用户名: 密码: 验证码:
小麦面筋蛋白源谷氨酰胺肽的酶解制备、结构分析与生理活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷氨酰胺肽是一类含有非氮端谷氨酰胺的肽的总称,这类肽主要功能是供给机体谷氨酰胺,谷氨酰胺肽是游离谷氨酰胺的稳态化替代品。谷氨酰胺肽的活性是以肽中非氮端谷氨酰胺的含量来表征的。游离谷氨酰胺是机体应激条件下的“条件必需氨基酸”,具有多种生理功能。但是游离谷氨酰胺在溶液中或遇热都不稳定且溶解度低,进而游离谷氨酰胺应用受到限制。当游离谷氨酰胺的氮端被取代时其稳定性和溶解性都会大大提高,因此获得谷氨酰胺肽是实现游离谷氨酰胺稳定化的一条有效途径。
     小麦面筋蛋白具有独特的氨基酸组成,其中谷氨酰胺的含量占到总氨基酸组成的30%左右,是谷氨酰胺肽的良好来源。因此研究以小麦面筋蛋白为原料,利用生物酶解技术高效制备谷氨酰胺肽,结合超滤、色谱与质谱等技术对谷氨酰胺肽组分进行分离鉴定,探讨谷氨酰胺肽作为游离谷氨酰胺替代品的体内体外生物活性,能够在获得谷氨酰胺替代品的同时为谷氨酰胺肽应用提供理论支持,还能够提高小麦面筋蛋白的附加值,因此具有一定的现实、经济意义。
     谷氨酰胺的不稳定性使得常规氨基酸分析方法不能定量结合态的谷氨酰胺,因此首先建立了一种经BTI(双(1,1 -三氟乙酸基)碘苯)衍生、酸水解、DNFB(2,4-二硝基氟苯)柱前衍生的UPLC快速、准确测定肽中非氮端谷氨酰胺含量(Gln%)的方法。进一步以Gln%为指标,采用响应面法对Alcalase(碱性蛋白酶)酶解小麦面筋蛋白制备谷氨酰胺肽工艺进行优化,固定底物浓度6 g/100mL、酶解时间1 h情况下得到最佳制备条件为:pH=7.5、T=50℃、酶用量0.033 AU/g Protein,在此条件下所得谷氨酰胺肽中Gln%=15.85 g/100g、水解度(DH)为11.8%、平均链长8个氨基酸,蛋白质回收率为83%。
     在优化结果基础上,采用微波、超声波、添加半胱氨酸、干热、湿热法对小麦面筋蛋白进行预处理,以期促进谷氨酰胺肽的释放。结果表明:添加半胱氨酸和湿热90℃前处理法能够有效促进谷氨酰胺肽的释放,尤其添加半胱氨酸法,当添加量为0.067 g/100mL时肽中谷氨酰胺含量达18.81 g/100g,比未处理提高了近20%。为进一步探讨各预处理方法对Alcalase酶解过程及Gln%的影响,对预处理前后小麦面筋蛋白的显微结构、二级结构、游离巯基含量、二硫键含量、疏水度、水合作用及溶解性进行了分析,发现微波处理后小麦面筋蛋白出现淀粉质纤维结构,蛋白片层经各预处理后都发生了不同程度的破裂;预处理方法对于蛋白二级结构的影响主要表现在β-折叠结构含量的增大上;疏水度和水合作用经各处理后也发生了不同程度的变化。在获得面筋蛋白结构等信息基础上,采用最小二乘回归法(PLSR)对预处理影响Alcalase酶解进程和Gln%的机理进行探讨,结果表明DH和Gln%与蛋白二级结构中的分子间β-折叠、水合β-折叠、1675 cm-1处β-折叠、总β-折叠、扩展结构、α-螺旋、β-转角结构含量和疏水度H0及游离巯基含量(-SH)具有较高相关性。
     谷氨酰胺肽粗品经超滤分级和DA201-C大孔树脂疏水分离,再经离子交换色谱和凝胶色谱联合使用,最终将谷氨酰胺肽中谷氨酰胺含量从18.8 g/100g提高至29.8 g/100g,进一步采用RP-HPLC实现了谷氨酰胺肽混合物的最终分离,得到四个主要色谱峰,经质谱结果分析得到四种肽序分别为:LLEQRFLVDYL、QQPDESQQ、ENSPQSGGWNQT、CLEYDWMDEQSDS。其中QQPDESQQ八肽中谷氨酰胺含量为60.94 g/100g。
     考虑到经济性与实用性,选取谷氨酰胺含量为20.1 g/100g的UF-E作为研究对象,对其理化性质与生理活性进行了整体研究。在理化性质方面,UF-E在pH 2~12范围内具有良好且稳定的溶解性,NSI均在80%以上;当UF-E浓度介于0~20 g/100g时其表观粘度基本恒定在1 mpa·s左右;DSC表明UF-E的变性峰值温度为(85±3)℃;UF-E能够抵制体内消化酶系统的消化作用;在50~90℃加热和121℃、30 min高压灭菌条件下,UF-E具有良好稳定性。体外活性中,以抑制亚油酸自氧化和螯合亚铁离子分别作为电子转移和质子转移两种氧化模式的代表,对UF-E的抗氧化性进行综合考察,结果表明UF-E具有良好的亚油酸氧化抑制作用,同时螯合亚铁离子的EC50为0.46 mg/mL。
     选取谷氨酰胺含量为20.1 g/100g的UF-E作为研究对象,采用灌胃投料方式研究其对负重游泳大鼠补充谷氨酰胺及多项生理指标的影响,并与游离Gln做对照,综合分析认为UF-E具有为机体补充谷氨酰胺和抗疲劳作用,且效果优于游离Gln。
     采用细胞学方法,以市售Ala-Gln二肽为对照,研究UF-E对正常大鼠脾细胞、人胃癌细胞(SGC7901)和小鼠淋巴瘤细胞(YAC-1)生长的影响,MTT测定结果和倒置显微镜观察结果表明:UF-E具有优于Ala-Gln的促进鼠脾细胞增殖和对人胃癌细胞和小鼠淋巴瘤细胞生长抑制作用,无论增殖还是抑制均呈显著剂量效应关系,当浓度为2 mmol Gln/L时,对正常鼠脾细胞增殖率和两种癌细胞的抑制率都达到最高,分别为575%和30%、80%。细胞实验结果初步说明UF-E对正常细胞和癌细胞生长抑制作用具有一定选择性。另外,还研究了合成八肽QQPDESQQ对人胃癌细胞的生长抑制作用,结果得出QQPDESQQ对人胃癌细胞的抑制具有显著剂量效应关系,说明QQPDESQQ是UF-E抑制人胃癌细胞生长的功效成分之一。
Glutamine peptides are defined as a class of peptides contained non-N terminal glutamine, as steady carrier of free glutamine which can provide the glutamine supplement. Therefore the activity of glutamine peptides is presented by determining the non-N terminal glutamine content (Gln %). Glutamine is a conditional essential amino acid in stress situations and has multiply physiological function. Nevertheless the common usage of glutamine is restricted by its aqueous instability and low solubility. While it is reported that the stability and solubility of glutamine could be improved if the N-terminal is substituted.
