用户名: 密码: 验证码:
生态公益林限制性利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林在应对和减缓全球气候变化中的作用,已得到越来越多人的重视。在我国生态公益林因其特殊的属性,其生态服务功能强弱与人们生活质量息息相关,其在净化大气、固碳释氧等方面发挥着举足轻重的作用。然而长期以来我国生态公益林经营粗放和“一刀切”的管理模式,已经限制了生态公益林生态服务功能的发挥。为此,本文运用3S (GPS/RS/GIS)技术、采用方差分析、多重比较分析等数理统计方法,结合树种(组)、龄组、生境划分森林类型,研究各森林类型的适宜林分密度,通过景观调整和林分调整实现限制性利用(采伐/补植),旨在增强生态服务功能的前提下,优化树种配置,改善林分结构,在收获一定木材的同时提高林分质量。主要研究结论如下:
     (1)本文运用生态位模型MAXENT结合气候因子、地形因子、土壤养分预测树种(组)的潜在分布并划分生境等级。结果表明:杉木、马尾松、阔叶混交林、针阔混交林潜在分布的预测精度分别达到85.0%,85.1%,80.5%,81.1%。按树种(组)适生生境的面积大小排序为:马尾松>阔叶混>针阔混>杉木,说明马尾松的适生性最强生态位最宽,而阔叶混、针阔混交林次之,杉木适生性最弱对环境因子要求较高生态位最窄。根据树种(组)、龄组、生境划分出16种森林类型。
     (2)本文采用方差分析和多重比较法研究林分密度对林分生长、林下植被、土壤养分的影响,结果表明:①林分生长方面,林分密度对胸径有极显著影响(P<0.01),对树高、蓄积无显著影响(P>0.05);②林下植被方面,林分密度对植被种类、灌木高度有极显著影响(P<0.01),对植被盖度有显著影响(P<0.05);③土壤养分方面,林分密度对土壤有机质、全氮、全磷、全钾含量有显著影响(P<0.05),对pH值无显著影响(P>0.05)
     (3)本文运用3S技术,采用C-fix模型估算植被净初级生产力NPP;采用修正后的USLE通用土壤流失方程估算土壤侵蚀模数;采用地统计学Kriging法和RBF(径向基函数)法对采样点的土壤养分数据进行空间插值,以此为基础数据,依据《森林生态系统服务功能评估规范》、参考《中国森林生态服务功能评估》,从水源涵养、固碳释氧、保育土壤、净化大气4方面估算生态公益林的生态服务功能价值。结果表明:
     顺昌县生态公益林NPP (g C·m-2a-1)平均值为708.43,按树种(组)排序:阔叶混(764.08)>针阔混(590.05)>杉木(518.23)>马尾松(474.05);按龄组排序:成年(744.73)>幼年(683.76);按生境排序:适生生境(711.84)>一般生境(703.22);按生态区位排序:一级保护(736.00)>二级保护(726.31)>三级保护(563.74)
     顺昌县生态公益林土壤侵蚀模数(t-hm-2·a-1)平均值为12.43,按树种(组)排序:针阔混(10.45)<阔叶混(10.96)<马尾松(12.59)<杉木(12.69);按龄组排序:成年(11.42)<幼年(12.44);按生境排序:适生生境(11.71)<一般生境(13.00);按生态区位排序:一级保护(12.11)<二级保护(12.64)<三级保护(13.86)。
     土壤养分空间插值的RMS(均方根误差):有机质为16.42,全氮为0.61,全磷为0.16,全钾为2.68。按全国第二次土壤普查土壤养分含量分级标准,顺昌县土壤有机质含量等级以丰富和很丰富为主(15~81g·kg-1),全氮含量等级以中等和丰富为主(0.09~0.29g·kg-1),全磷含量等级以偏低和中等为主(0.05~0.15g·kg-1),全钾含量等级以中等和偏低为主(14~24g·kg-1)。
     顺昌县生态公益林生态服务功能价值(元·hm-2·a-1)平均为37836.4,按树种(组)排序:针阔混(40185.5)>阔叶混(39173.4)>马尾松(30256.2)>杉木(25428.9);按龄组排序:成年(33781.4)>幼年(33655.9);按生境排序:适生生境(40251.0)>一般生境(40024.1);按生态区位排序:一级保护(38689.5)>二级保护(38251.6)>三级保护(32509.2)。
     灰色关联度分析表明:净初级生产力、太阳辐射量和土壤侵蚀模数与生态服务功能价值有较强的关联度,是生态服务功能价值的主要影响指标,而土壤有机质和全磷含量对不同森林类型生态服务功能价值的影响相对较小
     (4)根据(2)和(3)的结论,生态公益林林分密度和树种配置与其生态服务功能价值关系密切。研究表明,各森林类型随着林分密度的增加,生态服务功能价值有先增加后减小的趋势。故本文采用二次多项式方程进行拟合,对其一阶求导即得到各森林类型的适宜林分密度。本文以“增加阔叶树比重、降低斑块破碎化、增强景观异质性”的原则,通过计算机模拟调整生态公益林景观格局优化树种配置,结果表明:
     适宜林分密度大小,按龄组排序:幼年>成年;按生境排序:一般生境>适生生境;按树种(组)排序(株.hm-2):杉木(1395~2315)>马尾松(1525~2210)>针阔混(1190~2007)>阔叶混(1455~2105)。
     景观格局优化调整后,杉木、马尾松面积比重降低,阔叶混、针阔混比重增加(占景观面积的百分比PLAND),斑块破碎化程度明显降低(斑块密度PD、破碎化度FN),景观异质性略有提高(分维数FDI、景观形状指数LSI),斑块之间的连通性和团聚性明显增强(蔓延度CONTAG),说明优化调整后生态公益林景观格局明显改善,生态服务功能得到强化。
     (5)根据(4)的结论,若小班林分密度高于所对应森林类型的适宜林分密度则需要采伐,若低于则需补植,若相近则需保持。为此,本文以10个样地为例,选择竞争指数、混交度指数、聚集度指数作为林分结构调整(采伐木/补植区选择)的依据。采用角尺度比较林分结构调整前后的变化。根据林道修建费用模型,探讨了集材路线的选择;依据适地适树的原则,对补植树种的选择给出建议。结果表明:经采伐或补植后,角尺度分布以向左偏移为主即林木趋于均匀分布。
Dealing with and mitigating global climate change, the forest has been paid more and more attention. Because the ecological property, the ecosystem services of China's ecological forest are closely related to the quality of people's life. And ecological forest plays a pivotal role in the following aspects such as air purification, carbon fixation and oxygen release, et al. But, for a long time, extensive management of ecological forest and "one size fits all" management mode, has limited ecological forest ecosystem services. Therefore, this paper, based on3S (GPS/RS/GIS), used mathematical statistical method such as variance analysis and multiple comparisons analysis to divide forest type according to tree species (group), age group and niche; analyzed the optimal stand density of forest type, technology and proposed the restrictive utilization (thinning/replanting) of ecological forest through landscape adjustment and stand adjustment, aimed at enhancing the ecosystem services, optimizing the species configuration, improving stand structure and harvesting a certain amount of timber while improving stand quality. The main conclusions are as follows:
     (1) In this paper, the ecological niche model MAXENT, combined climatic factors, topographic factors, soil nutrient factors, was used to predict the potential distribution of tree species (group) niches and the division of the niches suitability. The results showed that:the prediction accuracy of potential distribution of C. lanceolata, P. massoniana, broadleaved forest, mixed wood was85.0%,85.1%,80.5%,81.1%, respectively. The descending order of suitable niche area:P. massoniana> broadleaved forest> mixed wood> C. lanceolata, indicating that P. massoniana's adaptability is strongest and its niche width is widest, following by broadleaved forest and mixed wood. C. lanceolata has weakest adaptability and its niche is narrowest. Forest type was classified as16types, according to tree species (group), age group and niche.
