用户名: 密码: 验证码:
东方百合‘索邦’鳞茎源-库转换规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
百合(Lilium spp.)鳞茎作为多年生地下贮藏器官,是由鳞片、根、芽和鳞茎盘组成,前三者都是通过鳞茎盘彼此联系。百合鳞茎在生长发育过程中经历了营养物质的积累,分解和再积累等过程,成为研究源-库转换的模式植物。本研究以东方百合‘索邦’为试材,研究了百合鳞茎发育过程中源-库关系转变的一系列生理指标的变化,包括淀粉、蔗糖、总可溶性糖等碳水化合物,还有与蔗糖和淀粉代谢相关的7种酶的活性变化及4中激素含量的变化,同时利用光学显微镜和透视电子显微镜对鳞片和鳞茎盘的显微及超微结构进行系统的研究,还将免疫胶体金定位技术和透射电子显微镜观察相结合,对百合鳞片及鳞茎盘内p-淀粉酶的亚细胞定位进行了研究。为探明百合鳞茎源-库转换过程中不同部位的作用,尤其是鳞茎的源-库功能转换,利用羧基荧光素系统研究了百合鳞茎及植株内同化物的运输方向。主要结果及结论如下:
     1百合鳞茎发育过程中并非仅仅只是单纯地作为源或库进行同化物的供应或积累,而是存在一个源*库复合体的状态,源*库复合体的存在是由于不同部位鳞片(外层、中层鳞片)作为源或库在时间上的差异而造成的。
     2百合鳞茎单纯作为源的时期为自栽种起至花蕾发育到1cm时,由源转变为源*库复合体发生在花蕾1cm到3cm之间的发育过程中,发育到盛花期前鳞茎已经完成了由源*库复合体向单纯积累同化物的库的转变,之后鳞茎就成为整个植株的库进行同化物的积累而为下一生长季做准备。
     3百合鳞茎作为源或库的功能可以以淀粉作为主要参考指标,而与淀粉合成密切相关的腺苷二磷酸葡萄糖焦磷酸化酶(AGPase)、淀粉合成酶(可溶性淀粉合成酶SSS和结合型淀粉合成酶GBSS)也可以作为百合鳞茎源或库功能的重要参考指标,其中SSS和GBSS对于库强的决定作用最明显。
     4鳞茎盘中碳水化合物含量明显低于鳞片,其内的激素含量高于(ABA和IAA)或接近于(GA3和ZR)鳞片中激素的含量,说明鳞茎盘在鳞茎中具有重要的作用。作为短缩地下茎的鳞茎盘的显微及超微结构表明其结构为分布在大量薄壁细胞中的维管束,短缩的维管束连接着鳞片和地上部分;CFDA荧光示踪结果表明鳞茎作为源-库复合体时,鳞茎盘中韧皮部内同化物的运输方向为双向运输。
     5β-淀粉酶在百合鳞片细胞中主要定位在淀粉粒上,且表示β-淀粉酶的免疫胶体金颗粒的分布密度呈现出先增多后下降的趋势,与用生理方法测定的β-淀粉酶的活性变化趋势一致。β-淀粉酶在鳞茎盘中主要定位于淀粉粒上,但也观察到筛板、筛分子P-型质体内有少量金颗粒的分布,说明了鳞茎盘中β-淀粉酶可能的主要功能是防止淀粉粒的积累而不是分解淀粉。
     6鳞片中同化物是通过共质体途径由韧皮部卸载到韧皮部薄壁细胞中,再通过薄壁细胞之间的胞间连丝运输到贮藏薄壁细胞中,在显微结构上表现为远离韧皮部淀粉的分布密度越高,在生理方面形成糖卸载的浓度梯度。贮藏薄壁细胞之间除了通过胞间连丝这种共质体途径进行物质和信息的交换外,还可能通过细胞间隙和细胞壁等质外体途径进行物质交换。
     本研究首次对百合鳞茎生长发育过程中源-库关系的转换进行了系统的研究,明确了鳞茎在单纯作为源或库的发育过程之间,存在一个源-库复合体的时期,该时期可以成为优质百合鳞茎生产调控的关键时期。
The bulb of the genus Lilium is composed of scales, roots, shoots, and a basal plate (a compressed stem), among which the former three organs are connected through the basal plate. Scales go through the accumulation, decomposition and re-accumulation of nutrients processes during the growth and development stages, which provides an excellent model to study the source-sink relationship. Oriental hybrid lily'Sorbonne'was used as the subject material to study the series of physiology changes such as the contents of starch, sucrose, soluble sugars, the activities of seven enzymes catalyzing metabolism of sucrose and starch, and the changes of four kinds of endogenous hormones. Besides, the microscopic structure and ultrastructure of scales and basal plate were investigated by optical microscope and transmission electron microscope (TEM). Furthermore, the immunogold electron-microscopy technique was used to determine the subcellular localization ofβ-amylase, one of the key enzymes catalyzing starch breakdown, in scales and basal plate during the growth and development stages. To understand the function of lily bulb especially the relationship of source-sink of lily bulb, the 6(5)-carboxyfluorescein diacetate (CFDA) was applied to study the transport direction of assimilates among the bulb and the aboveground parts. The main results and conclusions are as follows:
     1 The function of lily bulb is not only serving as source or sink simply to supply or accumulate assimilates during the growth and development. Due to the discrepancy of outer and middle scales serving as source or sink at the same time, the bulb has a state of complex of source and sink between it serving as source and sink merely.