     Wheat gluten is rich in glutamine high to 30%, and is a good source for preparation of glutamine peptides. Therefore, research on glutamine peptides prepared by enzymatic hydrolyzing wheat gluten, furthermore on purification and identification with ultrafiltration, chromatography and mass spectra, followed on analysis of In vitro and In vivo activities of glutamine peptides, which can obtain the good carrier of free glutamine and can provide the theory basis for the common use of glutamine peptides, meanwhile, can increase the economic value of wheat gluten.
     A new method of quantitative analysis of non-N terminal glutamine in peptides was first investigated, since binding glutamine could not be detected by common amino acids analysis for aqueous instability of glutamine. The new method contained four steps: BTI derivation into DABA, HCl hydrolysis, DNFB pre-column derivation and UPLC determination. Preparation of glutamine peptides from Alcalase hydrolyzing wheat gluten was optimized by response surface method in the next place. The optimal conditions were pH 7.5, temperature 50℃and Alcalase doses of 0.033 AU/gProtein, when Gln % was indexed and substrate concentration and hydrolysis time was settled at 6 g/100mL and 1 h respectively. Under the optimal conditions, Gln % was 15.85 g/100g and DH was 11.8%, and the average chain length was 8 amino acids and protein recovery reached 83%.
     Pretreatments of microwave, ultrasonic, dry heat, aqueous heat and adding cysteine on wheat gluten were done in the aim of improving Gln%. Results showed that both adding cysteine and aqueous heat at 90℃can highly improve Gln%, especially with cysteine Gln % increased by 20% to 18.81 g/100g. The effect of pretreatments on Alcalase hydrolysis and Gln % was further investigated through comparative analysis of SEM, secondary structure of protein, -SH, -S-S, hydrophobicity, hydration and solubility of wheat gluten protein before and after pretreatments. The SEM showed the formation of amyloid fibrils especially after microwave treatment, and the sheets of protein torn by all the treatments. The effect of pretreatments on secondary structure of protein was mainly presented the increase ofβ-sheet content. Hydrophobicity and hydration varied as different pretreatments. Base on that structural information, the mechanism of pretreatments affected Alcalase hydrolysis and Gln % was deeply discussed by Partial Least Square Regression (PLSR) method. The results showed that the degree of hydrolysis and Gln % both were highly dependent on secondary structures of intramolecularβ-sheet, hydratedβ-sheet,β-sheet at 1675 cm-1, totalβ-sheet, extended structure,α-helices,β-turn contents, and on hydrophobicity and SH- content.
     Glutamine peptides were conteniously purified by ultrafiltration, DA201-C macroporous resin, the ion exchange chromatography and gel chromatography, and the final Gln % was increased to 29.8 g/100g. Thereafter, the glutamine peptides were separated into four peaks by RP-HPLC. The four peaks were collected and identified by mass spectrum, which were LLEQRFLVDYL, QQPDESQQ, ENSPQSGGWNQT, and CLEYDWMDEQSDS. Among these four peaks, QQPDESQQ has the highest Gln% of 60.94 g/100g.
     Considering economy and practical application, UF-E of 20.1 g/100g was selected and UF-E's physicochemical and physiological activities were investigated. The results indicated that, UF-E had good solubility with NSI higher than 80% within pH 2-12; the stable viscosity of 1 mpa·s was obtained with UF-E concentration among 1-20 g/100g; the denatured temperature was (85±3)℃detected by DSC; UF-E can resist the digestion of gastrointestinal enzymes; UF-E was stable to the conditions of heating from 50℃to 90℃and of autoclaving at 121℃at 30 min, respectively. In the terms of physiological activity, the inhibition of linoleic acid autoxidation and chelating ferrous activity were detected, which are typically representative of electron transfer and proton transfer oxidation mode respectively. The results showed UF-E had better inhibition of linoleic acid autoxidation, and the EC50 of UF-E on chelating ferrous was 0.46 mg/mL.
     Effect of UF-E (Gln%=20.1 g/100g) on glutamine supplement and physiological functions of weight-loading swimming rats was researched through intragastric feeding administration, and free glutamine was selected as control. Results demonstrated that UF-E can effectively supply glutamine for sportive fatigue rats and can be a good substitute of free glutamine, and UF-E had better antifatigue effect than free glutamine.
     The effect of UF-E on proliferation of normal rat splenocyte, human gastric cancer cell (SGC7901) and mice lymphoma cell (YAC-1) was innovatively studied by MTT method and inverted microscope, which was compared with Ala-Gln. The results revealed that UF-E had dose-effect relationship with three kinds cell observed. At UF-E concentration of 2 mmol Gln/L, the proliferation rate was the highest to 575%, meanwhile the inhibition rates of SGC7901 and YAC-1 reached 30% and 80% respectively, when compared with drug blank group. Ala-Gln had somewhat inhibition on both SGC7901 and YAC-1, but with no obvious dose-effect relationship. In general, it can be speculated that UF-E was selective in inhibition of cells. The inhibition effect of QQPDESQQ on SGC7901 was also studied, and the results revealed that QQPDESQQ had obvious dose-effect relationship, and it could be further conluded that QQPDESQQ is one of functional components of UF-E on inhibiting SGC7901.