     (2) This paper used variance analysis and multiple comparisons to analyze the impact of stand density on stand growth, understory vegetation and soil nutrients. The results showed that:①In the aspect of stand growth, stand density had significant effect on DBH (P<0.01), though had no significant effect on tree height, stand volume (P>0.05);②In the aspect of understory vegetation, stand density have significant effect on vegetation types, shrub height (P<0.01), and on vegetation coverage (P<0.05);③In the aspect of soil nutrients, stand density have a significant effect on soil organic matter, total nitrogen, total phosphorus, total potassium content (P<0.05), though had no significant effect on pH (P>0.05).
     (3) This paper, based on3S technology, used C-fix model to estimate vegetation net primary productivity(NPP); and used the revised Universal Soil Loss Equation(USLE) to estimate soil erosion modulus; and made spatial interpolation of the sampling points of soil nutrient by geostatistical Kriging method and radial basis function (RBF) method, which as the basic data for estimating the ecological forest ecosystem services value, according to 《The Criterions of Forest Ecosystem Services Assessment》 and ((The Assessment of China's Forest Ecosystem Services》, from the aspects of water conservation, carbon sequestration and oxygen release, soil conservation and air purification. The results showed that:
     The mean value of ecological forest NPP in Shunchang (g C m-2a-1) is708.43, sorted by tree species (group):broadleaved forest (764.08)> mixed wood (590.05)> C. lanceolata (518.23)> P. massoniana (474.05); sorted by age group:mature (744.73)> young (683.76); Sort by niche:suitable (711.84)> ordinary (703.22); sorted by ecological position:1st class protection (736.00)>2nd class protection (726.31)>3rd class protection (563.74).
     The mean value of soil erosion modulus(t-hm-2·a-1) of ecological forest in Shunchang is12.43, sorted by tree species (group):mixed wood (10.45)     The RMS (root mean square error) of spatial interpolation of soil nutrient is:organic matter16.42, total nitrogen0.61, total phosphorus0.16, total potassium2.68. According to soil nutrient content grading standards of2nd nationwide general soil survey, the grade of soil organic matter content mainly is rich and very rich (15~81g·kg1), the grade of total nitrogen content mainly is medium and rich (0.09~0.29g·kg-1), the grade of total phosphorus content mainly is low and middle (0.05~0.15g·kg-1), the grade of total potassium mainly is middle and low (14~24g·kg-1).
     The mean value of ecological forest ecosystem services in Shunchang (yuan·hm-2·a-1) is37836.4, sorted by tree species (group):mixed wood(40185.5)> broadleaved forest (39173.4)> P. massoniana (30256.2)> C. lanceolata (25428.9); sorted by age group:mature (33781.4)> young (33655.9); sorted by niche:suitable (40251.0)> ordinary (40024.1); sorted by ecological position:1st class protection (38689.5)>2nd class protection (38251.6)>3rd class protection (32509.2).
     Grey relational analysis showed that:net primary productivity, solar radiation and soil erosion modulus has a stronger correlation with the ecosystem services value, which are the main influence indices of ecosystem services value, while soil organic matter and total phosphorus content has relatively small impact on ecosystem services value of forest types.
     (4) According to (2) and (3) conclusions, the stand density and species configuration are closely related to ecosystem services value in ecological forest. Results showed that:There is a trend that ecosystem services value increases with the stand density increasing and then decreases in each forest type. Therefore, this paper used quadratic polynomial equation to fit, and its first order derivation is optimal stand density of forest type. Based on the principle of "increasing the proportion of broadleaved forest, reducing patch fragmentation and enhancing landscape heterogeneity", this paper simulated the adjustment of landscape pattern and the optimization of species configuration of ecological forest by computer. The results showed that:
     The optimal stand density, sorted by age groups:young> mature; sorted by niche:ordinary> suitable; sorted by tree species (group)(strain·hm-2):C. lanceolata (1395~2315)> P. massoniana (1525~2210)> mixed wood (1190~2007)> broadleaved forest (1455~2105).