     2 The lily bulb simply serves as the source to supply nutrients for the growth and development of the shoots after planting to the flower buds developing to 1cm in length. The function transformation of bulb from source to complex of source and sink occurs from the flower buds developing from lcm to 3cm in length. Before anthesis, the bulb has already finished the transformation from a complex of source and sink to sink of the whole plant. After that the bulb only accumulates assimilates for the next growth cycle.
     3 Starch can be defined as one of the main factors to judge the function of lily bulb as a source or sink during the growth and development stages. Furthermore, the enzymes synthesizing starch, i.e. ADP-glucose pyrophosphorylase (AGPase), soluble starch synthase (SSS) and granule-bound starch synthase (GBSS), especially the latter tow enzymes, also have a close relationship to the sink strength of bulb to accumulate assimilates from the leaves and stem.
     4 The contents of carbohydrates of basal plate is quite lower than those of scales, but the contents of endogenous hormones in basal plate are higher (ABA and IAA) or close to (GA3 and ZR) those in scales, which means that the basal plate plays an important role in the metabolism among scales and the aboveground parts. As a compressed stem, the basal plate have many vascular bundles distributed among parenchyma cells with a quite complex pattern, which can be seen from the presence of transverse and longitudinal sections of vascular bundles in the same plane. The 6(5)-carboxyfluorescein (CF) observation results show that the transportation direction of assimilate in the phloem of basal plate is bidirectional during the bulb serves as the complex of source and sink.
     5 The result of immunogold subcellular localization in this study with the polyconalβ-amylase antiserum indicates thatβ-amylase in the scale of lily bulb is mainly distributed in starch granules. The subcellular localization also displays the seasonal changes in quantities ofβ-amylase that essentially increased progressively after planting then reached the maximum at anthesis and dropped to a low density at senescence. The result is in line with the activity changes ofβ-amylase determined by 3, 5-dinitrosalicylic acid method. It also shows thatβ-amylase in the basal plate is mainly localized in starch granules. Besides, there are fewβ-amylase in the sieve plate and P-type plastids as well, indicating that the main function of P-amylase could be preventing the accumulation of starch grains rather than decomposition of starch.
     6 Assimilates in the scales of lily bulb is unloaded to the phloem parenchyma cells through symplastic pathway, and then transported to the storage parenchyma cells through plasmodesmata between the parenchyma cells, which can be shown by the fact that farther from the phloem higher the density of starch distribution, which forms a concentration gradient of sugar unloading. The exchange of substances and information between the parenchyma cells can not only through plasmodesmata which are symplastic pathways, but also can through cell wall and intercellular spaces which are apoplastic pathways.
     It is the first study focusing on the source-sink exchange of lily bulb during the growth and development stages. The key conclusion is that between the lily bulb serves as source or sink merely, there is a state of complex as source and sink, which can be used as the key regulation phase for the high quality of lily bulb production.
引文
[1]陈俊愉.中国花卉品种分类学[M].北京:中国林业出版社,2000:248-249.
    [2]陈祖铿,王伏雄,周馥.白皮松绒毡层细胞超微结构的研究[J].植物学报,1987,29(5):486-491.
    [3]高文远,李志亮,肖培根.浙贝母鳞茎衰退过程的解剖学研究初报[J].广西植物,1994,14(1):65-69.
    [4]高文远,李志亮,肖培根.浙贝母鳞片衰退和物质撤退的超微结构观察[J].广西植物,1996,16(2):171-174.
    [5]高文远,李志亮.浙贝母鳞片细胞在寒冷条件下超微结构的变化[J].广西植物,1998,18(2):177-179.
    [6]高晓辰.百合鳞茎发育和冷藏期间生理生化变化的研究[D].杭州:浙江大学,2002:
    [7]郭蕊.百合冷藏及花芽分化期间形态和生理变化的研究[D].新疆:新疆农业大学,2004.
    [8]何桂芳,夏宜平,黄春辉,等.东方百合鳞茎低温解除休眠过程中的形态和生理变化[J].浙江农业学报,2006,18(3):167-170.
    [9]贺晓芳.龙牙百合低温解除休眠中茎尖的超微和显微结构变化[D].南昌:南昌大学,2006:
    [10]康国章,王永华,刘超,等.小麦AGPase胞质型大亚基基因的克隆与表达分析[J].作物学报,2008,34(7):1290-1293.
    [11]兰平,娄成后.乙酰胆碱对黄化玉米幼苗中胚轴通透性与物质运转的调控效应.植物学报,2001,43(2):1229-1232.
    [12]李保军,杨耀文,张廷裹,等.卷丹的组织培养初步研究[J].云南中医学院学报,2001,24(4):9-10.