引文
1. PSD(USDA统计数据库).http://www.usda.gov/wps/portal/usda/usdahome.
    2. Wieser H. Chemistry of gluten proteins[J]. Food Microbiology, 2007,24:115-119
    3. Thomson H.N., Miles J.M., Popineau Y., et al. Small angle X-ray scattering of wheat seed-storage proteins:α-,γ-andω-gliadins and the high molecular weight (HMW) subunits of glutenin[J]. Biochimica et Biophysica Acta, 1999,1430:359-366
    4. Wu J., Aluko R.E., Corke H. Partial least-squares regression study of the effects of wheat flour composition, protein and starch quality characteristics on oil content of steamed-and-fried instant noodles[J]. Journal of Cereal Science, 2006,44:117-126
    5. van Herpen T.W.J.M., Cordewener J.H.G., Klok H.J., et al. The origin and early development of wheat glutenin particles[J]. Journal of Cereal Science, 2008,48:870-877
    6. D'Ovidio R., Masci S. The low-molecular-weight glutenin subunits of wheat gluten[J]. Journal of Cereal Science, 2004, 39:321-339
    7. Kovacs M.I.P., Fu B.X., Woods S.M., et al. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture[J]. Journal of Cereal Science, 2004, 39:9-19
    8. Fukudome S., Yoshikawa M. Gluten exorphin C-A novel opioid peptide derived from wheat gluten[J]. FEBS, 1997,316(1):17-19
    9. De Vincenzi M., Dessip R.M., Giovannini C., et al. Agglutinating activity of wheat gliadin peptide fractions in coeliac disease[J]. Toxicology, 1995,96:29-35
    10. Hartmann R., Meisel H. Food-derived peptides with biological activity: from research to food applications[J]. Current Opinion in Biotechnology, 2007,18:163-169
    11. da Costa L.E., Gontijo A.R.J., Netto M.F. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates[J]. International Dairy Journal, 2007,17:632-640
    12. Al-Neshawy A.A., Al-Eid S.M. Improving the quality and oxidative stability of vegetable oil shortening using fermented dairy products and wheat gluten[J]. Food Chemistry, 2000,71:57-60
    13. Drago S.R., Gonzalez R.J. Foaming properties of enzymatically hydrolysed wheat gluten[J]. Innovative Food Science & Emerging Technologies, 2001,1:269-273
    14. Apichartsrangkoon A., Ledward D.A., Bell A.E., et al. Physicochemical properties of high treated wheat gluten pressure[J]. Food Chemistry, 1998,63(2): 215-220
    15. Veraverbeke W.S., Roels S. P., Delcour J. A.Heat-induced Changes in Sodium Dodecyl Sulphatesedimentation Volume and Functionality of Vital Wheat Gluten[J]. Journal of Cereal Science,1997,26:177-181
    16. Lagrain B., Brijs K., Delcour A.J. Impact of redox agents on the physico-chemistry of wheat gluten proteins during hydrothermal treatment[J]. Journal of Cereal Science,2006, 44:49-53
    17. Sun S., Song Y., Zheng Q. Rheological behavior of wheat gliadins in 50% (v/v) aqueous propanol[J]. Journal of Food Engineering, 2009,90:207-211
    18. Agyare K.K., Xiong Y.L., Addo K. Influence of salt and pH on the solubility and structural characteristics of transglutaminase-treated wheat gluten hydrolysate[J]. Food Chemistry, 2008,107:1131-1137
    19. Wang J.S., Zhao M.M., Yang X.Q., et al. Gelation behavior of wheat gluten by heat treatment followed by transglutaminase cross-linking reaction[J]. Food Hydrocolloids, 2007,21:174-179
    20. Ali Y., Ghorpade M.V., Hanna A.M. Properties of thermally-treated wheat gluten films[J]. Industrial Crops and Products, 1997,6:177-184
    21. Sun S.M, Song Y.H, Zheng Q. Rheological behavior of heat-induced wheat gliadin gel[J]. Food Hydrocolloids, 2009,23:1054-1056
    22. Hernandez-Munoz P., Kanavouras A., Villalobos R., Chiralt A.Characterization of biodegradable films obtained from cysteine-mediatedpolymerized gliadins[J]. Journal of Agricultural and Food Chemistry, 2004,52:7897-7904
    23. Kayserilioglu B.S., Stevels W.M., Mulder W.J., et al. Mechanical and biochemical characterisation of wheat gluten films as a function of pH and cosolvent[J]. Starch/Staerke, 2001,53:381-386
    24. Lee C.C., Mulvaney S.J. Dynamic viscoelastic and tensile properties of gluten and glutenin gels of common wheats of different strength[J]. Journal of Agricultural and Food Chemistry, 2003,51:2317-2327
    25. Roy S., Gennadios A., Weller C.L., et al. Water vapor transport parameters of a cast wheat gluten film[J]. Industrial Crops and Products, 2000,11(1): 43-50
    26. Kim E.K., Lee S.J., Jeon B.T., et al. Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein[J]. Food Chemistry, 2009,114:1365-1370
    27. Govindaraju K., Srinivas H. Studies on the effects of enzymatic hydrolysis on functional and physico-chemical properties of arachin[J]. LWT, 2006,39:54-62
    28. Tang C.H., Wang X.S., Yang X.Q. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates[J]. Food Chemistry, 2009,114(4):1484-1490
    29. Pericin D., Radulovic-Popovic L., Va?tag Z., et al.Enzymatic hydrolysis of protein isolate from hull-less pumpkin oil cake: Application of response surface methodology[J]. Food Chemistry, 2009,115(2):753-757
    30. Chang C.Y., Wu K.C., Chiang S.H. Antioxidant properties and protein compositions of porcine haemoglobin hydrolysates[J]. Food Chemistry, 2007,100:1537-1543
    31. Guan X., Yao H.Y., Chen Z.X., et al. Some functional properties of oat bran protein concentrate modified by trypsin[J]. Food Chemistry, 2007,101:163-170
    32. Tang C.H., Peng J., Zhen D.W., et al. Physicochemical and antioxidant properties of buckwheat (Fagopyrum esculentum Moench) protein hydrolysates[J]. Food Chemistry, 2009,115(2):672-678
    33. Damrongsakkul S., Ratanathammapan K., Komolpis K., et al. Enzymatic hydrolysis of rawhide using papain and neutrase[J]. Journal of Industrial and Engineering Chemistry, 2008,14:202-206
    34. Condes C.M., Scilingo A.A., Anon C.M. Characterization of amaranth proteins modified by trypsin proteolysis.Structural and functional changes[J]. LWT-Food Science and Technology, 2009,42(5):963-970
    35. Radha C., Kumar R.P., Prakash V. Preparation and characterization of a protein hydrolysate from an oilseed flour mixture[J]. Food Chemistry, 2007,106:1166-1174
    36. Je J.Y., Park P.J., Kim E.K., et al. Antioxidant activity of enzymatic extracts from the brown seaweed Undaria pinnatifida by electron spin resonance spectroscopy[J]. LWT - Food Science and Technology, 2009,42:874-878
    37. Yalcn E., Celik S. Solubility properties of barley flour, protein isolates and hydrolysates[J]. Food Chemistry, 2007,104:1641-1647
    38. Wang H.Y., Wei Y.M., E H.Y, et al. Isolation and Analysis of a-Gliadin Gene Coding Sequences from Tritcum durum[J]. Agricultural Sciences in China, 2007, 6(1): 25-32
    39.董艳敏,李小辉,晏月明.小麦贮藏蛋白分子结构及其研究技术进展[J].麦类作物学报, 2007,27(6):1143-1149
    40. Buonocore F., Hickman D.R., Caporale C., et al. Characterisation of a Novel High Mr Glutenin Subunit Encoded by Chromosome 1D of Bread Wheat[J]. Journal of Cereal Science, 1996,23:55-60
    41. Bollecker S.S.J., Kaiser K.P., Khler P., et al. Re-examination of the Glycosylation of High Mr Subunits of Wheat Glutenin[J]. Journal of Agricultural and Food Chemistry, 1998, 46(12):4814-4823
    42. Sourice S., Nisole A., Gueguen J., et al. High microbial production and characterization of strictly periodic polymers modelled on the repetitive domain of wheat gliadins[J]. Biochemical and Biophysical Research Communications, 2003,312:989-996
    43. Gilbert M.S., Wellner N., Belton S.P., et al. Expression and characterisation of a highly repetitive peptide derived from a wheat seed storage protein[J]. Biochimica et Biophysica Acta, 2000,1479:135-146
    44. Baxter H.J., Phillips R.R., Dowlati L., et al. Glutamine in Commercial Liquid Nutritional Products[J]. Journal of Agricultural and Food Chemistry, 2004,52(16):4963-4968
    45. Kuhn S. K., Stehle P., Furst P. Quantitative Analyses of Glutamine in Peptides and Proteins[J]. Journal of Agricultural and Food Chemistry, 1996,44:1808-1811
    46. Chelius D., Jing K., Lueras A., et al. Formation of Pyroglutamic Acid from N-Terminal Glutamic Acid in Immunoglobulin Gamma Antibodies[J]. Analytical Chemistry, 2006, 78 (7):2370-2376
    47. Higaki-Sato N., Sato K., Esumi Y., et al. Isolation and Identification of Indigestible Pyroglutamyl Peptides in an Enzymatic Hydrolysate of Wheat Gluten Prepared on an Industrial Scale[J]. Journal of Agricultural and Food Chemistry, 2003,51(1):8-13
    48.李华,李春伢,夏正君,等. N(2)-L-丙氨酰-L-谷氨酰胺的合成.中国化工学会精细化工专业委员会第112次学术会议暨首届全国精细化工清洁生产工艺与技术经济发展研讨会. 2008.