     After optimimal adjustment of landscape pattern, the area proportion of C. lanceolata, P. massoniana reduced, while broadleaved forest, mixed wood increased (PLAND), the degree of patch fragmentation was significantly reduced (PD, FN), a slight increase of landscape heterogeneity (FDI, LSI), the connectivity and reunion between the patches were significantly enhanced (CONTAG), indicating the landscape pattern of ecological forest has significant improved after optimal adjustment and ecosystem services have been strengthened.
     (5) According to (4) conclusion, the stand density of patch is higher than the corresponding forest types'optimal stand density will need thinning, if less than need replanting, if similar is required to maintain. This paper, taking10plots as example, selected competition index, mingling index, aggregation index as the basis of stand structural adjustment (selection of logging tree or replanting area). This paper selected uniform angular index to compare stand structure changes before and after optimal adjustment. Based on forest road construction cost model, this paper analyzed the skidding routes; according to the principle of matching tree species with site, some recommendations about the choice of replanting trees are given. The results showed that:after thinning or replanting the uniform angular distribution shifted to left i.e. trees distribution tend to be uniform after optimal adjustment.
引文
1. Arriaza M J F, Canas-Ortega J A, Canas-Madueno P R. Assessing the visual quality of rural land-scapes.[J] Landscape and Urban Planning,2004,69:115-125.
    2. Aussenac G.Interactions between forest stands and micro climate:ecophysiological aspects and consequences for silviculture[J].Annual of Forest Scicence,2000,57:287-301.
    3. Bjorklund J, Limburg K E, Rydberg T. Impact of production intensity on the ability of the agricul-tural landscape to generate ecosystem services:An example from Sweden[J].Ecological Econom-ics,1999,29:269-291.
    4. Bolund P, Hunhammar S. Ecosystem services in urban areas[J].Ecological Econom-ics,1999,29:293-301.
    5. Breda N, Granier A, Aussenac GEffects of thinning on soil and tree water relations, transpiration and growth in an oak forest(Quercuspetraea (Matt.) Liebl.)[J].Tree Phyiology,1995,15:295-306.
    6. Breshears D D, Myers O B, Meyer C W, et al. Tree die-off in response to global change-type drought:mortality insights from a decade of plant water potential measurements[J].Frontiers in Ecology and the Environment,2009,7:185-189.
    7. Buongiorno J, Dahir S, Lu H C, et al. Tree size diversity and economic returns in uneven-aged for-est stands[J]. Forest Science,1994,40:83-103.
    8. Burrough P A. Principles of GIS for land resources assessment[M].Oxford:Clarendon Press,1986.
    9. Canellas I, del Rio M, Roig S, Montero GGrowth response to thinning in Quercus pyrenaica Willd. coppice stands in Spanish central mountain[J].Annual of Forest Science,2004,61:243-250.
    10. Cantu C, Wright R G, Scott J M, et al. Assessment of current and proposed nature reserves of Mex-ico based on their capacity to protect geophysical features and biodiversity[J]. Biological Conservation,2004,115:411-417.
    11. Chirici G, Barbati A, Maselli F. Modelling of Italian forest net primary productivity by the integra-tion of remotely sensed and GIS data[J]. Forest Ecology and Management,2007,246:285-295.
    12. Clark.Adjudication to Administration:A Statistical Analysis of Federal District Courts in the Twen-tieth Century[J].S. CAL. L. REV,1981,55:65.
    13. Corcuera L, Camarero J J, Siso S,et al. Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands:functional responses in a new Mediterranean landscape[J].Trees Structure Function,2006,20:91-98.
    14. Costanza R, d'Arge R, Groot R, et al. The value of the world's ecosystem services and natural capital[J].Nature,1997,387:253-260.
    15. Cowling R M, Pressey R L. Introduction to systematic conservation planning in the Cape Floristic Region[J]. Biological Conservation,2003,112:1-3.
    16. Daily D C. Nature's Service:Societal Dependence on Natural Ecosystems[M].Island Press.1997.
    17. Dwyer J P, Kabrick J M, Wetteroff J.Do improvement harvests mitigate oak decline in Missouri Ozark forests? NJ Appl Forest,2007,24:123-128.
    18. e Groot R S. Functions of Nature:Evaluation of Nature in Environmental Planning Management and Decision Making[M]. Groningen:Wolters Noordhoff BV,1992.
    19. Ekins P. Identifying critical natural capital. Conclusion about critical natural capital[J]. Ecological Economics,2003,44:277-292.
    20. Faith D P, Walker P A, Margules C R. Some future prospects for systematic biodiversity planning in Papua New Guinea and for biodiversity planning in general[J]. Pacific Conservation Biol-ogy,2001,6:325-343.
    21. Faith D P, Walker P A. The role of trade-offs in biodiversity conservation planning:linking local management, regional planning and global conservation efforts[J]. Journal of Bios-ciences,2002,27(4):393-407.
    22. Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere:integrating terrestrial and oceanic components [J]. Science,1998,281:237-240.
    23. Fu W J, Hubert T, Zhang C S. Spatial variation of soil nutrients in a dairy farm and its implications for site-specific fertilizer application[J].Soil & Tillage Research,2010,106:185-193.
    24. Gatrell A C, Bailey T C, Diggle P J, et al. Spatial point pattern analysis and its application in geographical epidemiology[J].Transactions of the Institute of British Geographers,1996,21(1): 256-274.
    25.GB/T 18337.1-2001,生态公益林建设导则[S].
