用户名: 密码: 验证码:
电力发展新形势下城市电网多阶段规划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电力市场化和智能电网建设已成为全世界未来电力发展的新趋势,在此新形势下,我国电力行业的发展也面临着新的考验。电力市场化的深入进行将引入竞争机制,此时电力生产、消费和交易方式将发生根本性变化,因此除了传统的电网安全性和可靠性研究以外,电力建设经济性和风险性指标研究的意义将越来越重要;智能电网是经济和技术发展的必然,其建设将会大幅度提高发、输和用电效率,促进节能减排和社会的可持续发展,但同时智能电网引入了大量新型技术设备和概念,也为电力系统建设增添了许多不确定性,值得进一步探索研究。
     电网规划是现代电网建设和发展的关键环节,我国传统电网规划相关理论和方法已得到了深入研究,在此基础上,本文旨在将电力市场化和智能电网建设发展这两个主题新形势下出现的各种因素引入到实际规划工作中,同时考虑实际电网工程项目建设安排分阶段进行的特点,建立电网规划的动态多阶段数学模型,具体工作如下:
     (1)新形势下,影响负荷预测准确性的因素除传统的天气、季节、日类型等以外,电价也将成为一个非常重要的因素,因此本文利用需求价格弹性矩阵和灰色关联度理论对电力市场环境下电价和负荷的关系进行具体分析。然后通过利用灰色模型可以弱化数据的随机性,以及神经网络的高度非线性的特点,提出一种基于改进灰色神经网络的考虑实时电价的短期电力负荷预测方法。针对灰色神经网络模型的改进包括:1)利用灰色二次指数平滑法对模型输入数据进行预处理;2)利用遗传算法优化灰色神经网络的初始参数;3)灰色神经网络模型的学习和训练速率优化,通过以上过程,提高了灰色神经网络模型的预测精度和计算速度。在数据样本的处理上,提出了利用负荷和电价的相关度判定是否将候选样本作为输入变量使用,很大程度上缓解了非关联样本过多而导致神经网络学习效率低等问题。通过实际算例的分析表明了该方法的准确和有效性。
     (2)现有大多数变电站规划模型和方法只具有静态特点(忽略了时间因素),与实际电网工程的多阶段实施特性有差异,而动态规划是求解以时间划分阶段的动态过程优化问题最为有效的方法,本文利用动态规划思想建立变电站的多阶段优化规划模型,以尽可能满足实际变电站规划在时间和空间方面的双重要求。首先结合专家意见,优化规划出目标年配电变电站的站址和容量,以作为各中间年变电站候选站址与容量的分类依据,从而有效缩小可行解域的空间,提高计算效率。然后将规划中间年分成若干阶段,通过建立动态规划模型并运用启发式规则对模型进行降维处理,求出在整个规划期间最优的变电站建设方案(包括对已有变电站的改造),即在满足不同阶段负荷增长需求和各种技术经济条件约束下,解决目标年各候选变电站建设改造时序的优化问题。最后通过案例验证了方法的可操作性。
     (3)一直以来,净现值(NPV)方法一直是电力行业评估项目投资的主要方法,但NPV法忽略了投资项目在不确定性环境下拥有的价值,一般更适用于期限短、不确定小、变动程度不大的投资评估。本文在充分考虑智能电网带来的新的不确定因素基础上,利用实物期权方法(ROA)适合评估未来不确定和机会的选择权的特性,提出了一种基于模糊实物期权的经济评估方法(FROV),并将FROV方法进一步扩展,结合贝尔曼动态规划思想,建立了一种能够综合考虑项目评估、投资资本预算决策和投资者心理的多阶段模糊实物期权评价方法(DFROV),并通过算例验证了该方法在实际应用上的参考价值。
     (4)针对现阶段智能电网的综合评价指标体系研究方面的不足,本文尝试提出一种新的智能电网评估指标体系构建方法,指标体系分为四层构建,以揭示智能电网建设本质为目标,以各指标层次要素的逻辑关系和内在规律为原则,最终目的要体现指标体系对智能电网建设规划的重要指导意义。
     (5)针对工程建设多阶段不确定规划的特点,本文提出一种基于群体决策的多属性、多阶段模糊综合评价方法。首先在传统AHP方法基础上增加了时间维度,并引入群体决策和模糊偏好关系等概念。然后以综合评价结果为目标,建立了多阶段决策优化数学模型,并提出一种依实际情况可动态灵活调整的混合智能优化算法进行求解,以实现在投资额有限情况下的项目优选。智能优化算法主要由三部分组成:1)初始化部分:用贪心算法建立初始可行项目集;2)多阶段决策优化部分:优化确定各项目的建设时序或各阶段的项目分配,用一种改进的遗传算法(IGA),针对这两种不同的优化目的,分别提出算法改进;3)动态调整部分:目的是在满足技术要求条件下,最大程度节约资金。最后通过具体算例验证了方法的实用性和有效性。
Recently, actively developing the smart grid has become a new trend of theworld’s electricity, China’s electric power industry is facing the severe challenge inthis new situation. With the development of the electricity market, the production,consumption and trading patterns in competitive electicity market will undergofundamental changes. In addition to the traditional grid security and reliability, theeconomic and risk indicators researches are becoming increasingly important in theelecticity construction; The smart grid is an inevitable result of economic andtechnological development, which will greatly improve the generation, transmission,and distribution efficiency, promote energy conservation and the sustainabledevelopment of society, however, the smart grid also introduced a large number ofnew technical equipment and concepts, adding more uncertainties to power system aswell as optimizing and improving the development of the traditional power system.Network planning is the key link of the modern power grid construction anddevelopment, the theories and methods in the traditional network planning of ourcountry have been in-depth study, on the basis of that, the purpose of this article willintroduce a variety of factors under the new situation of the electricity markitilizationand the smart grid construction to the actual planning work, the specific work is asfollows:
     (1) Under the new situation, in addition to the traditional factors, i.e. weather,season, day type, the real-time pricing has also become a very important factor in theaspect of affecting the load forecasting accuracy. So on the basis of analyzing theimpact factors of short-term load characteristics, taking into account the impact ofreal-time pricing, this article made a specific and detailed analysis of the relationshipbetween the electricity price and load in the electricity market environment by theprice elasticity of demand matrix and the grey system theory; the gray model canweaken the randomness of the data, as well as the highly nonlinear characteristics ofneural networks, an improved gray Neural Network (IGNN) were proposed to predictshort-term load in real-time pricing environment. There are three measures forimprovement of prediction accuracy and computing speed of the gray neural networkmodel:1) Using gray double exponential smoothing method for input datapreprocessing;2) Using genetic algorithms to optimize the initial parameters of GNN;3) Optimization of learning and training rate of GNN model. At the same time, the relevance of load and electricity price was proposed to determine whether thecandidate samples used as input variables in terms of the processing of the datasample, largely mitigated the low efficiency learning of GNN caused by excessfulnon-associated samples. A practical example demonstrated the accuracy and validityof the method.
     (2) Existing substation planning model and methods have only staticcharacteristics (ignoring the time factor), so there are differences with the multi-stagecharacteristics of the actual power grid project, and the dynamic programmingoptimization problem is the most clear and effective method of solving the dynamicprocess of time-division stage. Therefore, this paper has used the dynamicprogramming to establish a multi-stage optimization planning model of the substation,as much as possible to meet the dual demands for time and space of the actualsubstation planning. Firstly, combined with the expers’ advices, optimizing thesubstations’ sites, capacities for the planning target year, which the planning resultswere as the candidates for the various stages later; Then dividing the middle years intoseveral stages, and establishing the dynamic programming model as well as usingsome heuristic rules to reduce the dimension of the model, the optimal substationbuilding programs (including the transformation of the existing substation) throughoutthe planning period was founded. Finally, the real case was used to verify theoperability of the method proposed here.