    49.陈晓英. N(2)-L-丙氨酰-L-谷氨酰胺合成路线图解[J].海峡药学, 2007,19(12):113-116.
    50. Tanabe S., Watanabe M., Arai S. Production of a High-Glutamine Oligopeptide Fraction from Gluten by Enzymatic Treatment and Evaluation of its Nutritional effect on the small Intestine of Rats[J]. Journal of Food Biochemistry, 1993,16: 235-248
    51.刘文豪.麦谷蛋白源谷氨酰胺肽的制备和肠道营养效果研究[D]: [硕士学位论文].武汉:华中农业大学,2008
    52.杨得胜.谷氨酰胺结合肽的高效制备[D]: [硕士学位论文].南京:南京农业大学,2004
    53.杨得胜.张源淑,邹思湘,等.不同蛋白酶水解面筋蛋白制备谷氨酰胺结合肽的比较研究[J].畜牧兽医学报, 2006,37(9):883-888
    54.张丽.谷氨酰胺活性肽的制备及性质研究[D]:[硕士学位论文].合肥:合肥工业大学,2009
    55.吕艳.酶解小麦蛋白制取谷氨酰胺活性肽的研究[D]: [硕士学位论文].浙江大学,2005
    56.任国谱,谷文英.控制酶解玉米黄粉蛋白制备富含"条件必需氨基酸"--谷氨酰胺(Gln)活性肽营养液的研究(I)玉米黄粉蛋白水解用酶的筛选研究[J].中国粮油学报, 2000,15(1):18-22
    57. Hurtaud C., Gelly C., Chen Z., et al. Glutamine stimulates translation of uncoupling protein 2mRNA[J]. Cellular and Molecular Life Sciences, 2007,64:1853-1860
    58. Scharte M., Baba A.H., Aken V.H., et al. Alanyl-Glutamine Dipeptide Does Not Affect Hemodynamics despite a Greater Increase in Myocardial Heat Shock Protein 72 Immunoreactivity in Endotoxemic Sheep[J]. Journal of Nutrition, 2001,131:1433-1437
    59. Furst P. New Developments in Glutamine Delivery[J]. Journal of Nutrition, 2001,131: 2562S-2568S
    60. van Hall C., Saris W.H.M., van de Schoor P.A.I., et al. The Effect of Free Glutamine and Peptide Ingestion on the Rate of Muscle Glycogen Resynthesis in Man[J]. Lnternational Journal of Sports Medicine, 1999,20:25 -30
    61. Candow G.D., Chilibeck D.P., Burke G.D., et al. Effect of glutamine supplementation conbined with resistance training in young adults[J].European Journal of Applied Physiology, 2001,86:142-149
    62. Castell L.M., Newsholme A.E. The Effects of Oral Glutamine Supplementation on Athletes after Prolonged, Exhaustive Exercise[J]. Nutrition, 1997,13:718-723
    63. Klassen P., Mazariegos M., Solomons W.N., et al. The Pharmacokinetic Responses of Humans to 20 g of Alanyl-Glutamine Dipeptide Differ with the Dosing Protocol but Not with Gastric Acidity or in Patients with Acute Dengue Fever[J]. Journal of Nutrition,2000, 130:177-182
    64. Liboni C.K., Li N., Scumpia O.P., et al. Glutamine Modulates LPS-Induced IL-8 Production through IκB/NF-κB in Human Fetal and Adult Intestinal Epithelium[J]. Journal of Nutrition, 2005,135:245-251
    65. Cunha W.D.S., Friedler G., Vaisberg M., et al. Immunosuppression in undernourished rats: the effect of glutamine supplementation[J].Clinical Nutrition, 2003,22(5): 453-457
    66. Kew S., Wells M.S., Yaqoo P., et al. Dietary Glutamine Enhances Murine T-Lymphocyte Responsiveness[J]. Journal of Nutrition, 1999,129:1524-1531
    67. Cruzat F.V., Tirapegui J. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise[J]. Nutrition, 2009,25(4):428-435
    68. Wilmore W.D. The Effect of Glutamine Supplementation in Patients Following Elective Surgery and Accidental Injury[J]. Journal of Nutrition, 2001,131:2543S-2549S
    69. Hulsewle W.E.K., van Acker A.C.B., Hameeteman W, et al. Does glutamine-enriched parenteral nutrition really affect intestinal morphology and gut permeability? [J] Clinical Nutrition, 2004,23:1217-1225
    70. Peng X., Yan H., You Z.Y, et al. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients[J]. Burns, 2006,32:589-593
    71. Peng X., Yan H., You Z.Y, et al. Clinical and protein metabolic efficacy of glutamine granules-supplemented enteral nutrition in severely burned patients[J]. Burns, 2005, 31:342-346
    72. Stangl R., Szijarto A., Onody P., et al. Reduction of Liver Ischemia-Reperfusion Injury via Glutamine Pretreatment[J]. Journal of Surgical Research, 2011,166:95-103
    73. Rogero M.M., Tirapegui J., Pedrosa G.R., et al. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise[J]. Nutrition, 2006,22:564-571
    74. Walsh N.P., Blannin A.K., Clark A.M., et al. The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids[J]. European Jouranl of Applitical Physiology, 1998,77: 434-438
    75. Boelens G.P., Nijveldt J.R., Houdijk P.J.A., et at. Glutamine Alimentation in Catabolic State[J]. Journal of Nutrition, 2001,131:2569S-2577S
    76. Watford M. Glutamine Metabolism and Function in Relation to Proline Synthesis and the Safety of Glutamine and Proline Supplementation[J]. Journal of Nutrition, 2008, 138(10):2003S-2007S
    77. Wernerman J. Clinical Use of Glutamine Supplementation[J]. Journal of Nutrition, 2008, 138:2040S-2044S
    78. Furst P., Pogan K., Stehle P. Glutamine Dipeptides in Clinical Nutrition[J]. Nutrition, 1997,13:731-737
    79. Horiguchi N., Horiguchi H., Suzuki Y. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects[J]. Bioscience Biotechnology and Biochemistry, 2005, 69(12):2445-2449
    80. Koikawa N.K., Nakamura A., Ngaoka I., et al. Delayed-onset muscle injury and its modification by wheat gluten hydrolysate[J]. Nutrition, 2009,25(5): 493-498
    81. Horiguchi N., Horiguchi H., Suzuki Y. Out-hospotal patients with hyperlipidemia and hepatitis with various backgrounds improved by wheat protein hydrolysate(glutamine peptide)administration[J]. Japan Pharmacology and Therapeutics, 2004,32:415-420
    82. Sawaki K., Takaoka I., Sakuraba K., et al. Effects of diatance running and subsequent intake of glutamine rich peptide on biomedical parameters of male Japanese athletes[J]. Nutrition Research, 2004,24:59-71
    1. Tanabe S., Watanabe M., Arai S. Production of a High-Glutamine Oligopeptide Fraction from Gluten by Enzymatic Treatment and Evaluation of its Nutritional effect on the small Intestine of Rats[J]. Journal of Food Biochemistry, 1993,16:235-248
    2. Cruzat F.V., Tirapegui J. Effects of oral supplementation with glutamine and alanyl-glutamine on glutamine, glutamate, and glutathione status in trained rats and subjected to long-duration exercise[J]. Nutrition, 2009,25(4):428-35
    3. Cunha W.D.S., Friedler G., Aisberg M.V., et al. Immunosuppression in undernourished rats:the effect of glutamine supplementation[J]. Clinical Nutrition, 2003,22(5):453-457
    4. Peng X., Yan H., You Z., et al. Clinical and protein metabolic efficacy of glutamine granules-supplemented enteral nutrition in severely burned patients[J]. Burns, 2005, 31:342-346
    5. Peng X., Yan H., You Z., et al. Glutamine granule-supplemented enteral nutrition maintains immunological function in severely burned patients[J]. Burns, 2006, 32:589-593
    6. Scheid C., Hermann K., Kremer G., et al. Randomized, Double-Blind, Controlled Study of Glycyl-Glutamine-Dipeptide in the Parenteral Nutrition of Patients With Acute Leukemia Undergoing Intensive Chemotherapy[J]. Nutrition, 2004,20:249-254
    7. Rogero M.M., Tirapegui J., Pedrosa G.R., et al. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise[J]. Nutrition, 2006,22:564-571
    8. Herzog B., Frey B., Pogan K.,et al. In vitro peptidase activity of rat mucosa cell fractions against glutamine-containing dipeptides[J]. Nutritional Biochemistry, 1996,7:135-141.