    26.GB/T 18337.2-2001,生态公益林建设规划设计通则[S].
    27.GB/T 18337.3-2001,生态公益林建设技术规程[S].
    28. Gracia C A, Sabate S, Martinez J M, et al. Functional responses to thinning. In:Roda F, Retana J, Gracia CA, Bellot J(eds) Ecology of Mediterranean evergreen oak forests:ecological studies[M]. Berlin:Springer,1999:329-338.
    29. Guisan A, Harrell F E. Ordinal response regression models in ecology[J]. Journal of Vegetation Science,2000,11:617-626.
    30. Guisan A, Thuiller W. Predicting species distribution:offering more than simple habitat mod-els[J].Ecology Letters,2005,8:993-1009.
    31. Gutman, G, Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models[J].International Journal of Remote Sens-ing,1998,19:1533-1543.
    32. Healy W M, Lewis A M, Boose E F. Variation of red oak acorn production. Forest Ecology of Management,1999,116:1-11.
    33. Heimburger C C. Forest-type studies in the Adirondack region[M].New York:Agric. Expt. Sta.,1934.
    34. Hoctor T S, Carr M, Zwick P D. Identifying a linked reserve system using a regional landscape approach:the Florida ecological network[J]. Conservation Biology,2000,14:984-1000.
    35. Holmund C, Hammer M. Ecosystem services generated by fish populations[J].Ecological Econom-ics,1999,29:253-268.
    36. Iqbal M. An Introduction to Solar Radiation[M]. New York:Academic Press,1983.
    37. Issaks E H, Srivastava R M. An Introduction to Applied Geostatistics[M].New York:Oxford univer-sity press,1989.
    38. Johnson D W, Curtis P S. Effects of forest management on soil C and N storage:meta analysis[J]. Forest Ecology Management,2001,140:227-238.
    39. Kerry R, Oliver M A. Average variograms to guide soil sampling for land management[J].Int. J. Appl. Earth Observ. Geoinform,2004,5:307-325.
    40. Kerry R, Oliver M A. Variograms of ancillary data to aid sampling for soil surveys[J].Precision Agric,2003,4:261-278.
    41. Kohler M, Sohn J, Nagele G, et al. Can drought tolerance of Norway spruce (Picea abies (L.) Karst.) be increased through thinning?[J].European Journal of Forest Research,2010,129:1109-1118.
    42. Kremen C, Razafimahatratra V R, Guillery P, et al.Designing the Masoala National Park in Madagascar based on biological and socioeconomic data[J]. Conservation Biol-ogy,1999,13:1055-1068.
    43. Liu B Y, Nearing M A, Shi P J, et al. Slope length effects on soil loss for steep slopes [J].Soil So-ciety of American Journal,2000,64(5):1759-1763.
    44.LY/T 1228-1999,森林土壤全氮的测定[S].
    45.LY/T 1232-1999,森林土壤全磷的测定[S].
    46.LY/T 1234-1999,森林土壤全钾的测定[S].
    47.LY/T 1237-1999,森林土壤有机质的测定及碳氮化的计算[S].
    48.LY/T 1239-1999,森林土壤pH值的测定[S].
    49.LY/T 1556-2000,生态公益林与商品林分类技术指标[S].
    50.LY/T 1721-2008,森林生态系统服务功能评估规范[S].
    51. Man R, Kayahara G J, Rice J A, et al.Elevenyear responses of a boreal mixedwood stand to partial harvesting:light, vegetation and regeneration dynamics. Forest Ecology and Manage-ment,2008,255:697-706.
    52. Margules C R, Pressey R L. Systematic conservation planning[J]. Nature,2000,405:243-253.
    53. Margules C, Sarkar S. Systematic conservation planning[J].Nature,2000,405:243-253.
    54. Maselli F, Barbati A, Chiesi M, et al. Use of remotely sensed and ancillary data for estimating for-est gross primary productivity in Italy[J]. Remote Sens. Environment,2006,100 (4):563-575.
    55. McDowell N, Pockman W T, Allen C D, et al.Mechanisms of plant survival and mortality during drought:why do some plants survive while others succumb to drought?[J]. New Phytolo-gist,2008,178:719-739.
    56. McNabb K L, Miller M S, Lockaby B G, et al. Selection harvests in Amazonian rainforests: long-term impacts on soil properties[J]. Forest Ecology and Management,1997,93:153-160.
    57. Millennium Ecosystem Assessment. Ecosystems and Human Well-being:A Framework for Assessment[M]. Washington DC:World Resources Institute,2003..
    58. Misson L, Nicault A, Guiot J.Effects of different thinning intensities on drought response in Nor-way spruce (Picea abies[L].Karst.)[J].Forest Ecology of Management,2003,183:47-60.
    59. Myneni R B, Williams D L. On the relationship between fAPAR and NDVI[J]. Remote Sensing of Environment,1994,49:200-211.
    60. Nagendra H. Incorporating landscape transformation into local conservation prioritization:A case study in the Western Ghats, India[J]. Biodiversity and Conservation,2001,10:353-365.
    61. Natori Y, Fukui W, Hikasa M. Empowering nature conservation in Japanese rural areas:a planning strategy integrating visual and biological landscape perspectives[J]. Landscape and Urban Plan-ning,2005,70:315-324.
    62. Nazzareno. Interpolation processes using multivariate geostatistics for mapping of climatological precipitation Mean in the Sannio Mountains[J].Earth Surface Processes and Landforms. 2005,30:259-268.
    63. Phua M H, Minowa M. A GIS-based multi-criteria decision making approach to forest conserva-tion planning at a landscape scale:a case study in the Kinabalu Area, Sabah, Malaysia[J]. Land-scape and Urban Planning,2005,71:207-222.