    [13]李春燕,封超年,张影,等.氮肥基追比对弱筋小麦宁麦9号籽粒淀粉合成及相关酶活性的影响[J].中国农业科学,2005,38(6):1120-1125.
    [14]李凤兰,高述民.植物显微技术实验指导[M].北京:北京林业大学植物教研组,2003:3-5.
    [15]李永庚,于振文,姜东,等.冬小麦旗叶蔗糖和籽粒淀粉合成动态及逾期有关的酶活性的研究[J].作物学报,2001,27(5):659-664.
    [16]李翊华,安丽萍,李彬,等.低温对百合鳞茎内源激素含量变化的影响[J].中国沙漠,2011,31(5):1208-1214.
    [17]李翊华.百合鳞茎低温解除休眠过程中内源激素的变化研究[D].兰州:甘肃农业大学,2010:
    [18]李云飞,孙红梅,李天来.经低温贮藏的兰州百合种球种植后的鳞茎生长过程中GA3和ABA含量变化[J].植物生理学通讯,2006,42(5),867-870.
    [19]刘建常,魏周兴.兰州百合磷茎增重规律的探讨[J].中国蔬菜,1994,12(5):27-30.
    [20]刘凌霄,沈法富,卢合全,等.蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J].分子植物育种,2005,3(2):275-281.
    [21]刘霞,姜春明,郑泽荣,等.藁城8901和山农1391淀粉合成酶活性和淀粉组分积累特征的比较[J].中国农业科学,2005,38(5):897-903.
    [22]刘艳萍.百合鳞茎低温解除休眠过程中生理生化变化研究[D].哈尔滨:东北林业大学,2007:
    [23]林碧英,傅睿清.植物激素配比对大蒜鳞茎盘培养体系的影响[J].福建农业科技,2008,12(6):71-72.
    [24]卢善发,宋艳茹.韧皮部运输和防御作用的分子机理[J].植物学通报,1999,16(2):113-121.
    [25]吕英民.苹果果实糖卸载研究[D].北京:中国农业大学,2004:
    [26]吕英民,吴沙沙,张启翔.百合鳞茎发育生物学研究进展[J].北京林业大学学报,2009,31(5):145-150.
    [27]宁云芬,周厚高,黄玉源,等.百合种球繁育的研究进展[J].仲恺农业技术学院学报,2002,15(2):66-70.
    [28]秦颖.甘薯块根中的ADP-葡萄糖焦磷酸化酶和β-淀粉酶的细胞化学定位[D].北京:中国农业科学院,2002:
    [29]邵京,王晓静,周坚.中国石蒜鳞茎中淀粉粒的分布特征[J].西北植物学报,2010,30(4):645-651.
    [30]邵京.石蒜鳞茎中淀粉粒的积累规律与应用基础研究[D].南京:南京林业大学,2010:
    [31]钱树林.唐菖蒲籽球发育特点及其碳水化合物代谢变化[J].中国农业大学学报,2007,12(2)34-39.
    [32]盛婧,郭文善,胡宏,等.小麦淀粉合成关键酶活性及其与淀粉积累的关系[J].扬州在学学报(农业与生命科学版),2003,24(4):49-53.
    [33]史春余,王振林,郭风法,等.甘薯块根膨大过程中ATP酶活性、ATP和ABA含量的变化[J].西北植物学报,2002,22(2):315-320.
    [34]时岩玲,田继春.颗粒结合型淀粉合成酶研究进展[J].麦类作物学报,2003,23(3):119-122.
    [35]舒小丽,舒庆尧.作物淀粉生物合成与转基因修饰研究进展[J].生物技术通报,2004,(4):19-26.
    [36]孙红梅.低温解除百合鳞茎休眠的效应及其生理生化机制研究[D].沈阳:沈阳农业大学,2003:
    [37]孙红梅,何玲,王微微,等.IBA与GA3调控百合鳞片扦插繁殖的“淀粉-蔗糖”代谢机制[J].中国农业科学,201 1a,44(4):798-806.
    [38]孙红梅,李天来,李云飞.低温解除休眠过程中兰州百合鳞茎酚类物质含量及相关酶活性变化.中国农业科学,2004,37(11):1777-1782.
    [39]孙红梅,李天来,李云飞.百合鳞茎发育过程中碳水化合物含量及淀粉酶活性变化[J].植物研究,2005,25(1):59-63.
    [40]孙红梅,李天来,李云飞.内源ABA对兰州百合鳞茎顶芽内物质变化的调节作用[J].林业科学,2006a,12(10):19-23.
    [41]孙红梅,李天来,李云飞.兰州百合鳞茎发育及低温解除休眠过程中内源激素的变化[J].植物研究,2006b,26(5):570-576.
    [42]孙红梅,王微微,何玲,等.百合鳞茎蔗糖合成酶活性检测体系的建立[J].沈阳农业大学学报,2011b,42(3):285-290.
    [43]孙红梅,张涛,王春夏,等.百合种球大小对不同发育阶段鳞茎中糖和淀粉含量及淀粉酶活性的影响[J].沈阳农业大学学报,2008,39(5):546-550.