    9. Kuhn S. K., Stehle P., and Frst P. Quantitative Analyses of Glutamine in Peptides and Proteins[J].Journal of Agrculture and. Food Chemistry, 1996,44(7):1808-1811
    10.陶冠军,任国谱,谷文英.蛋白质和肽中谷氨酰胺的HPLC定量分析[J].郑州粮食学院学报, 1999,20(4):66-68
    11.徐英操,刘春红.蛋白质水解度测定方法综述[J].食品研究与开发, 2007,28(7):173-176
    12.袁斌,吕桂善,刘小玲.蛋白质水解度的简易测定方法[J].广西农业生物科学, 2002,21(2):113-115
    13.刘文豪,麦谷蛋白源谷氨酰胺肽的制备和肠道营养效果研究[D]:[硕士学位论文].武汉:华中农业大学,2008
    14.杨得胜,谷氨酰胺结合肽的高效制备[D]: [硕士学位论文].南京:南京农业大学,2004
    15.杨得胜,张源淑,邹思湘,等.不同蛋白酶水解面筋蛋白制备谷氨酰胺结合肽的比较研究[J].畜牧兽医学报, 2006,37(9):883-888
    16.张丽.谷氨酰胺活性肽的制备及性质研究[D]: [硕士学位论文].合肥:合肥工业大学,2009
    17.吕艳.酶解小麦蛋白制取谷氨酰胺活性肽的研究[D]:[硕士学位论文].杭州:浙江大学食品学院,2005
    18.任卫国,张华文,田纪春,等.小麦高分子量谷蛋白亚基研究进展[J].中国农学通报, 2006,22(8):60-64
    19. Shewry, P.R., Halford, N.G., Tatham, A.S. The high-molecular-weight subunits of wheat glutenin[J]. Cereal Science, 1992,15:105-120
    20. Shewry, P.R., Halford, N.G. Cereal seed storage proteins: structures, properties and role in grain utilization[J]. Jouranl of Experimental Botany, 2002,53(370):947-958
    21. Shewry, P.R., Tatham, A.S. Biotechnology of wheat gluten proteins[J]. Cereal Science, 1997,25:207-227
    22.路洁霏,伍碧华,郑雯,等.部分小麦低分子量谷蛋白亚基二级结构的预测与分析[J]. 四川农业大学学报, 2006,24(1):7-12
    23. Cassidy, B.G., Dvorak, J., Anderson, O.D. The wheat low-molecular-weight glutenin gene: characterization of six new genes and progress in understanding gene family structure[J]. Theoretical and Applied Genetics, 1998,96:743-750
    24. Tatham, A.S., Shewry, P.R. The S-poor Prolamins of Wheat, Barley and Rye[J]. Journal of Cereal Science, 1995,22:1-16
    25. Lindsay, M.P., Skerritt, J.H. The glutenin macropolymer of wheat flour doughs: structure-function perspectives[J]. Trends in Food Science & Technology, 1999,10: 247-253
    26.孔祥珍.小麦面筋蛋白酶解物的制备、功能性质及其阿片活性的研究[D]:[博士学位论文].无锡:江南大学食品学院,2006
    27.安志从.预处理对小麦面筋蛋白功能性质及酶解特性的影响研究[D]:[硕士学位论文].无锡:江南大学食品学院,2009
    28.苏春燕.超声波辅助酶解小麦面筋蛋白制备抗氧化肽的研究[D]:[硕士学位论文].无锡:江南大学食品学院,2010
    29. Wieser H. Chemistry of gluten proteins [J]. Food Microbiology, 2007,24:115-119
    1. Mejri M., Roge B., BenSouissi A., et al. Effects of some additives on wheat gluten solubility: A structural approach[J]. Food Chemistry, 2005,92:7-15
    2. Cui C., Zhou X.S, Zhao M.M., et al. Effect of thermal treatment on the enzymatic hydrolysis of chicken proteins[J]. Innovative Food Science and Emerging Technologies, 2009,10:37-41
    3. Gulseren I., Guzey D., Bruce B.D., et al. Structural and functional changes in ultrasonicated bovine serum albumin solutions[J]. Ultrasonics Sonochemistry, 2007,14: 173-183
    4. Song J., Tao W., Chen W. Ultrasound-accelerated enzymatic hydrolysis of solid leather waste[J]. Journal of Cleaner Production, 2008,16:591-597
    5. Reiz B., Li L. Microwave-Assisted Acid and Base Hydrolysis of Intact Proteins Containing Disulfide Bonds for Protein Sequence Analysis by Mass Spectrometry[J]. Journal of American Society for Mass Spectrometry, 2010,21(9):1596-1605
    6. Zhong H.Y., Zhang Y., Wen Z.H., et al. Protein Sequencing by Mass Analysis of Polypeptide Ladders After Controlled Protein Hydrolysis[J]. Nature Biotechnology, 2004,22(10):1291-1296
    7. Zhong H.Y., Marcus S.L., Li L. Microwave-Assisted Acid Hydrolysis of Proteins Combined with Liquid Chromatography MALDI MS/MS for Protein Identification[J]. Journal of American Society for Mass Spectrometry, 2005,16(4):471-481
    8. Yassine M.M., Guo N., Zhong H., et al. Off-Line Coupling of Preparative Capillary Zone Electrophoresis with Microwave-Assisted Acid Hydrolysis and Matrix-Assisted Laser Desorption Ionization Mass Spectrometry for Protein Sequencing[J]. Analytica Chimica Acta, 2007,597(1):41-49
    9. Wang N., MacKenzie L., De Souza A.G.,et al. Proteome Profile of Cytosolic Component of Zebrafish Liver Generated by LC-ESI MS/MS Combined with Trypsin Digestion and Microwave-Assisted Acid Hydrolysis[J]. Journal of Proteome Research, 2007,6(1): 263-272
    10. Izquierdo J.F., Alli I., Yaylayan V., et al. Microwave-assisted digestion ofβ-lactoglobulin by pronase,α-chymotrypsin and pepsin[J]. International Dairy Journal, 2007,17:465-470
    11. Broderick A.G., Craig M.W. Effect of Heat Treatment on Ruminai Degradation and Escape, and Intestinal Digestibility of Cottonseed Meal Protein[J]. Journal of Nutrition, 1980,110:2381-2389
    12. da Costa L.E., da Rocha A.G.J., Netto M.F. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates[J]. International Dairy Journal, 2007,17:632-640
    13. George D.F., Bilek M.M., McKenzie D.R. Non-thermal effects in the microwave induced unfolding of proteins observed by chaperone binding[J]. Bioelectromagnetics, 2008, 29:324-330
    14. de Pomeraia D.I., Smitha B., Dawea A., et al. Microwave radiation can alter protein conformation without bulk heating[J]. FEBS Letters, 2003,543:93-97
    15. Banik S., Bandyopadhyay S., Ganguly S. Bioeffects of microwave-a brief review[J]. Bioresource Technology, 2003,87:155-159
    16. Huang Q, Li L, Fu X. Ultrasound effects on the structure and chemical reactivity of cornstarch granules[J]. Starch, 2007,59:371-378
    17. Karki B., Lamsal B.P., Jung S., et al. Enhancing protein and sugar release from defatted soy flakes using ultrasound technology[J]. Journal of Food Engineering, 2010,96:270-278
    18. Bermudez A.D., Mawson R., Barbosa C.G.V. Microstructure of fat globules in whole milk after thermosonication treatment[J]. Journal of Food Science, 2008,73:325-332
    19. Nettleton E., Tito P., Sunde M., et al. Characterization of the oligomeric states of insulin in self-assembly and amyloid fibril formation by mass spectrometry[J]. Biophysical Journal, 2000,79:1053-1065
    20. Brange J., Andersen L., Laursen E., et al. Toward understanding insulin fibrillation[J]. Journal of Pharmaceutical Sciences, 1997,86:517-525