     (3) The net present value (NPV) method has always been the main method for theassessment of investment in the power industry, but the NPV method ignores thevalue of uncertainties of the investment projects, normally being suit for theinvestment appraisal with characteristics of short-term, little changes and so on. So,on the basis of taking full account of the new uncertainties bringed by the smart grid,this paper has proposed an economic assessment methods based on fuzzy real option(FROV) by using the features of the real options approach (ROA) for assessing theuncertainties for the future and opportunities to choose. Combined with the Bellmandynamic programming, the FROV method was further expanded to establish amulti-stage fuzzy real option evaluation methods (DFROV), which provided a newperspective for economic decision-making evaluation by bringing the projectevaluation, investment in capital budgeting decisions and investor’s psychology.Finally, the method was tested to have more application reference in actual practice.
     (4) Lacking of the comprehensive index system of smart grid at this stage, this paper tries to put forward a new Smart Grid assessment index system: the indexsystem consists of four tiers, the logic and the inherent law are as the principles forthe elements at all levels, index selection aimed to achieve an important guidingsignificance of the indicator system on the smart grid construction plan.
     (5) Considering the dynamic and uncertain characteristecs of the constructionprojects planning, this paper proposed a multi-stage fuzzy comprehensive evaluationmethod based on the group decision-making. Adding the time dimension to thetraditional AHPmethod, and introducing the concept of the group decision-makingand fuzzy preference relations; then establishing a multi-stage decision-makingoptimization model with the results of the comprehensive evaluation as the goalfunction, and proposing a hybrid intelligent optimal algorithm with the flexibleadjustment feature to realize the projects preferred choice under the limitedcircumstances of the investment. Intelligent optimization algorithm consists of threeparts:1) Initialization part, greedy algorithm is used to establish the vialble initial set;2) Multi-stage decision-making optimization part, optimizing the allocation and thetiming of items, an improved genetic algorithm (IGA) was proposed to satisfy thesetwo optimization purposes;3) dynamic adjustment part, aiming to largely save moneyon the basis of meeting the technical requirements. Finally, a specific example wasused to verify the practicality and effectiveness of the method here.
引文
[1]中华人民共和国国家电网公司,Q/GDW156-2006,国家电网公司企业标准—城市电力网规划设计导则,北京:中国电力出版社,2006.
    [2]陈章潮,城市电网规划与改造,北京:中国电力出版社,1998,1~2.
    [3]中华人民共和国国家技术监督局,GB/T156-2007,中华人民共和国国家标准,《标准电压》,北京:中国标准出版社,2007.
    [4]宋燕敏,闵涛,电力市场运营系统的自适应设计构想,电力系统自动化,2005,29(2):18~19.
    [5]赖菲,夏清,电力特性与电力市场,电力系统及其自动化,2005,29(22):34~38.
    [6] FOUQUET.D, JOHANSSON T.B, European Renewable Energy Policy atCossroads-Focus on Electricity Support Mechanisms, Energy Policy,2008,36(11):353~358.
    [7]徐丙垠,李天友,等,智能配电网讲座第一讲智能配电网概述,供用电,2009,26(3):81~84.
    [8]何光宇,孙英云,等,多指标自趋优的智能电网,电力系统自动化,2009,33(17):1~5.
    [9] U.S.Congress,U.S.Energy independence and security act of2007,2009(11),242~280.
    [10] Miller J,Transition to modern grid,2009(1),457~608.
    [11] Dollen.D.V,The report to nist on the smart grid interoperability standardsroadmap prepared by the Electric Power Research Institute (EPRI),WashingtonDC:EPRI,2009.
    [12]刘洪,面向供电质量提高的城市电网专项规划研究,天津:天津大学,2009:14~20.
    [13]吴军基,基于人工神经网络的日负荷预测方法的研究,继电器,1999,22(3)35~38.
    [14]牛东晓,电力负荷预测技术及其应用,中国电力出版,1998,40~46.
    [15] Rahman.S,Bhatangar.R,An expert system based algorithm for short-term loadforecast, IEEE Trans on Power System,1998,3(2):392~399.
    [16]卢建昌,王柳,基于时序分析的神经网络短期负荷预测模型研究,中国电力,2005,38(7):11~14.
    [17]李广,邹德忠,谈顺涛,基于混沌神经网络理论的小电网短期电力负荷预测,电力自动化设备,2006,26(2):50~52.