    64. Pommerening A. Approaches to quantifying forest structures[J]. Forestry,2002,75:306-324.
    65. Reader R J, Bricker B D. Value of selectively cut deciduous forest for understory herb conservation: an experimental assessment[J].Forest Ecology and Management,1992,51:317-327.
    66. Renkin R A, Despain D G. Fuel moisture, forest type and lightning caused fire in Yellowstone Na-tional Park[J].Canadian Journal of Forest Research,1992,22:37-45.
    67. Ruimy A, Saugier B. Methodology for the estimation of terrestrial net primary production from remotely sensed data[J]. Journal of Geophysical Research,1994,99:5263-5283.
    68. Saugier B, Roy J,Mooney H A. Terrestrial Global Productivity [M]. San Diego:Academic Press,2011.
    69. Scott J M, Heglund P J, Morrison M L, et al. Predicting species occurrences:issues of scale and accuracy[M]. Washington DC:Island Press,2000.
    70. Sharma C M, Baduni N P, Gairola S, et al. Tree diversity and carbon stocks of some major forest types of Garhwal Himalaya, India[J]. Forest Ecology and Management,2010,260(12):2170-2179.
    71. Sims D A, Rahman A F, Cordova V D, et al. A new model of gross primary productivity for North American ecosystems based solely on the enhanced vegetation index and land surface temperature from MODIS[J]. Remote Sensing of Environment,2008,112:1633-1646.
    72. Sims D A, Rahman A F, Cordova V D, et al. On the use of MODIS EVI to assess gross primary productivity of North American ecosystems[J].Journal of Geophysical Research,2006,111:G04015.
    73.SL 190-96.土壤侵蚀分类分级标准[S].
    74. Smith H C, Miller G W. Managing Appalachians hardwood stands using four regeneration prac-tices 34-year results[J].Northern Journal of Applied Forestry.1987,4(4):180-185.
    75. Steven E S, Bryan F, Paul E G, et al. The multispectral separability of Costa Rican rainforest types with support vector machines and Random Forest decision trees[J]. International Journal of Re-mote Sensing,2010,31 (11):2885-2909.
    76. Study of Critical Environmental Problems(SCEP),Man's Impact on the Global Environment [M].Cambridge:MIT Press,1970.
    77. Thornthwaite C W. An approach toward rational classification of climate[J]. Geographic Review, 1948,38:55-94.
    78. Uchijima Z, Seino H. Agroclimatic evaluation of net primary productivity of natural vegetation: Chikugo model for evaluating net primary productivity[J]. Journal of Agriculture and Meteorol-ogy,1985,40:343-353.
    79. Veroustraete F, Sabbe H, Eerens H. Estimation of carbon mass fluxes over Europe using the C-Fix model and Euroflux data[J]. Remote Sensing of Environment,2002,83:376-399.
    80. Vogt K A, Vogt D J, Palmiotto P A, et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species[J].Plant and Soil,1996,187:159-219.
    81. Waring R H, Landsberg J J, Williams M. Net primary production of forests:a constant fraction of gross production?[J] Tree Physioloy,1998,18:129-134.
    82. Webster R.Quantitative spatial analysis of soil in the field[J].Advance in Soil Science,1985(3):1-70.
    83. Wei C, Wang C, Yang L. Characterizing spatial distribution and sources of heavy metals in the soils from mining-smelting activities in Shuikoushan, Hunan Province, China[J].J. Environ. Sci.,2009, 21:1230-1236.
    84. Williams P H, Araujo M B. Apples, oranges, and probabilities:integrating multiple factors into biodiversity conservation with consistency[J]. Environmental Modeling and Assess-ment,2002,7:139-151.
    85. Woodward C L. Soil compaction and topsoil removal effects on soil properties and seedling growth in Amazonian Ecuador[J]. Forest Ecology and Management,1996,82:197-209.
    86. Wu C, Niu Z, Gao S. Gross primary production estimation from MODIS data with vegetation in-dex and photosynthetically active radiation in maize[J]. Journal of Geophysical Research,2010,115, D12127.
    87. Xiao X, Hollinger D, Aber J, et al. Satellite-based modeling of gross primary production in an evergreen needleleaf forest[J]. Remote Sensing of Environment,2004b,89:519-534.
    88. Xiao X, Zhang Q, Braswell B, et al. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data[J]. Remote Sensing of Environment, 2004a,91:256-270.
    89. Zacham T. The influence of selective thinning on the social structure of the young scots pine stand[J].Prace Instytutu Badawce zego Lesnictwa Seria A,2000,3:35-61.
    90.《中国森林生态服务功能评估》项目组.中国森林生态服务功能评估[M].北京:中国林业出版社,2010.
    91.鲍蕾,张志,刘亚林.基于最佳尺度的武汉市土地覆盖景观格局分析[J].湖北大学学报:自然科学版,2009,31(2):201-205.
    92.陈昌雄,陈平留.闽北天然次生林林木直径分布规律的研究[J].福建林学院学报,1996,16(2):122-125.
    93.陈昌雄,刘健,余坤勇,等.基于空间结构优化的马尾松阔叶树混交林模拟采伐[J].西南林学院学报,2010,30(6):29-32,37.
    94.陈礼光,郑郁善,等.突脉青冈林分水文效应研究[J].福建林学院学报,1999,19(2):170-173.
    95.陈利顶,刘洋,吕一河,等.景观生态学中的格局分析:现状、困境与未来[J].生态学报,2008,28(11):5521-5531.
    96.陈利军,刘高焕,等.中国植被净第一性生产力遥感动态监测[J].遥感学报,2002,6(2):129-135.
    97.陈平留,林杰.森林采伐量的预测与调整决策的初步研究[J].中南林业调查规划,1990(1):1-6.
    98.陈平留,郑德祥.南方森林经理必须适应市场经济的发展[J].中南林业调查规划,2001,20(B06):108-110,113.