    21. Farag R.S., Hegazy R.A., El-Khawas K.H., et al. Electrophoretic patterns of microwaved and-irradiated beef liver proteins[J]. Journal of Agricultural and Food Chemistry, 2001, 81:975-982
    22. Berezhinsky L.I., Chegel V.I., Yu M.S. SPR-spectroscopy of protein molecules adsorbed in microwave field[J]. Semiconductor Physics, Quantum Electronics & Optoelectronics, 2001,4:343-346
    23. Arimi J.M., Duggan E., O'Sullivan M., et al. Effect of moisture content and water mobility on microwave expansion of imitation Cheese[J]. Food Chemistry, 2010, 121:509-516
    24. Umbach S.L., Davis E.A., Gordon J. 13C NMR spectroscopy of conventional and microwave heated vital wheat gluten[J]. Journal of Cereal Science, 1998,28:233-242
    25. Fu, K., Griebenow, K., Hsieh, L.,et al. FTIR characterization of the secondary structure of proteins encapsulated within PLGA microspheres[J]. Journal of Controlled Release, 1999,58:357-366
    26. Barak I., Golosovsky M., Davidov D. Microwave Effect on Proteins in Solution-Fluorescence Polarization Studies[J]. Piers Online, 2009,5(6):561-567
    27. Guzey D., Gulseren I., Bruce B., et al. Interfacial properties and structural conformation of thermosonicated bovine serum albumin[J]. Food Hydrocolloids, 2006,20:669-677
    28.宋国胜,胡娟,沈兴,等.超声辅助冷冻对面筋蛋白二级结构的影响[J].现代食品科技, 2009,25:860-864
    29. Letang C., Piau M., Verdier C., et al. Characterization of wheat-flour-water doughs: a new method using ultrasound[J]. Ultrasonics, 2001,39:133-141
    30. Lagrain B., Thewissen G.B., Brijs K., et al. Impact of Redox Agents on the Extractability of Gluten Proteins during Bread Making[J]. Journal of Agricultural and Food Chemistry, 2007,55:5320-5325
    31. Ellepola W.S., Choi M.S., Ma Y.C. Conformational study of globulin from rice (Oryza sativa)seeds by Fourier-transform infrared spectroscopy[J]. International Journal of Biological Macromolecular, 2005,37:12-20
    32. Sokolowski F., Naumann D. FTIR study on thermal denaturation and aggregation of recombinant hamster prion protein SHaPrP90–232[J]. Vibrational Spectroscopy, 2005,38:39-44
    33. Kresic G., Lelas V., Jambrak A.R., et al. Influence of novel food processing technologies on the rheological and thermophysical properties of whey proteins[J]. Journal of Food Engineering, 2008,87:64-73
    34. McClements D.J. Advances in the application of ultrasound in food analysis and processing[J]. Trends in Food Science and Technology, 1995,6:293-299
    35. Marcuzzo E, Peressini D, Debeaufort F, et al. Effect of ultrasound treatment on properties of gluten-based film[J]. Innovative Food Science and Emerging Technologies, 2010, 11(3):451-457
    36. Umbach S.L., Davis E.A., Gordon J., et al. Water self-diffusion coefficients and dielectric properties determined for starch-gluten-water mixtures heated by microwave and by conventional methods[J]. Cereal Chemistry, 1992,69:637-642
    37. Yalcin E., Sakiyan O., Sumnu G., et al. Functional properties of microwave-treated wheat gluten[J]. European Food Research and Technology, 2008,227:1411-1417
    38. Qasem R.J. The Effect of Microwave Thermal denaturation on release properties of bovine serum albumin and gluten matrices[J]. AAPS Pharmacy Science Technology,2006,7:E104-E110
    39. Thostenson E.T., Chou T.W. Microwave processing: fundamentals and applications[J]. Composites: Part A, 1999,30:1055-1071
    40. Koh, B.K., Karwe, M.V., Schaich, K.M. Effects of cysteine on free radical production and protein modification in extruded wheat flour[J]. Cereal Chemistry, 1996,73:115-122
    41. Wang J.Z., Lin T., Teng T.,et al. Spectroscopic studies on the irreversible heat-induced structural transition of Pin1[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011,78:142-147
    42. Stathopoulos C.E., Tsiami A.A., Schofield J.D., et al. Effect of heat on rheology, surface hydrophobicity and molecular weight distribution of glutens extracted from flours with different bread-making quality [J]. Journal of Cereal Science, 2008,47:134-143
    43. Wieser H. Chemistry of gluten proteins[J]. Food Microbiology, 2007,24:115-119
    44. Kovacsa M.I.P., Fu B.X., Woods S.M.,et al. Thermal stability of wheat gluten protein: its effect on dough properties and noodle texture[J]. Journal of Cereal Science, 2004,39:9-19
    45. Pallos M.F., Robertson H.G., Pavlath E.A., et al. Thermoformed Wheat Gluten Biopolymers[J]. Journal of Agricultural and Food Chemistry, 2006,54 (2):349-352
    46. Warchalewski J.R., Gralik J. Influence of microwave heating on biological activities and electrophoretic pattern of albumin fraction of wheat grain[J]. Cereal Chemistry, 2010, 81:35-41
    47. Starzak M., Mathlouthi M. Cluster composition of liquid water derived from laser-Raman spectra and molecular simulation data[J]. Food Chemistry, 2003,82(1):3-22
    48. Yuno-Ohta N., Yamada M., Inomata M., et al. Gluten Gel and Film Properties in the Presence of Cysteine and Sodium Alginate[J]. Journal of Food Science, 2009,74(6):285-290
    49. Angioloni A., Rosa M.D. Effects of cysteine and mixing conditions on white/whole dough rheological properties[J]. Journal of Food Engineering, 2007,80:18-23
    50. Wang J., Zhao M., Yang X., et al. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration[J]. Journal of Cereal Science, 2006,44:93-100
    51.王文俊,包海蓉,许慧.超声波处理提高谷朊粉溶解度的工艺条件[J].食品科学, 2009, 30(20):72-75
    52. Schoneich C. A catalytic role for cysteine thiol radicals in oxidative protein damage[J]. Amino acids, 2009,37:36-36
    53. Popineau Y., Huchet B., Latte C., et al. Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultrafiltration[J]. Journal of Cereal Science, 2002,35:327-33
    1.刘文豪.麦谷蛋白源谷氨酰胺肽的制备和肠道营养效果研究[D]:[硕士学位论文].武汉:华中农业大学, 2008
    2.杨得胜.谷氨酰胺结合肽的高效制备[D]: [硕士学位论文].南京:南京农业大学,2004
    3.张丽.谷氨酰胺活性肽的制备及性质研究[D]: [硕士学位论文].合肥:合肥工业大学,2009
    4.吕艳.酶解小麦蛋白制取谷氨酰胺活性肽的研究[D]: [硕士学位论文].杭州:浙江大学,2005