    [18]蔡金锭,付中云,粒子群神经网络混合算法在负荷预测中的应用,高电压技术,2007,33(5):90~93.
    [19]王捷,吴国忠,李艳昌,蚁群灰色神经网络组合模型在电力负荷预测中的应用,电力系统保护与控制,2004,35(4)78-82.
    [20]张雪君,一种改进支持向量机的中长期负荷预测方法,重庆:重庆大学,2009,21~25.
    [21]高海龙,张国立,改进遗传神经网络及其在负荷预测中的应用,华北电力大学学报,2009,36(5)37~41.
    [22]王建军,智能电网环境下的自适互动智能负荷预测研究,特稿专递,2010,11(5)13~18.
    [23] Thompson G L,Wall D L.A branch and bound model for choosing optimalsubstation locations,Transactions on Power Apparatus andSystems,1982,100(5):2683~2687.
    [24]周敏,程浩忠,优化理论在城市配电网变电站选址中的应用,供用电,2003,20(2)7~11.
    [25]张永伍,变电站选址定容优化规划,天津:天津大学,2005,20~40.
    [26]申巍,基于模拟退火的混合遗传算法在变电站选址中的应用,北京:华北电力大学,34~56.
    [27]王成山,刘涛,谢莹华,基于混合遗传算法的变电站选址定容,电力系统自动化,2006,30(6):30~34.
    [28] D.Hongwei, Y.Yixin, Optimal planning of distribution substation location andsizes-model and algorithm,Electrical Power&EnergySystems,1996,18(6):353~357.
    [29]杨丽徙,王家耀,GIS与模糊模式识别理论在变电站选址中的应用,电力系统自动化,2003,27(18):87~90.
    [30]夏远福,吴国英,基于综合费用最低的变电站站址优化方法,现代电力,2006,23(1):88~92.
    [31]陈少华,杨宜民,考虑最大负荷供应能力的电源规划方案,电工技术杂志,2003(1):33~36.
    [32]徐青,吴捷,模糊综合评判在变电站选址中的应用,电力建设,2004,25(7):24~27.
    [33] D. Sun, D. Farris, P. Cote, Optimal distribution substation and primary feederplanning via fixed charge network formulation,IEEETransaction,1982,602~608.
    [34]王成山,刘涛,谢莹华,基于混合遗传算法的变电站选址定容,电力系统自动化,2006,30(6):30~34.
    [35]高炜欣,罗先觉,朱颖,贪心算法结合Hopfield神经网络优化配电变电站规划,电网技术,2004,28(7):73~73.
    [36] H.K. Temraz, M.M.A Salama. A planning model for siting, sizing and timing ofdistribution substation and defining the associated service area,Electric PowerSystems Research,2002(62):145~151.
    [37]陈燕,张健,电力工程经济评价和电价,北京:中国电力出版社,2009,39~83.
    [38]张力,陈立新,电力工程技术经济知识,北京:电力工业出版社,2007,50~70.
    [39]国家计划委员会,建设部,建设项目经济评价方法与参数(第二版),北京:中国计划出版社,1994,78~90.
    [40]赵国杰,工程经济学,天津:天津大学出版社,2004,23~60.
    [41]韦钢,贺静,电网规划中不确定性信息处理的现状及存在问题,上海电力学院学报,2003,19(4):33~37.
    [42]罗凤章,电网规划建设项目评估与决策,天津:天津大学,2006,23~30.
    [43] Kahraman.C, Ulukan.Z, Yenisey.M,Fuzzy economic and strategic design, IEEEConference on Emerging Technologies and Factory Automation,1996,(2):518~522.
    [44] Chiu.C,Park.C.S,Fuzzy Cash Flow Analysis Using Present Worth Criterion,TheEngineering.Economist,1994(2):113~138.
    [45]伍进伟,概率分析在项目经济评价中的应用,有色金属设计,2003,30(1):60~64.
    [46]杨毅,杨念,投资项目评估灰色资金时间价值分析,水利电力科技,1998,25(1):21~25.