    99.陈新美,张会儒,姜慧泉.东北过伐林区蒙古栎林空间结构分析与评价[J].西南林学院学报,2010,30(6):20-24.
    100.陈燕红,潘文斌,蔡芜镔.基于RS/GIS和RUSLE的流域土壤侵蚀定量研究——以福建省吉溪流域为例[J].地质灾害与环境保护,2007,18(3):5-10.
    101.谌红辉,丁贵杰,温恒辉,等.造林密度对马尾松林分生长与效益的影响研究[J].林业科学研究,2011,24(4):470-475.
    102.谌红辉,丁贵杰.马尾松造林密度效应研究[J].林业科学,2004,40(1):92-98.
    103.程江,杨凯,赵军,等.基于生态服务价值的上海土地利用变化影响评价[J].中国环境科学,2009,(1):95-100.
    104.邓英英,汤孟平,徐文兵,等.天目山近自然毛竹纯林的竹秆空间结构特征[J].浙江农林大学学报,2011,28(2):173-179.
    105.丁贵杰.马尾松人工林生物量和生产力研究—Ⅰ.不同造林密度生物量及密度效应[J].福建林学院学报,2003,23(1):34-38.
    106.董希斌,朱玉杰,韩玉华,等.森林采伐与局部森林生态系统稳定性的研究[J].东北林业大学学报,1997,25(6):30-33
    107.董希斌.抚育采伐强度对落叶松生长量的影响[J].东北林业大学学报,2001,29(1):44-47.
    108.董希斌.森林择伐对林分的影响[J].东北林业大学学报,2002,30(5):15-18.
    109.方晰,田大伦,项文化,等.杉木人工林土壤有机碳的垂直分布特征[J].浙江林学院学报,2004,21(4):418-423.
    110.冯育青,陈月琴,陶隽超.苏州森林生态服务功能价值评估[J].华东森林经理,2009,23(1):37-43.
    111.高艳鹏.半干旱黄土丘陵沟壑区主要树种人工林密度效应评价[D].北京林业大学,2011.
    112.葛宏立,周元中,汤孟平,等.Ripley's指数的一个新变形G(d)[J].生态学报,2008,28(4):1491-1497.
    113.古丽娜尔·托合提,海米提·依米提,米日姑·买买提,等.伊犁河谷土壤含盐量空间变异和格局分析[J].干旱地区农业研究,2011,29(2):152-158.
    114.郭泺,夏北成,余世孝.森林景观格局研究中的尺度效应[J].应用与环境生物学报,2006,12(3):304-307.
    115.国志兴,王宗明,张柏,等.2000年~2006年东北地区植被NPP的时空特征及影响因素分析[J].资源科学,2008,30(8):1226-1235.
    116.韩明跃,李莲芳,郑畹,等.间伐强度对云南松中龄低产林分结构的调整研究[J].中南林业科技大学学报:自然科学版,2011,31(2):27-33.
    117.韩素芸,田大伦,闫文德,等.湖南省主要森林类型生态服务功能价值评价[J].中南林业科技大学学报(自然科学版),2009,29(6):6-13.
    118.郝云庆,王金锡,王启和,等.柳杉纯林改造后林分空间结构变化预测[J].林业科学,2006,42(8):8-13.
    119.何勇,董文杰,郭晓寅,等.我国南水北调东线地区陆地植被NPP变化特征[J].气候变化研究进展,2006,2(5):246-249.
    120.何云玲,张一平.云南省自然植被净初级生产力的时空分布特征[J].山地学报,2006,24(2):193-201.
    121.黄进,张金池,杨会.桐庐生态公益林主要森林类型水源涵养功能综合评价[J].中国水土保持科学,2010a,8(1):46-50.
    122.黄进,张晓勉,张金池.桐庐生态公益林主要森林类型土壤抗水蚀功能综合评价[J].生态环境学报,2010b,19(4):932-937.
    123.黄清麟,董乃钧.中亚热带择伐阔叶林与人促阔叶林对比评价[J].应用与环境生物学报,1999,5(4):342-346.
    124.黄庆丰,宫守飞,许剑辉.天然落叶与常绿阔叶林林分的空间结构[J].东北林业大学学报,2011,39(10):1-3.
    125.黄文义,陈刚,胡成.RS技术在实时区域土壤侵蚀评价中的应用——以福建省花山溪流域为例[J].中国地质灾害与防治学报,2003,14(2):116-118,124.
    126.惠刚盈,K v Gadow,胡艳波,等.林木分布格局类型的角尺度均值分析方法[J].生态学报,2004,24(6):1225-1229.
    127.惠刚盈,K v Gadow,林分空间结构参数角尺度的标准角选择[J].林业科学研究,2004,17(6):687-692.
    128.惠刚盈,李丽,赵中华,等.林木空间分布格局分析方法[J].生态学报,2007,27(11):4717-4728.
    129.嘉铭.我国森林生态服务功能年总价值近去年GDP的1/3[J].生态文化,2010(3):13-13.
    130.江洪,汪小钦,孙为静.福建省森林生态系统NPP的遥感模拟与分析[J].地球信息科学学报,2010,12(4):580-586.
    131.江希钿,杨锦昌,等.林分价值的密度效应模型及其应用[J].福建林学院学报,2001,21(3):216-219.
    132.雷相东.东北过伐林区几种典型森林类型的物种和林分结构多样性及采伐的影响研究[D].北京林业大学,2000.
    133.李春明,杜纪山,张会儒.抚育间伐对森林生长的影响及其模型研究[J].林业科学研究,2003,16(5).636-641.
    134.李海奎,雷渊才.中国森林植被生物量和碳储量评估[M].北京:中国林业出版社,2010.