    [44]孙晓杰.东方百合鳞茎发育的激素和蛋白调控[D].杭州:浙江大学,2008:
    [45]孙哲.化学杂交剂(CHA)对小麦光合同化物的转运与籽粒淀粉合成动态的影响[D].济南:山东大学,2010:
    [46]中国科学院上海植物生理研究所.上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999:127-128.
    [47]谭彩霞.小麦籽粒淀粉合成酶基因表达与淀粉合成的关系[D].扬州:扬州大学,2009:
    [48]涂淑萍,穆鼎,刘春.百合鳞茎低温解除休眠过程中的生理生化变化研究[J].江西农业大学学报,2005,27(3):404-407.
    [49]韦存虚,蓝盛银,徐珍秀.水稻胚乳细胞质内陷的超微结构和磷酸酶的细胞化学定位[J].植物生 理与分子生物学学报,2002,28(3):221-226.
    [50]王晨阳,何英,方保停,等.小麦籽粒淀粉合成、淀粉特性及其调控研究进展[J].麦类作物学报,2005,25(1):109-114.
    [51]王霄,陈晶.冷藏对百合小鳞茎主要生理指标的影响[J].唐山师范学院学报,2007,29(5):42-47.
    [52]王晓静.中国石蒜淀粉积累与鳞茎生长的关系研究[D].南京:南京农业大学,2010:
    [53]王永章.苹果果实糖代谢的酶学研究:着重于酸性转化酶和淀粉酶的细胞生理学机制[D].北京:中国农业大学,2001:
    [54]王永章,张大鹏.发育过程中苹果果实的β-淀粉酶:活性、数量变化和亚细胞定位[J].中国科学(C辑),2002,32(3):201-210.
    [55]吴国良.核桃果实韧皮部卸载的细胞学路径[D].北京:中国农业大学,2004:
    [56]吴青霞,樊莉丽,彭方仁.银杏营养贮藏蛋白质的细胞学研究[J].林业科技发展,2006,20(6):19-22.
    [57]武丽华,刘建龙.百合淀粉的物理化学特性[J].山东食品发酵,1999,12(4):51-56.
    [58]夏国海.葡萄果实糖分卸载与代谢机制研究[D].北京:中国农业大学,1999:
    [59]夏宜平,黄春辉,郑慧俊,等.百合鳞茎形成与发育生理研究进展[J].园艺学报,2005,32(5):947-953.
    [60]夏宜平,郑慧俊,黄春辉,等.东方百合鳞茎更新发育的碳同化物积累与分配[J].核农学报,2006,20(5):417-422.
    [61]夏宜平,黄春辉,何桂芳,等.方百合鳞茎冷藏解除休眠的养分代谢和酶活性变化[J].园艺学报,2006,33(3):571-576.
    [62]徐汉卿.植物学[M].北京:中国农业出版社,1996:155.
    [63]熊瑛,李友军,郭天财.小麦淀粉合成相关酶的研究现状[J].河南科技大学学报(农学版),2004,24(2):6-9.
    [64]杨建伟.利用PAS反应显示植物组织细胞内的淀粉粒[J].农业与科技,1996,12(1):38-39.
    [65]杨柏云,郭燕华,罗丽萍,等.百合鳞茎内源激素的HPLC测定法[J].南昌大学学报(理科版),2007,31(6):570-575.
    [66]尹增芳,樊汝汶,黄金生.美洲黑杨维管形成层活动周期性及细胞超微结构的动态变化[J].南京林业大学学报(自然科学版),2006,30(6):1-6.
    [67]袁亮,潘光堂,张志明,等.植物中淀粉的代谢及其调控研究进展[J].分子植物育种,2006,4:(6),65-72.
    [68]苑智华,何秀丽,徐哲,等.唐菖蒲球茎形成期蔗糖和淀粉代谢及相关酶活性[J].林业科学,2008,44(8):47-51.
    [69]赵步洪,张文杰,常二华,等.水稻灌浆期籽粒中淀粉合成关键酶的活性变化及其与灌浆速率和蒸煮品质的关系[J].中国农业科学,2004,37(8):1123-1129.
    [70]张大鹏,李珉,王毅.葡萄果实发育过程中果肉细胞超微结构的观察[J].植物学报,1997,39(5):389-396.
    [71]张晓冬.莲藕根状茎碳水化合物代谢及淀粉特性的初步研究[D].扬州:扬州大学,2005:
    [72]张月.百合鳞茎休眠进程中淀粉粒亚显微结构变化与酚类物质成分分析[D].沈阳:沈阳农业大学,2007:
    [73]张月,孙红梅,沈向群,等.百合鳞茎发育和低温贮藏过程中淀粉粒亚显微结构的变化[J].园艺学报,2007,34(3):699-704.
    [74]郑慧俊,夏宜平,黄春辉,等.东方百合鳞茎的山地膨大发育与养分积累研究[J].浙江在学学报:农业与生命科学版,2006,32(5):535-540.
    [75]张峰,蒋德安,翁晓燕.淀粉合酶的酶学与分子生物学研究进展[J].植物学通报,2001,18(2):177-182.