    5. Tanabe S., Watanabe M., Arai S. Production of a High-Glutamine Oligopeptide Fraction from Gluten by Enzymatic Treatment and Evaluation of its Nutritional effect on the small Intestine of Rats[J]. Journal of Food Biochemistry, 1993,16:235-248
    6.任国谱,瞿伟菁.谷氨酰胺(Gln)活性肽营养液的制备研究[J].食品科学, 2004, 25(7):117-120
    7.任国谱,谷文英.控制酶解黄粉蛋白制备Gln活性肽营养液的研究, (II)Gln活性肽的制备工艺及最佳工艺条件的确定[J].中国粮油学报, 2001,(2):9-12, 17
    8.谢岩黎,马成业,王金水.胰蛋白酶酶解豆粕制取谷氨酰胺肽的响应面法优化[J].河南工业大学学报(自然科学版), 2009,30(5):25-29
    9.程云辉.麦胚蛋白酶解物的制备、结构及其生物活性功能的研究[D]: [博士学位论文].无锡:江南大学,2006
    10.赵谋明,任娇艳,崔春,等.大孔吸附树脂静态吸附草鱼蛋白水解物中氨基酸的研究[J].食品与发酵工业, 2006,32(4):22-27
    11.张丰香.酶法制备草鱼鱼鳞明胶及ACE抑制肽的研究[D]: [博士学位论文].无锡:江南大学,2009
    12. Saxena A., Shahi V.K. pH controlled selective transport of proteins through charged ultrafilter membranes under coupled driving forces: An efficient process for protein separation[J]. Journal of Membrane Science, 2007,299(1-2):211-221
    13. Saxena A., Tripathi B.P., Shahi V.K. An improved process for separation of proteins using modified chitosan-silica cross-linked charged ultrafilter membranes under coupled driving forces: Isoelectric separation of proteins[J]. Journal of Colloid and Interface Science, 2008,319(1):252-262
    14. Saxena A., Shahi V.K. Isoelectric Separation of Proteins using Charged Ultrafilter Membranes with Different Functionality under Coupled Driving Forces[J]. Industrial &Engineering Chemistry Research, 2010,49(2):780-789
    15. Wang J.S., Zhao M.M., Yang X.Q., et al.Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration[J].Journal of cereal science, 2006,44:93-100
    16. Wang J.S., Zhao M.M., Jiang Y.M. Effects of wheat gluten hydrolysate and us ultrafiltration fractions on dough properties and bread quality[J]. Food Technology and Biotechnology, 2007,45(4):410-414
    17. Popineau Y., Huchet B., Larre C., et al.Foaming and emulsifying properties of fractions of gluten peptides obtained by limited enzymatic hydrolysis and ultrafiltration[J].Journal of cereal science, 2002,35:327-335
    18. Wang J.S., Zhao M.M., Bao Y., et al. Preparation and characterization of modified wheat gluten by enzymatic hydrolysis-ultrafiltration[J]. Journal of Food Biochemistry, 2008, 32(3):316-334
    19. Kong X.Z., Zhou H.M., Hua Y.F. Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes[J]. Journal of the Science of Food and Agriculture, 2008,88(5):920-926
    20. Tang Z., Zhou R., Duan Z. Adsorption and desorption behaviour of taurine on macroporous adsorption resins[J]. Journal of Chemical Technology and Biotechnology, 2001,76:752-756
    21.陈季旺,刘英,夏文水,等.大米降压肽酶法制备工艺及其性质研究[J].农业工程学报, 2007,23(5):210-215
    22. Zhong F., Liu J.M., Ma J.G., et al. Preparation of hypocholesterol peptides from soy protein and their hypocholesterolemic effect in mice[J]. Food Research International, 2007,40:661-667
    23.侯虎,赵雪,张朝辉,等.大孔聚苯乙烯吸附树脂对鳕鱼排免疫活性肽的脱盐[J].过程工程学报, 2010,10(5):899-904
    24. Wasswa J., Tang J., Gu X.H. Desalting fish skin protein hydrolysates using macroporous adsorption resin[J]. American Journal of Food Technology, 2007,2(5):406-413
    25. Zhang F.X., Wang Z., Xu S.Y. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella)scale peptides with in vitro angiotensin-I converting enzyme (ACE) inhibitory ability[J]. Food Chemistry, 2009,117:387-392
    26. Du X.L., Yuan Q.P., Zhao J.S., et al. Comparison of general rate model with a new model—Artificial neural network model in describing chromatographic kinetics of solanesol adsorption in packed column by macroporous resins[J]. Journal of Chromatography A, 2007,1145(1-2):165-174
    27.赵一明,王璋,许时婴,等.大孔吸附树脂对酪蛋白非磷肽脱盐效果的研究[J].食品与发酵工业, 2007,33(11):21-25
    28. Toyoda M., Narimatsu H., Kameyama A. Enrichment Method of Sulfated Glycopeptides by a Sulfate Emerging and Ion Exchange Chromatography[J]. Analytical Chemistry, 2009,81(15):6140-6147
    29. Havugimana P.C., Wong P., Emili A. Improved proteomic discovery by sample pre-fractionation using dual-column ion-exchange high performance liquid chromatography[J].Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2007,847(1):54-61
    30. Pepaj M., Holm A., Fleckenstein B., et al. Fractionation and separation of human salivary proteins by pH-gradient ion exchange and reversed phase chromatography coupled to mass spectrometry[J].Journal of Separation Science, 2006,29(4):519-528
    31. Cummins P.M., Dowling O., O'Connor B.F. Ion-exchange chromatography: basic principles and application to the partial purification of soluble mammalian prolyl oligopeptidase[J]. Methods in Molecular Biology, 2011,681:215-228
    32. Alpert A.J., Petritis K., Kangas L., et al. Peptide Orientation Affects Selectivity in Ion-Exchange Chromatography[J]. Analytical Chemistry, 2010,82(12):5253-5259
    1. Giovannini C., Sanchez M., Straface E., et al. Induction of apoptosis in Caco-2 cells by wheat gliadin peptides[J]. Toxicology, 2000,145:63-71
    2. Wang J.S., Zhao M.M., Yang X.Q., et al. Improvement on functional properties of wheat gluten by enzymatic hydrolysis and ultrafiltration[J]. Journal of Cereal Science, 2006, 44:93-100
    3. Kato Y., Aoki T., Kato N., et al. Modification of ovalbumin with glucose 6-phosphate by amino-carbonyl reaction: improvement of protein heat stability and emulsifying activity[J]. Journal of Agricultural and Food Chemistry, 1995,43:301-305
    4. Jasim A., Hosahalli S.R., Vijaya G.S.R. Dynamic viscoelastic, calorimetric and dielectric characteristics of wheat protein isolates[J]. Journal of Cereal Science, 2008,47:417-428
    5. Erdogdu N., Czuchajowska Z., Pomeranz Y. Wheat flour and defatted milk fractions characterized by differential scanning calorimetry(DSC). II. DSC of interaction products[J]. Cereal Chemistry, 1995,722:76-78
    6. Le'on A., Rosell C.M., Barber C.B. A differential scanning calorimetry study of wheat proteins[J]. European Food Research and Technology, 2003,217:13-16
    7.王金水,赵谋明,杨晓泉.酶解产物对小麦面筋蛋白酶水解过程抑制作用的研究[J].河南工业大学学报(自然科学版). 2005,26(4):5-8.