    135.李宏群,韩宗先,吴少斌,等.大木山自然保护区红腹锦鸡对冬季生境的选择性[J].东北林业大学学报,2011,39(11):76-78.
    136.李金平,王志石.1983-2003年澳门生态系统服务价值的变化[J].生态环境,2004,13(4):605-607,611.
    137.李双成,郑度,杨勤业.环境与生态系统资本价值评估的若干问题[J].环境科学,2001,22(6):103-107.
    138.李阳兵,王世杰,周德全.茂兰岩溶森林的生态服务研究[J].地球与环境,2005,33(2).39-44.
    139.李银鹏,季劲钧.全球植被与大气之间碳通量的模式估计[J].大气科学进展:英文版,2001,(5):807-818.
    140.林开旺,陈永宝.福建省东南沿海水蚀区土壤侵蚀遥感测报[J].水土保持通报,2002a,22(4):24-28,49.
    141.林开旺,陈永宝.闽南沿海水蚀区土壤侵蚀遥感监测技术[J].福建农业学报,2002b,17(2):74-77.
    142.林帅,李飞,周亚东.白沙县森林生态服务功能价值核算[J].热带林业,2009,37(4):7-9.
    143.刘秉正,吴发启.土壤侵蚀[M].西安:陕西人民出版社,1997.
    144.刘建锋,肖文发,郭明春,等.基于3-PGS模型的中国陆地植被NPP格局[J].林业科学,2011,47(5):16-22.
    145.刘健,陈平留.建阳武夷山区米槠群落特征的初步研究[J].林业科学,2001(z1):173-176.
    146.刘健,邓旺炤.天然针阔混交林优势种群间联结关系[J].应用与环境生物学报,1999,5(5):468-472.
    147.刘健.基于3S技术闽江流域生态公益林体系高效空间配置研究[D].北京林业大学,2006.
    148.鲁绍伟,刘凤芹,余新晓,等.华北土石山区不同造林密度的油松林结构与功能研究[J].干旱区资源与环境,2007,21(9):144-149.
    149.吕志强,吴志峰,张景华.基于最佳分析尺度的广州市景观格局分析[J].地理与地理信息科学,2007,23(4):89-92.
    150.马松梅,张明理,张宏祥,等.利用最大熵模型和规则集遗传算法模型预测孑遗植物裸果木的潜在地理分布及格局[J].植物生态学报,2010,34,(11):1327-1335.
    151.孟陈,李俊祥,朱颖,等.粒度变化对上海市景观格局分析的影响[J].生态学杂志,2007,26(7):1138-1142.
    152.欧阳志云,王效科,苗鸿.中国生态环境敏感性及其区域差异规律研究[J].生态学报,1999,19(5):607-613.
    153.潘竟虎,李璟.河谷型城市城乡结合部景观格局空间尺度效应分析——以兰州市西固区土地利用格局为例[J].生态与农村环境学报,2010,26(2):114-119.
    154.彭丹,任引.厦门市城市森林生态系统服务价值变化研究[J].福建林学院学报,2011,31(3):239-244.
    155.彭舜磊,王得祥.秦岭主要森林类型近自然度评价[J].林业科学,2011,47(1):135-142.
    156.朴世龙,方精云,等.利用CASA模型估算我国植被净第一性生产力[J].植物生态学报,2001,25(5):603-608,T001.
    157.邱荣祖,兰樟仁,黎建明.基于GIS的山地林道网优化配置系统[J].山地学报,2006,24(6):716-720.
    158.任志峰.DEM内插评价模型与应用系统开发研究[D].南京师范大学,2008.
    159.时银骏.小黑山自然保护区森林生态系统服务功能及价值评估[J].林业调查规划,2010,35(3):90-94.
    160.苏伟,聂宜民,胡晓洁,等.农田土壤微量元素的空间变异及Kriging估值[J].华中农业大学学报,2004,23(2):222-226.
    161.孙书存,高贤明,包维楷,王中磊.岷江上游油松造林密度对油松生长和群落结构的影响[J].应用与环境生物学报,2005,11(1):8-13.
    162.谭炳香.高光谱遥感森林类型识别及其郁闭度定量估测研究[D].中国林业科学研究院,2006
    163.汤孟平,唐守正,雷相东,等Ripley's K(d)函数分析种群空间分布格局的边缘校正[J].生态学报,2003,23(8):1533-1538.
    164.唐守正.东北天然林生态采伐更新技术研究[M].北京:中国科学技术出版社,2005.
    165.田新辉,孙荣喜,李军,等.107杨人工林密度对林木生长的影响[J].林业科学,2011,47(3):184-188.
    166.童方平,徐艳平,龙应忠,等.湿地松纸浆原料林密度控制与管理技术研究[J].中南林业科技大学学报(自然科学版),2009,29(3):45-48.
    167.童书振,盛炜彤,等.杉木林分密度效应研究[J].林业科学研究,2002,15(1):66-75.
    168.童炜.福建森林生态服务功能总价值超7000亿元[J].生态文化,2010(6):12-12.
    169.王冰,杨胜天,王玉娟.贵州省喀斯特地区植被净第一性生产力的估算[J].中国岩溶,2007,26(2):98-104.
    170.王兵,王丹.江西广丰森林生态服务及其价值研究[J].江西科学,2010,28(5):630-637,687.
    171.王兵,魏江生,胡文.贵州省黔东南州森林生态系统服务功能评估[J].贵州大学学报(自然科学版),2009,26(5):42-47,52.
    172.王剑波,李凤日,张雪莹.穆棱地区天然次生林空间结构研究[J].森林工程,2011(3):17-20.
    173.王蕾,张春雨,赵秀海.长白山阔叶红松林的空间分布格局[J].林业科学,2009,45(5):54-59.
    174.王立海,杨学春,孟春.森林作业与森林环境[M].哈尔滨:东北林业大学出版社,2005.