    [47]刘发钦,粗糙集在知识发现中的应用研究,北京:对外经济贸易大学,2006,30~40.
    [48]吴娇媚,基于混沌时间序列的桥梁状态评估研究,兰州:兰州交通大学,2011,20~41.
    [49]王宝森,郑丕谔,盲数在投资项目经济评价中的应用,河北建筑科技学院学报,1999,16(2):59~61.
    [50]金畅,蒙特卡洛方法中随机数发生器和随机抽样方法的研究,大连:大连理工大学,2006,41~45.
    [51]戴毅,苗育红,毁伤概率评估的加权蒙特卡洛方法,计算机仿真,2008,25(3):115~120.
    [52]杨瑞平,王精业,李光辉,等,仿真可信性评估的功能层次分解法及其应用,计算机仿真,2001,18(3):32~34.
    [53]马莎.阿姆拉姆,纳林.库拉蒂拉卡,著,张维,等译,实物期权-不确定环境下的战略投资管理,北京:机械工业出版社,2001,130~160.
    [54]范龙振,唐国兴,项目价值的期权评价方法,系统工程学报,2001,16(1):17~23.
    [55] Trigeoris.L,Real option,Managerial flexibility and strategy in resourceallocation,Cambridge,MA,USA:the MIT press,1996,45~81.
    [56]闫茹,赵会茹,实物期权法在电力建设项目财务评价中的应用,华北电力大学学报,2009,4(2):10~14.
    [57]吴雪峰,张焰,电力市场下基于实物期权理论的电网投资经济评价,电网技术,2007,31(1):78~81.
    [58]何光宇,孙英云,多指标自趋优的智能电网,电力系统自动化,2009,33(17):1~6.
    [59]吴鹏,蒋莉萍,智能电网综合效益评价,中国电力企业管理,2009(7):35~38.
    [60]谭伟,何光宇,刘锋,等,智能电网低碳指标体系初探,电力系统自动化,2010,34(17):1~5.
    [61]曾鸣,陈英杰,基于多层次模糊综合评价法的我国智能电网风险评价,2011,39(4):536~541.
    [62]王坤,智能电网项目建设风险评估及应对策略研究,北京:华北电力大学,2011,32~60.
    [63]刘跃新,熊浩清,智能电网成本效益分析及测算模型研究,华东电力,2010,38(6):822~825.
    [64]贾文昭,康重庆,智能电网促进低碳发展的能力与效益测评模型,电力系统自动化,2011,35(1):7~13.
    [65]倪敬敏,何光宇,沈沉,等,美国智能电网评估综述,电力系统自动化,2010,34(8):9~13.
    [66] European SmartGrids Technology platform:vision and Strategy for Europe'selectricity networks of the future,Brussels,Belgium:EuropeanCommission,Diretorate-General for Research,Information andCommunications Unit,2006,103~130.
    [67]王智冬,李晖,智能电网的评估指标体系,电网技术,2009,33(17):14~19.
    [68]张健,蒲天骄,智能电网示范工程综合评价指标体系,2011,35(6):5~10.
    [69] CHEN Guohong,CHEN Yantai,The research progress&development trend ofcomprehensive evaluation methods,Proceedings of2002' InternationalConference on Management Science&Engineering,Harbin:Harbin Institute ofTechnology (HIT) Press,2002,278~340.
    [70]李占明,多目标决策的效用函数方法,系统工程,1989,7(5):52~54.
    [71] Satty.T.L,The analytic hierarchy process, NewYork: McGraw-Hill,1980,240~300.
    [72]沈良峰,层次分析法在建设工程项目择优评价中的应用,哈尔滨商业大学学报,2002,18(6):683~687.
    [73]方守恩,史义,朱照宏,灰色关联分析在公路工程建设方案选优中的应用,华东公路,1994,7(5):61~65.
    [74]钟庆,吴捷,黄武忠,等,动态规划在电力建设项目投资决策中的应用,电网技术,2002,26(8):49~51.
    [75]王殿选,多目标决策的对比系数法,系统工程理论与实践,1998,8(2):66~67.