    8. Kammoun R., Bejar S., Ellouz R. Protein size distribution and inhibitory effect of wheat hydrolysates on Neutrase?[J]. Bioresource Technology, 2003,90(3):249-254
    9. Savoie L., Agudelo R.A., Gauthier S.F., et al. In vitro determination of the release kinetics of peptides and free amino acids during the digestion of food proteins[J]. Journal of AOAC International, 2005,88(3):935-48
    10. Huang D.J., Ou B.X., Prior L.R. The Chemistry behind Antioxidant Capacity Assays[J]. Journal of Agricultural and Food Chemistry, 2005,53 (6):1841-1856
    11. Pownall L.T., Udenigwe C.C., Aluko E.R. Amino Acid Composition and Antioxidant Properties of Pea Seed (Pisum sativum L.) Enzymatic Protein Hydrolysate Fractions[J]. Journal of Agricultural and Food Chemistry, 2010,58:4712-4718
    12. Li M.H., Hu X., Guo P., et al. Antioxidant Properties and Possible Mode of Action of Corn Protein Peptides and Zein Peptides[J]. Journal of Food Biochemistry, 2010, 34:44-60
    13. Zhu K.X., Su C.Y., Guo X.N., et al. Influence of ultrasound during wheat gluten hydrolysis on the antioxidant activities of the resulting hydrolysate[J]. International Journal of Food Science and Technology, 2011,46:1053-1059
    14. Kong X.Z., Zhou H.M., Hua Y.F. Preparation and antioxidant activity of wheat gluten hydrolysates (WGHs) using ultrafiltration membranes[J]. Journal of the Science of Food and Agriculture, 2008,88:920-926
    15. Girgih T.A., Udenigwe C.C., Aluko E.R. In Vitro Antioxidant Properties of Hemp Seed (Cannabis sativa L.)Protein Hydrolysate Fractions[J]. Journal of the American Oil Chemist’Society, 2011,88:381-389
    16. Zhang L., Li J.R., Zhou K.Q. Chelating and Radical Scavenging Activities of Soy Protein Hydrolysates Prepared From Microbial Proteases and Their Effect on Meat Lipid Peroxidation[J]. Bioresource Technology, 2010,101(7):2084-2089
    17. Wang L.L., Xiong Y.L.L. Inhibition of Lipid Oxidation in Cooked Beef Patties by Hydrolyzed Potato Protein Is Related to Its Reducing and Radical Scavenging Ability[J]. Journal of Agricultural and Food Chemistry,2005,53(23):9186-9192
    18. Sawaki K., Takaoka I., Sakuraba K., et al. Effects of distance running and subsequent intake of glutamine rich peptide on biomedical parameters of male Japanese athletes[J].Nutrition Research, 2004,24:59-71.
    19. Rogero M.M., Tirapegui J., Pedrosa G.R., et al. Effect of alanyl-glutamine supplementation on plasma and tissue glutamine concentrations in rats submitted to exhaustive exercise[J]. Nutrition, 2006,22:564-571.
    20.金其贯.谷氨酰胺和精氨酸对运动性免疫抑制干预作用的研究[D]:[博士学位论文].北京:北京体育大学,2003
    21.尹晓平.马鹿茸血酶解制备抗疲劳活性肽的研究[D]: [硕士学位论文].无锡:江南大学, 2008
    22.陈园园.大豆肽的酶解制备与抗疲劳、抗氧化功能研究[D]: [硕士学位论文].无锡:江南大学, 2008
    23. Walsh N.P., Blannin A.K., Cook A.M.C.L., et al. The effects of high-intensity intermittent exercise on the plasma concentrations of glutamine and organic acids[J]. European Journal of Applied Physiology, 1998,77:434-438
    24. Sawaki K., Takaoka I., Sakuraba K., et al. Effects of distance running and subsequent intake of glutamine rich peptide on biomedical parameters of male Japanese athletes[J].Nutrition Research, 2004,24:59-71
    25.洪瑾芳.酶解小麦蛋白对热应激小鼠生理功能的影响[D]: [硕士学位论文].福州:福建农林大学,2009
    26.熊正英,程春凤,战旗.谷氨酰胺及运动训练对大鼠血液中某些生化指标的影响[D].西安体育学院学报, 2003,20(3):48-51
    27.夏澜英.谷氨酰胺对运动大鼠心肌和大脑抗氧化作用的实验研究[D]: [硕士学位论文].苏州:苏州大学,2007
    28. Koikawa N.K., Nakamura A., Ngaoka I., et al. Delayed-onset muscle injury and its modification by wheat gluten hydrolysate[J]. Nutrition, 2009,25(5):493-498
    29.王元慧.外源性补充Gln对游泳训练的小鼠自由基及运动性肌肉损伤的影响[D]:[硕士学位论文].武汉:湖北大学,2007
    30. Roth E. Nonnutritive Effects of Glutamine[J]. The Journal of Nutrition, 2008,138(10): 2025S-2031S
    31. Horiguchi N., Horiguchi H., Suzuki Y. Effect of wheat gluten hydrolysate on the immune system in healthy human subjects[J]. Bioscience Biotechnology and Biochemistry, 2005,69(12):2445-2449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700