    [76]张凌云.苹果果实韧皮部质外体卸载的证据[D].北京:中国农业大学,2003:
    [77]周平,叶冰莹,陈由强,等.蔗糖磷酸合成酶研究的新进展[J].生物技术通讯,2006,17(6):1001-1003.
    [78]周睿,杨洪强,束怀瑞.脱落酸对植物库强度的调节作用[J].植物生理学通讯,1996,32(2):223-228.
    [79]Abdul J C, Kishorekumar A, Manivannan P, et al. Alterations in carbohydrate metabolism and enhancement in tuber production in white yam (Dioscorea rotundata Poir.) under triadimefon and hexaconazole applications [J]. Plant Growth Regulation,2007,53(1):7-16.
    [80]Anderson J M, Larsen R, Laudenica D, et al. Molecular characterization of the gene encoding a rice endosperm-specific ADP-glucose pyrophosphorylase subunit and its developmental pattern of transcription [J]. Gene,1991,97(2):199-205.
    [81]Black C C, Loboda T, Chen J Q, et al. Can sucrose cleavage enzymes serve as markers for sink strength and is sucrose a signal molecule during plant sink development?-In sucrose metabolism, biochemistry physiology and molecular biology [M]. Rockville:American Society for Plant Physiologists,1995:49-46.
    [82]Borzenkova R A, Sobyanina E A, Pozdeeva A A, et al. Effect of phytohormones on starch synthesizing capacity in growing potato tubers [J]. Russian Journal of Plant Physiology,1998, 45(4):472-480.
    [83]Botha F C, Black K G. Sucrose phosphate synthase and sucrose synthase activity during maturation of internodal tissue in sugarcane [J]. Australian Journal of Plant Physiology,2000,27(1):81-85.
    [84]Castro A J, Clement C. Sucrose and starch catabolism in the anther of Lilium during its development:a comparative study among the anther wall, locular fluid and microspore/pollen fractions [J]. Planta,2007,225(6):1573-1582.
    [85]Cathle Martin, Smith A M. Starch biosynthesis [J]. The Plant Cell,1995,7(7):971-985.
    [86]Chen B Y, Janes H W. Multiple forms of ADP-glucose pyrophosphorylase from tomato leaf [J]. Physiologia Plantarum,1998,104(4):491-496.
    [87]Choi S T, Ahn H G, Chang Y D, et al. Allelopathic substances from Allium fistublosum inhibit the growth of compositae crops [J]. Journal of the Korean Society for Horticultural Science,1998, 39(3):333-337.
    [88]Da-Silva P M F R, Eastmond P J, Hill L M, et al. Starch metabolism in developing embryos of oilseed rape [J]. Planta,1997,203(4):480-487.
    [89]Dewdney S J, McWha J A. Abscisic acid and the movement of photosynthetic assimilates towards developing wheat grains [J]. Z Pflanzenphysiol Journal,1979,92:183-186.
    [90]Femie A R and Willimitzer L. Sucrose to starch:a transition in molecular plant physiology [J]. Trends of Plant Science,2002,7(1):3541.
    [91]Findlay N, Oliver K J, Nil N. Solute accumulation by grape pericarp cell [J]. Journal of Experimental Botany,1987,38(189):668-679.
    [92]Fisher D B and Oparka K J. Post-phloem transport:principles and problem [J]. Journal of Experimental Botany,1996,47:1141-1154.
    [93]Gifford R M, Thorne J H, Hitz W D, et al. Crop productivity and photoassimilate partitioning [J]. Science,1984,225(4664):801-808.
    [94]Glasziou K T, Gayler K R. Storage of sugars in stalks of sugarcane [J]. The Botanical Review, 1972,38(4):471-490.
    [95]Gude H, Verbruggen J M, Franssen J M, et al. Physiological markers for lily bulb maturity [J]. Acta Horticulturae,2000,517(0):343-350.
    [96]Haupt S, Duncan G H, Holzberg S, et al. Evidence for symplastic phloem unloading in sink leaves of barley [J]. Plant Physiology,2011,125(1):209-218.
    [97]Hawker J S, Hatch M D. Mechanism of sugar storage by mature stem tissue of sugarcane [J]. Plant Physiology,1965,18(2):444-453.
    [98]Hedden P, King R W. Hormonal regulation of fruit growth and development [J]. British Plant Growth Regulation Monograph,1996,12(1):211-225.
    [99]Ho L C. Metabolism and compartmentation of imported sugars in sink organs in relation to sink strength [J]. Annual Review Plant Physiology and Plant Molecular Biology,1988,39(0):355-378.
    [100]http://www.lilyregister.org
    [101]Huber S C. Role of sucrose-phosphate synthase in partitioning of carbon in leaves [J]. Plant Physiology,1983,71(4):818-821.
    [102]Huber S E, Huber J L. Role and regulation of sucrose phosphate synthase in higher plants [J]. Plant Physiology,1992,47(0):431-444.
    [103]Huber S C, Huber J L. Role and regulation sucrose phosphate synthase in higher plants [J]. Annual Review Plant Physiology and Plant Molecular Biology,1996,47(4):431-445.