    [76]赵克勤,基于集对分析的方案评价决策矩阵与应用,系统工程,1994,12(4):67~72.
    [77]程明熙,处理多目标决策问题的二项系数加权和法,系统工程理论与实践,1983,3(4):23~26.
    [78]毛定祥,一种最小二乘意义下主客观评价一致的组合评价方法,中国管理科学,2002,10(5):95~97.
    [79]陈华友,多属性决策中的一种最优组合赋权方法研究,运筹与管理,2003,12(2):6~10.
    [80]秦寿康,基于三层BP神经网络的多指标综合评估方法及应用,系统工程理论与实践,2001(3):35~37.
    [81]赵金超,赵国杰,基于BP神经网络模型的企业综合绩效评价方法,天津理工学院学报,2004,20(2):12~15.
    [82]王天华,范明天,用演化算法求解多阶段配电网规划问题,中国电机工程学报,2000,20(3):34~39.
    [83]冯琳,毛志忠,基于Maximin的动态种群多目标粒子群算法,东北大学学报,2010,31(7):913~917.
    [84]翟海保,程浩忠,多阶段输电网络最优规划的并行蚁群算法,电力系统自动化,2004,28(20):37~43.
    [85]余健明,吴海峰,杨文宇,改进多种群遗传算法在中压配电网规划中的应用,西安理工大学学报,2005,21(1):69~73.
    [86]罗党,刘思峰,吴顺祥,灰色粗糙组合决策模型研究,厦门大学学报,2004,43(1):26~30.
    [87]王坚强,几类信息不完全确定的多准则决策方法研究,长沙:中南大学,2005,56~62.
    [88]张琳,资源分配的多目标模糊优选动态规划分析法,运筹与管理,2000,9(4):22~29.
    [89]杨惠敏,付萍,基于熵权的多级模糊综合评价的应用,华北电力大学学报,2005,32(5):104~108.
    [90]王兴华,基于群体决策的多目标多阶段综合决策模型,系统工程理论与应用,1996,5(3):63~71.
    [91]韩力群,人工神经网络理论、设计及应用,北京:化学工业出版社,2002,45~67.
    [92]杨浩,模型与算法,北京:北方交通大学出版社2002,170~190.
    [93]张凤荣,金俊武,李延忠,基于改进的灰色BP神经网络的区域物流成本预测,公路交通科技,2005,(6):155~159.
    [94] S.L.Phung,A.Bouzerdoum,A Pyramidal Neural Network for Visual PatternRecognition,IEEE Transactions on Neural Networks,2007,37(3):692~704.
    [95]刘国东,丁晶,BP网络用于水文预测的几个问题探讨,水利学报,1999,(6):1~4.
    [96] F.Qian,L.Xu,Improving customer satisfaction by the expert system usingartificial neural networks,7th World Congress on Intelligent Control andAutomation,2008,1:9303~9306.
    [97] Wang Lei,Jiao Licheng,Novel genetic algorithm based onimmunity,Proceedings-IEEE International Symposium on Circuits and Systems5May28-May3120002000Sponsored by:IEEE Circuits and SystemsSociety IEEE V-385~V-388.
    [98]雷德明,多维实数编码遗传算法,控制与决策,2000,15(2):239~241.
    [99]张丽萍,遗传算法的现状及发展动向,信息与控制,2001,30(6):531~535.
    [100]胡德福,结合改进的遗传算法的BP人工神经网络岩爆预测研究,铁道勘测与设计,2011,2(3):94~96.
    [101]吴新余,孙力娟,改进交叉方式的遗传算法在求解通信网络优化问题中的应用,通信学报,1997,18(10):15~21.
    [102]李平,卢文喜,改进的模拟退火遗传算法在地下水管理中的应用,水文地质工程地质,2011,3(2):9~13.
    [103]徐鹏,遗传算法在TSP问题中的应用,科技广场,2011,3(1):103~105.
    [104]封淑玲,遗传算法在自动控制领域中的应用,硅谷,2011,10(8):146~195.
    [105] Back T, Hoffmeister F, Schwefel HP,Survey of Evolution Strategies,Proc ICGA4,1991,2~10.
