bamboo (phyllostachys) by means of Fourier Transform Infrared and elemental analysis[J]. Journal of Forestry Research,2003,14(1):75-79.
    42 Anna Jacobs, Magnus Palm, Guido Zacchi, etal. Isolation and characterization of water-soluble hemicelluloses from flax shive[J]. Carbohydrate Research 338(2003) 1869-1876.
    43王天龙,仇宏伟,陈海华等.3,5-二硝基水杨酸(DNS)法测定D-半乳糖醛酸含量的条件探索[J]. 安徽农业科学,2008,36(16):6829-6832.
    44马新起,周慧,高景曦.栀子提取技术开发研究进展[J].时珍国医国药,2007,18(2):493-494.
    45大连轻工业学院等八大院校.食品分析[M].北京:中国轻工业出版社,2005.
    46熊重铎,李海燕,曾庆福.微波辅助萃取测定苎麻果胶含量的方法[J].中国麻业科学,2008,30(2):79-80.
    47张宏书.半纤维素及其结构研究[J].广州化学,1990:57-68.
    48张毅民,杨静,吕学斌.木质纤维素生物质酸水解研究进展[J].世界科技研究与发展,2007,2,29(1):48-54.
    49 Fang J M, Sun R C, Tomkinson J, etal. Carbohydrate Polymer,2000,41:379-387.
    50迟聪聪,张曾,于建仁等.桉木半纤维素预提取工艺的初步研究.中国造纸学报,2008,23(3):6-11.
    51赵律,李辉勇,李志光等.稀硫酸催化水解稻草秸秆半纤维素的研究[J].化学与生物工程,2007,24(12):35=38.
    52王遂,崔凌飞,尤旭.玉米皮半纤维素提取工艺的研究[J].中国粮油学报,2000,6,15(3):49-53.
    53彭园花,卢红梅,曾祥钦.半纤维素制备条件优化[J].环保科技,2007,13(1):44-46.
    54姜伟,张元明.植物纤维原料化学成分定量分析方法初探[OL].中国科技论文在线(http://www.paper.edu.cn).2009.
    55 GB/T2677.10-95造纸原料综纤维素含量的测定[S].北京:中国标准出版社.1996.
    56中野凖三编.木质素的化学—基础与应用[M].高洁,鲍禾,李中飞译.北京:轻工业出版社,1988,3:2-10.
    57 L. Oliveira, D. Evtuguin, N, Cordeiro, etal. Structural characterization of stalk lignin from banana plant[J]. INDUSTRIAL CROPS AND PRODUCTS 29(2009) 86-95.
    58 GB/T2677.8-94造纸原料酸不溶木素含量的测定[S].北京:中国标准出版社.1995.
    59 GUnes UCAR, Mualla BALABAN. Hydrolysis of Polysaccharides with 77% Surlfuric Acid for Quantitative Saccharification. Turk J Agric For 27(2003) 361-365.
    60 C. Ververis, K. Georghiou, N. Christo doulakis, etal. Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Industrial Crops and Products 19(2004)245-254.
    61鹿保鑫,曹龙奎,乌春华.微波法提取稻草纤维素的工艺研究[J].黑龙江八一农垦大学学报,2008,10,20(5):73-77.
    62 CHEN Yun-ping, CHENG Xian-su. Preparation and charateristic analysis of rice husk high boiling solvent lignin. Journal of Forestry Research(2008) 19(2):159-163.
    63陈为健,程贤甦,方华书等.高沸醇溶剂法提取花生中木质素的研究[J].花生学报,2003,32(32):7-11.
    64胡杰,邵媛,邓宇.微波辐射常压麦草中木质素快速提取方法研究[J].化工技术与开发,2006,8,35(8):4-7.
    65 Run Cang Sun, Jeremy Tomkinson. Characterization of hemicelluloses obtained by classical and ultrasonically assisted extractions from wheat straw[J]. Polymers, 50(2002) 263-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700