    [104]Kawagishi K, Miura T. Growth characteristics and effect of nitrogen and potassium topdressing on thickening growth of bulbs in spring-planted edible lily(Lilium leichtlinii var. maximowiczii Baker) [J]. Japanese Journal of Crop Science,1996a,65 (1):51-57.
    [105]Kawagishi K, Miura T. Bulb quality and traumatic acid influence bulblet formation from scaling in Lilium species and hybrids [J]. Journal of the Japanese Society for Horticultural Science,1996b, 65(2):339-347.
    [106]Kawagoe Y, Kubo A, Satoh H, et al. Roles of isoamylase and ADP-glucose pyrophosphorylase in starch granule synthesis in rice endosperm [J]. The Plant Journal,2005,42(2):164-174.
    [107]Kim L J, Kahng H Y, Chung W L. Characterization of cDNAs encoding small and large subunits of ADP-glucose pyrophosphorylase from watermelon (Citrullus vulgaris S.) [J]. Bioscience Biotechnology Biochemistry,1998,62(3):550-555.
    [108]Kim K J, Kim K S. Changes of endogenous growth substances during bulb maturation after flowering in Lilium Oriental hybrid'Casa Blanca'[J]. Acta Horticulturae,2005,570:661-667.
    [109]Kumar S, Awasthi V, Kanwar J K. Influence of growth regulators and nitrogenous compounds on in vitro bulblet formation and growth in oriental lily [J]. HortScience,2007,34(2):77-83.
    [110]Lalond S, Boles E, Hellmann H, et al. The dual function of sugar carriers:transport and sugar sensing [J]. Plant Cell,1999,11(4):707-726.
    [111]Langens-Gerrits M, Kuijpers A M, Croes A. Phase change in lily bulblets regenerated in vitro [J]. Physiologica Plantarum,2003a,119(4):590-597.
    [112]Langens-Gerrits M, Kuijpers A M, Klerk G J, et al. Contribution of explant carbohydrate reserves and sucrose in the medium to bulb growth of lily regenerated on scale segments in vitro [J]. Physiologica Plantarum,2003b,117(2):245-255.
    [113]Langens-Gerrits M, Nashimoto S, Croes A F, et al. Development of dormancy in different lily genotypes regenerated in vitro [J]. Plant Growth Regulation,2001,34(2):215-222.
    [114]Legnani G, Watkins C B, Miller W B. Effects of hypoxic and anoxic controlled atmospheres on carbohydrates, organic acids, and fermentation products in Asiatic hybrid lily bulbs [J]. Postharvest Biology and Technology,2010,56(1):85-94.
    [115]Li N, Zhang S, Zhao Y, et al. Over-expression of AGPase genes enhances seed weight and starch content in transgenic maize [J]. Planta,2011,233(2):241-250.
    [116]Lindeboom N, Peter R C. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches:A review [J]. Starch,2004,56(3):89-99.
    [117]Lizzotte P A, Henson C A, Duke S H. Purification and characterization of pea epicotyls β-amylase [J]. Plant Physiology,1990,92(3):615-621.
    [118]Lloyd J R, Landschutze V, Kossmann J. Simultaneous antisense inhibition of two starch-synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin [J]. Biochemistry Journal,1999,338(2):515-521.
    [119]Lowell C A, Tomlinson P T, Koch K E. Sucrose-metabolizing enzymes in transport tissues and adjacent sink structures in developing citrus fruit [J]. Plant Physiology,1989,90(4):1349-1402.
    [120]Mares D J, Marschner H, Krauss A. Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum L.) [J]. Physiologia Plantarum, 1981,52(2):267-274.
    [121]Mason T G, Maskell E J. Studies on the transport of carbohydrates in the cotton plant:82 the factors determining the rate and the direction of movement of sugars [J]. Annual of Botany,1928, 42(3):571-636.
    [122]Matsuo T, Mizuno T. Changes in the amounts of two kinds of reserve glucose-containing polysaccharides during germination of the Easter lily bulb [J]. Plant Cell Physiology,1974,15(3): 555-558.
    [123]Miller W B. Lilium longiflorum [M]. Amsterdam:Elsvier,1993:391-422.
    [124]Miller W B, Langhans R W. Low temperature alters carbohydrate metabolism in Easter lily bulbs [J]. HortScience,1990,25(4):463-465.
    [125]Morell M K, Rahman S, Abrahams S L, et al. The biochemistry and molecular biology of starch synthesis in cereals [J]. Australian Journal of Plant Physiology,1995,22(4):647-660.
    [126]Nakamura Y, Yuki K. Changes in enzyme activities associated with carbohydrate metabolism during the development of rice endosperm [J]. Plant Science,1992,82(1):15-20.
    [127]Neuhaus H E, Stitt M. Control analysis of photosynthate partitioning. Impact of reduced activity of ADP-glucose pyrophosphorylase or plastid phosphoglucomutase on the fluxes to starch and sucrose in Arabidopsis thaliana (L.) Henyh [J]. Planta,1990,182(3):445-454.
    [128]Nojiri H, Toyomasu T, Yamane H, et al. Qualitative and quantitative analysis of endogenous gibberellins in onion plants and their effects on bulb development [J]. Bioscience, Biotechnology, and Biochemistry,1993,57(12):2031-2035.