    [106] Black,Fisher and Scholes,Myron,The Pricing of Options and CorporateLiabilities,Journal of Political Economy,1973,(81):637~659.
    [107] Merton,Robert.C,The Theory of Rational Option Pricing,Bell Journal ofEconomics and Management Science,1973,(4):141~183.
    [108] F.Fabozzi,Interest rate,term structure and valuation modeling.JohnWiley&Sons,2000,140~150.
    [109] NICOLAS B.Real options,patents,productivity and market value:Evidencefrom a panel of British firms IFS,Working Paper,2001,295~300.
    [110] DIDIER.C,BENOIT.L,Understanding the economic value of legal covenants ininvestment contracts:A real options approach to venture equitycontracts,Working Paper,2002,450~512.
    [111] Mayers,Steward.C,Determinations of Corporate Borrowing,Journal ofFinancial Economics,1977,(5):147~176.
    [112] Ross,Stephen.A,Uses,Abuses,and Alternatives to the Net-Present-ValueRule,Financial Management,1995,(24):96~102.
    [113]方曙,武振业,实物期权理论及其在企业决策中的应用,科学管理研究,2001,(2):42~46.
    [114]马莎.阿姆拉姆,纳林.库拉蒂拉卡,实物期权-不确定环境下战略投资管理,张维,译,北京:机械工业出版社,2001,47~67.
    [115] Campbell.J.A,Real option analysis of the timing of IS investmentdecisions,information and management2002,39:337~344.
    [116] Pennings.E,Market entry, phased rollout or abandonment? A real optionapproach,European journal of Operational Research,2000:124,125~138.
    [117] Brach M A. Real Options in Practice. Hoboken,NJ:John Wiley&Sons,Inc,2003
    [118] Trigeorgis L. Real Options Managerial Flexibility and Strategy in ResourceAllocation Massachusetts,MIT Press,1996,231~330.
    [119]夏健明,陈元志,实物期权理论述评,上海金融学院学报,2005,(1):4~14.
    [120] Zadeh L A. Fuzzy sets. Information and Control,1965,8(3):338~353.
    [121]刘普寅,模糊理论及其应用,长沙:国防科技大学出版社,2003,12(3):188~199.
    [122]胡永宏,贺思辉,综合评价方法,北京:科学出版社,2000:248~350.
    [123]张卫民,安景文,熵值法在城市可持续发展评价问题中的应用,数量经济技术经济研究,2003,6(4):100~104.
    [124]施泉生,运筹学,北京:中国电力出版社,2009,200~300.
    [125]杨奎河,短期电力负荷的智能化预测方法研究,西安:西安电子科技大学,2004,25~60.
    [126]王建军,智能电网环境下的自适互动智能负荷预测研究,陕西电力,2010,5(3):11~15.
    [127]葛少云,贾鸥莎,刘洪,基于遗传灰色神经网络模型的实时电价条件下短期电力负荷预测,电网技术,2012,36(1):224~229.
    [128] David.A.K,Li.Y.Z.,Consumer rationality assumptions in the real-tine pricing ofelectricity,IEE Proceedings,1992,139(4):315~322.
    [129]刘思峰,党耀国,张歧山,灰色系统理论及其应用,北京:科学出版社,2004,50~90.
    [130][130]孙玉刚,灰色关联分析及其应用的研究,南京:南京航空航天大学,2007,30~40.
    [131] http://www.aemo.com.au/data/aggPD_2006to2010.html
    [132]吕宏辉,钟珞,夏红霞,灰色系统与神经网络融合技术探索,微机发展,2000(3):3~5
    [133]王钟羡,吴春笃,GM(1,1)改进模型及其应用,数学的实践与认识,2003,33(9):20~25
    [134]刘思峰,灰色系统理论及其应用,北京:科学出版社,2010,23~78.
    [135]王科俊,李国斌,几种变学习率的快速BP算法的比较研究,哈尔滨工程大学学报,1997,18(3):37~40.
    [136]李玲纯,田丽,基于遗传BP神经网络的电力系统短期负荷预测,安徽工程科技学院学报,2009,5(3):45~48.