    175.王乃江,刘增文,徐钊,等.黄土高原主要森林类型自然性的灰色关联度分析[J].生态学报,2011,31(2):0316-0325.
    176.工运生,谢丙炎,万方浩,等.ROC曲线分析在评价入侵物种分布模型中的应用[J].生物多样性,2007,15(4):365-372.
    177.王政权.地统计学在生态学中的应用[M].北京:科学出版社,1999.
    178.吴家胜,应叶青,周国模.喜树叶用园的密度效应[J].浙江林学院学报,2007,24(6):666-669.
    179.吴学文,晏路明.普通Kriging法的参数设置及变异函数模型选择方法——以福建省一月均温空间内插为例[J].地球信息科学,2007,9(3):104-108.
    180.夏富才,赵秀海,潘春芳,等.长白山白桦林空间结构研究[J].西北植物学报,2011,31(2):407-412.
    181.项文化,田大伦.中幼龄湿地松人工林生长过程的密度效应[J].中南林学院学报,1998,18(2):10-13.
    182.徐丽华,岳文泽,曹宇.上海市城市土地利用景观的空间尺度效应[J].应用生态学报,2007,18(12):2827-2834.
    183.徐晓婷,杨永,王利松.白豆杉的地理分布及潜在分布区估计[J].植物生态学报,2008,32(5):1134-1145.
    184.薛凌霄,鄢智强,陈绩馨,等.基于共轭梯度法的小生境混合遗传算法[J].福建农林大学学报(自然科学版),2011,40(5):556-560.
    185.闫东锋,吴明作,杨喜田.宝天曼国家级自然保护区栎类天然林林分空间结构特征[J].东北林业大学学报,2011,39(9):52-53,77.
    186.阎恩荣,王良衍,杨文忠,等.浙江天童生态公益林养分循环生态服务价值评估[J].浙江林学院学报,2010,27(4):585-590.
    187.杨锦昌,许煌灿,尹光天,等.黄藤人工林密度效应[J].林业科学,2006,42(4):57-61.
    188.杨子清,陈平留,刘健,等.基于kriging法的森林土壤养分空间插值[J].福建农林大学学报(自然科学版),2012a,41(3):296-300.
    189.杨子清,陈平留,刘健,等.杉木人工林空间分布格局时空变化分析[J].浙江农林大学学报(自然科学版),2012b,29(3):374-382.
    190.杨子清,杨珠河,刘健.新时期碳汇背景下的生态公益林经营[J].中国林业,2011(23):28-29.
    191.叶林,李巍巍,马景财.小兴安岭过伐天然林结构特点及经营策略[J].东北林业大学学报,2011,39(10):114-116.
    192.阴三军,高光芹,石艳芳,等.宝天曼天然林空间格局分析[J].西北林学院学报,2011,26(4):80-84.
    193.玉宝,王百田,红玉,等.晋西人工林综合密度效应分析[J].西北林学院学报,2011,26(4):167-171.
    194.喻泓,杨晓晖,慈龙骏.地表火对红花尔基沙地樟子松种群空间分布格局的影响[J].植物生态学报,2009,33(1):71-80.
    195.原宝东.中华竹鼠(Rnizomys,sinehsis)春季洞穴生境选择初步研究[J].华东师范大学学报(自 然科学版),201 1(6):100-107.
    196.岳文泽,徐建华,谈文琦.城市景观格局的空间尺度分析[J].生态科学,2005,24(2):102-106.
    197.曾春阳,唐代生,唐嘉锴.森林立地指数的地统计学空间分析[J].生态学报,2010,30(13):3465-3471.
    198.曾慧娟,潘文斌.基于RS/GIS和RUSLE的福建武步溪流域土壤侵蚀研究[J].安全与环境学报,2007,7(5):88-92.
    199.张春英,林从华,洪伟,等.武夷山自然保护区景观格局指数的尺度效应分析[J].浙江林学院学报,2009,26(6):877-883.
    200.张翠英.南方集体林区生态公益林限制性利用探讨[J].华东森林经理,2006,20(1):40-43.
    201.张鼎华,叶章发,等.抚育间伐对人工林土壤肥力的影响[J].应用生态学报,2001,12(5):672-676.
    202.张佩霞,侯长谋,胡成志,等.广东省鹤山市森林生态系统服务功能价值评估[J].热带地理,2010,30(6):628-632,662.
    203.张云霞,李晓兵,张云飞.基于数字相机、ASTER和MODIS影像综合测量植被盖度[J].植物生态学报,2007,31(5):842-849.
    204.张治军,唐芳林,朱丽艳,等.轿子山自然保护区森林生态系统服务功能价值评估[J].中国农学通报,2010,26(11):107-112.
    205.赵磊.基于多源遥感数据的区域景观格局尺度效应[J].遥感信息,2009,(4):55-61.
    206.赵元藩,温庆忠,陶晶,等.西双版纳热带天然森林生态服务功能价值评估[J].林业调查规划,2010,35(1):1-6.
    207.赵中华,惠刚盈,袁士云,等.小陇山锐齿栎天然林空间结构特征[J].林业科学,2009,45(3):1-6.
    208.郑海霞,张陆彪.流域生态服务补偿定量标准研究[J].环境保护,2006,(01A):42-46.
    209.郑郁善,洪长福.沿海丘陵巨尾桉人工林水源涵养功能研究[J].江西农业大学学报,2000,22(2):220-224.
    210.朱明,濮励杰,李建龙.遥感影像空间分辨率及粒度变化对城市景观格局分析的影响[J].生态学报,2008,28(6):2753-2763.
    211.朱文泉,陈云浩,潘耀忠,等.基于GIS和RS的中国植被光利用率估算[J].武汉大学学报:信息科学版,2004,29(8):694-698,714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700