    [129]Offler C E, Horder B W. The cellular pathway of short distance transfer of photosynthates in developing tomato fruit [J]. Plant Physiology,1992,99(5):41-45.
    [130]Ofosu-Anim J, Yamaki S. Sugar content, compartmentation, and efflux in strawberry tissue [J]. Journal of American Society Horticultural Science,1994,119(5):1024-1028.
    [131]Oparka K J, Ducker C M, Prior D A M, et al. Real-time imaging of phloem unloading in the root of Arabidopsis [J]. The Plant Journal,1994,6(5):759-766.
    [132]Oparka K J, Prior D A. 14C-sucrose efflux from the perimedulla of growing potato tuber [J]. Plant Cell Environment,1987,10:667-675.
    [133]Park S W, Chung W L. Molecular cloning and organ-specific expression of three isoforms of tomato ADP-glucose pyrophosphorylase gene [J]. Gene,1998,206(2):215-221.
    [134]Park S W, Kahng H Y, Kim I J, et al. Molecular cloning and characterization of small and large subunits ADP-glucose pyrophosphorylase from oriental melon [J]. Journal of Plant Research,1998, 111(1):59-63.
    [135]Peng F R, Guo J, Wang G P, Subcellular localization of vegetative storage protein of Ginkgo biloba [J]. Acta Botanica Sinica,2004,46(1):77-85.
    [136]Peng Y B, Zhang D P. Ultrastructure of epidermis and fresh of the developing apple fruit [J]. Acta Botanica Sinica,2000,42 (5):794-802.
    [137]Pesis E, Fuchs Y, Zauberman G. Cellulase activity and fruit softening in avocado [J]. Plant Physiology,1978,61(3):416-419.
    [138]Poethig R S. Phase change and the regulation of shoot morphogenesis in plants [J]. Science,1990, 250(4983):923-930.
    [139]Qin Y, Wang Y, Duan C Q, et al. β-amylase is predominantly localized to plastids in the developing tuberous root of sweet potato [J]. Acta Botanica Sinica,2003,45(5):581-588.
    [140]Ranwala A P and Miller W B. Sucrose-cleaving enzymes and carbohydrate pools in Lilium longiflorum floral organs [J]. Physiologia Plantarum,1998,103(4):541-550.
    [141]Rees A R. Ornamental bulbs corns and tubers [M]. Wallingford:CAB International,1992:46-48.
    [142]Robert B. D. Source/sink relationships during tuber growth [J]. American Potato Journal,1990, 67(12):829-833.
    [143]Roberts A G, Gruz S S. Phloem unloading in sink leaves of Nicotiana benthamiana:comparison of a fluorescent solute with a fluorescent virus [J]. Plant Cell,1997,9(8):1381-1396.
    [144]Roh S M. New production technology of Lilium-A review on propagation and forcing [J]. Acta Horticulturae,1996,414(0):219-228.
    [145]Roh S M, Wilkins H F. The physiology of dormancy and maturity of Lilium longiflorum Thunb. cv. Nellie White bulb 83 Dormancy and maturity-translocation studies in the double nose bulb [J]. Journal of Korean Society for Horticultural Science,1977,18(2):194-202.
    [146]Roitsch T. Source-sink regulation by sugar and stress [J]. Current Opinion in Plant Biology,1999, 2(3):198-206.
    [147]Rook F, Corke F, Card R, et al. Impaired sucrose induction mutants reveal the modulation of sugar induced starch biosynthetic gene expression by abscisic acid signaling [J]. The Plant Journal,2001, 26(4):421-433.
    [148]Saftner R A, Wyse R E. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs [J]. Plant Physiology,1984,74(4):951-955.
    [149]Salamone P R, Greene T W, Kavakli I H, et al. Isolation and characterization of a higher plant ADP-glucose pyrophosphorylase small subunit homotetramer [J]. FEBS Letter,2000,482(1): 113-118.
    [150]Scheidig A, FrOlich A, Schulze S, et al. Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves [J]. The Plant Journal,2002,30(5):581-591.
    [151]Shin K S, Chakrabarty D, Paek K Y. Sprouting rate, change of carbohydrate contents and related enzymes during cold treatment of lily bulblets regenerated in vitro [J]. Scientia Horticulturae,2002, 96(1-4):195-204.
    [152]Smith A M, Denyer K, Martin C. What controls the amount and structure of starch in storage organs [J]. Plant Physiology,1995,107(3):673-677.
    [153]Smith A M, Zeeman S C, Niittylae T, et al. Starch degradation in leaves [J]. Journal of Applied Glycoscience,2003a,50(2):173-176.
    [154]Smith A M, Zeeman S C, Thorneycroft D, et al. Starch mobilization in leaves [J]. Journal of Experimental Botany,2003b,54(382):577-583.
    [155]Stark D M, Timmerman K P, Barry G F, et al. Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase [J]. Science,1992,258 (5080):287-292.
    [156]Sun H M, Jaime A T S, Li Y F, Li T L. Effects of low temperature on dormancy release in lily bulbs [J]. Floriculture and Ornamental Biotechnology,2007,1(1):41-46.