    [137]贺蓉,曾刚,天气敏感型神经网络在地区电网短期负荷预测中的应用,电力系统自动化,2001,23(17):56~60.
    [138]卢开澄,图论及其应用,北京:清华大学出版社,1984:42~50.
    [139]杨浩,模型与算法,北京:北方交通大学出版社,2002:166~168.
    [140]程浩忠,陈章潮,利用最小运输费用模型确定城市送电网的初始网架,运筹学,1995(2):50~60.
    [141]牛朋超,康积涛,智能电网开启电网运行新形势,电力系统保护与控制,2010,38(19):240~244.
    [142]颜伟,文旭,智能电网环境下电力市场面临的机遇与挑战,电力系统保护与控制,2010,38(24):225~232.
    [143]赵珊珊,张东霞,智能电网的风险评估,电网技术,2009,33(19):8~12.
    [144]王伟,毛安家,市场条件下电力系统暂态安全风险评估,中国电机工程学报,2009,29(1):68~73.
    [145]吉兴全,实物期权方法及其在电力系统中的应用,电力系统自动化,2005,29(22):6~14.
    [146] AVINASH K D,ROBERT S P,不确定条件下的投资,朱勇,译,北京:中国人民大学出版社,2002,33~57.
    [147]茅宁,期权分析:理论与应用,南京:南京大学出版社,2002,21~60.
    [148] ZMECHCKSKAL Z,Application of the fuzzy-stochastic methodology toappraising the firm value as a European call option,European journal ofOperation Research,2001,135(2):303~310.
    [149] COOPER R G,KLENSCHMIDT E J,New products what separates winnersfrom losers,Journal of Product Innovation Management,1987,4:169~184.
    [150] Geske,R.,The Valuatio of compound options,Journal of FinanceEconomics,1979,(7):63~81.
    [151] Carlsson C,Fuller R,A Fuzzy approach to real option valuation,Fuzzy Sets andSystems,2003,139(2):297~312.
    [152]王彬,何光宇,梅生伟等,智能电网评估指标体系的构建方法,电力系统自动化,2011,35(23):1~6.
    [153]王智冬,李晖等,智能电网的评估指标体系,电网技术,2009,33(17):14~19.
    [154]舒康,梁镇韩,AHP中的指数标度法,系统工程理论与实践,1990,10(1):6~8.
    [155]侯福均,吴祈宗,I型不确定数互补判断矩阵的一致性和排序研究,系统工程理论与实践,2005,25(10):60~66.
    [156] Liou T S, Wang M J J. Ranking fuzzy numbers with integral value. Fuzzy Setsand Systems,1992,50:247~255.
    [157]徐泽水,基于FOWA算子的三角模糊数互补判断矩阵排序排序法,系统工程理论与实践,2003,23(10):86~89.
    [158]樊治平,姜艳萍,互补判断矩阵一致性改进方法,东北大学学报,2003,24(1):98~101.
    [159]缪胜清,最大信息熵原理及其对统计力学的应用,熵与交叉科学,气象出版社,1986,26~70.
    [160]徐晶,王成山,李晓辉,等,基于自适应遗传算法的配电网改造方案优化,电力系统自动化,2007,31(14):111~115.
    [161] Jung S, Moon B R. Toward Minimal Restriction of Genetic Encoding andCrossovers for the Two-Dimensional Euclidean TSP. IEEE Transactions onEvolutionary Computation,2002,6(12):56~57.
    [162]高经纬,张煦,等,求解TSP问题的遗传算法实现,计算机时代,2004(2):19~21.
    [163] Kuo T, Hwang S Y. A genetic algorithm with disruptive selection. IEEETransactions on System, Man and Cybernetics,1996,26(2):299~307.
    [164] Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation ingenetic algorithm. IEEE Transactions on System, Man and Cybernetics,1994,24(4):656~667.
    [165] GE Shao-yun,JIA Ou-sha,LIU Hong, Decision-making analysis of10kV to20kV distribution network transformation,2010China InternationalConference on Electricity Distribution (CICED),2010,350~353.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700