    [157]Sun H M, Li T L, Li Y F. Physiology mechanism of metabolisms in the middle scales of Lilium davidii var. unicolor bulbs stored at low temperature for dormancy-release [J]. Agricultural Sciences in China,2005,4(7):521-527.
    [158]Sun Z, Henson C A. A quantitative assessment of the importance of barley seed a-amylase, (3-amylase, debranching enzyme, and a-glucosidase in starch degradation [J]. Archives of Biochemistry and Biophysics,1991,248(2):298-305.
    [159]Tian W M, Hu Z H. Distribution and ultrastructure of vegetative storage proteins in Leguminosae [J]. IAWA Journal,2004,25(4):459-469.
    [160]Touchette B W, Burkholder J M, Overview of the physiological ecology of carbon metabolism in seagrasses [J]. Journal of Experimental Marine Biology and Ecology,2000,250(1-2):169-205.
    [161]Tratt J, Prychid C J, Behnke H D, et al. Starch-accumulating (S-type) sieve-element plastids in Hydatellaceae:implications for plastid evolution in flowering plants [J]. Protoplasma,2009, 237(1-4):19-26.
    [162]Travaglia C, Cohen A C, Reinoso H, et al. Exogenous abscisic acid increases carbohydrate accumulation and redistribution to the grains in wheat grown under field conditions of soil water restriction [J]. Journal of Plant Growth Regulation,2007,26(3):285-289.
    [163]Tsegaw T, Hammes S, Robbertse J. Paclobutrazol-induced leaf, stem, and root anatomical modifications in potato [J]. HortScience,2005,40(5):1343-1346.
    [164]Tuyl J M, Arens P, Ramanna M S, et al. Wild crop relatives:genomic and breeding resources-temperate fruits [M]. Springer:Chittaranjar Kole,2011:161-183.
    [165]Villand P, O A, Kilian O A, Kleczkowski L. ADP-glucose pyrophosphorylase large subunit cDNA from barley endosperm [J]. Plant Physiology,1992,100(3):1617-1618.
    [166]Viola R, Roberts A Q, Haupt S, et al. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading [J]. Plant Cell,2001,13(2):385-399.
    [167]Viola R, Taylor M, Oparka K J. Meristem activation in potato:impact on tuber formation, development and dormancy [A]. See:SCRI. Annual Report of the Scottish Crop Research Institute 2000/2001 [C]. Dundee:SCRI,2000:99-102.
    [168]Wang F, Sanz A, Brenner M L, et al. Sucrose synthase, starch accumulation, and tomato fruit sink strength [J]. Plant Physiology,1993,101(1):321-327.
    [169]Wang Y T, Breen P J. Respiration and weight changes of Easter lily flowers during development [J]. HortScience,1984,19(3):702-703.
    [170]Wang Y T, Breen P J. Partitioning of 14C-assimilate in Easter lily as affected by growth stage and flower removal [J]. Scientia Horticulturae,1986,29(3):273-283.
    [171]Wang Y Z, Zhang D P. Activities, quantitative changes and subcellular localization of a-amylase during development of apple fruit [J]. Acta Botanica Sinica,2002,44(1):34-41.
    [172]Wu G L, Zhang X Y, Zhang L Y, et al. Phloem unloading in developing walnut fruit is symplasmic in the seed pericarp and apoplasmic in the fleshy pericarp [J]. Plant Cell Physiology,2004,45(10): 1461-1470.
    [173]Xia Y P, Zheng H J, Huang C H. Studies on the bulb development and its physiological mechanisms in Lilium oriental hybrids [J]. Acta Horticulturae,2005,673(1):91-98.
    [174]Xu R Y, Niimi Y, Han D S. Changes in endogenous, abscisic acid and soluble sugars levels during dormancy-release in bulbs of Lilium rubellum [J]. Scientia Horticulturae,2006,111(4):68-72.
    [175]Zhang L Y, Peng Y B, Pelleschi-Travier S, et al. Evidence for apoplasmic phloem unloading in developing apple fruit [J]. Plant Physiology,2004,135(2):574-586.
    [176]Zhang X Y, Wang X L, Wang X F, et al. A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry [J]. Plant Physiology,2006,142(1):220-232.
    [177]Zheng R R, Wu Y, Xia Y P. Chlorocholine chloride and paclobutrazol treatments promote carbohydrate accumulation in bulbs of Lilium Oriental hybrids 'Sorbonne'[J]. Journal of Zhejiang University Science Biomedicine & Biotechnology,2012,13(2):136-144.
    [178]Zhu B L, Coleman G D. The poplar bark storage protein gene (Bspa) promoter is responsive to photoperiod and nitrogen in transgenic poplar and active in floral tissues, immature seeds and germination seeds of transgenic tobacco [J]. Plant Molecular Biology,2001,46(4):383-394.
    [179]Zhu Y J, Komor E, Moore P H. Sucrose accumulation in the sugarcane stem is regulated by the difference between the activities of soluble acid invertase and sucrose phosphate synthase [J]. Plant Physiology,1997,11(5):609-616.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700