用户名: 密码: 验证码:
神经保护肽[Gly14]-Humanin对脑外伤的保护作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:Humanin(HN)是2011年新鉴定出的一种神经保护肽,HN能抑制AD相关因子及疾病诱导的神经细胞死亡。HN的第14位的氨基酸丝氨酸被甘氨酸取代可形成HN衍生物[Gly14]-Humanin(HNG)。研究表明HNG减少缺血/再灌注诱导的脑梗死体积和改善其神经功能障碍。本研究中,我们将探索神经保护肽HNG对小鼠创伤性脑损伤(traumatic brain injury,TBI)是否具有保护作用,并探索HNG的神经保护作用与凋亡及自噬之间的关系。
     方法:利用改良的自由落体装置建立小鼠TBI模型。TBI前15min小鼠侧脑室给予HNG,并于伤后47h腹腔注射碘化丙啶(propidium iodide,PI),TBI后48h(PI阳性细胞出现高峰时段)处死小鼠,采用体视学显微镜观察小鼠大脑损伤皮质及周边区,海马CA1,CA3及DG区PI阳性细胞数,研究HNG预处理对TBI引起的神经细胞质膜完整性破坏的影响。为了探讨PI阳性细胞能否代表脑外伤引起的细胞丢失,用组织缺损体积(lesion volume,LV)评估TBI后脑组织缺损情况,应用行为学试验(Motor Test和Morris水迷宫试验)评估TBI后各组试验动物的运动和学习记忆功能,探讨TBI前15min侧脑室给予HNG及TBI后不同时间点腹腔给予HNG能否改善脑外伤后神经组织损伤及神经功能障碍。为了进一步探索HNG对TBI的神经保护机制,采用TBI前15min侧脑室给予HNG,检测TBI后不同时间点损伤皮质区及海马区激活型caspase-3及凋亡相关蛋白表达水平,并对凋亡机制进行了深入的探讨;同时检测HNG对脑外伤后损伤皮质区及海马区神经细胞自噬激活的影响,并对其作用机制进行探讨。
     结果:(1)与生理盐水组对比,HNG侧脑室预处理(0.1μg)能明显减少TBI后48h损伤皮质区及海马区(CA1,CA3和DG)PI阳性细胞。此外,在正常组,假手术组及损伤对侧半球的皮质区及海马区均没有发现PI阳性细胞。(2)与生理盐水组对比,侧脑室预给予HNG(0.1μg)在TBI后14d及28d均能明显减少脑缺损体积,而TBI后1h或2h腹腔给予HNG(1μg)仍能减少脑缺损体积,但TBI后4h腹腔给予同样剂量HNG不能减少脑缺损体积。(3)TBI前,HNG组与生理盐水组具有相同的运动能力。TBI后,与TBI+vehicle组比较,TBI+HNG侧脑室给药组(0.1μg)能加快运动功能的恢复(TBI后第1-5d)。然而,TBI后1h腹腔给予HNG(1μg)只能轻微的加快运动功能的恢复(TBI后第2-3d)。而伤后2h和4h并不能加快运动的恢复。(4)TBI前,各组小鼠在定向航行试验,可视平台试验及空间探索试验中表现正常的学习曲线。HNG侧脑室预给药组在TBI后10-12d寻找平台所需时间明显比生理盐水对照组缩短,并且在空间探索试验具有更好的表现。采用HNG腹腔脑外伤后1h,2h和4h单次给药,结果发现上述各个时间单次给药均不能改善小鼠的定向航行试验,伤后1h(伤后2h或4h均不能)给予HNG能增加小鼠在平台所在象限的搜索时间。(5)免疫印迹分析显示HNG能逆转TBI诱导的caspase-3和PARP的剪切,Bax的增加和Bcl-2的减少,免疫荧光检测表明HNG能减少损伤皮质区及海马CA1,CA3及DG的caspase-3阳性细胞(TBI后48h)。进一步研究HNG的抗凋亡机制发现,HNG能通过抑制内外源性两条凋亡途径而抑制TBI诱导的凋亡激活。(6)与生理盐水组对比,HNG能抑制TBI诱导的自噬的激活,即抑制LC3II,Beclin-1及Vps34等蛋白的激活,维持p62的蛋白水平。进一步免疫荧光检测表明HNG能减少损伤皮质区及海马CA1,CA3及DG的Beclin-1阳性细胞(TBI后24h)。
     结论:(1)HNG能抑制TBI诱导的细胞质膜完整性的破坏,减少脑缺损体积,改善运动和记忆功能障碍。(2)HNG能抑制TBI诱导的凋亡和自噬的激活,这可能参与HNG对TBI的神经保护机制。
Objective: Humanin (HN) has been identified as an endogenous peptide thatinhibited AD-relevant neuronal cell death.[Gly14]-Humanin (HNG), a variant of HN inwhich the14th amino acid serine was replaced with glycine, can reduce infarct volumeand improve neurological deficits after ischemia/reperfusion injury. In this study, weaimed to exam the neuroprotective effect of HNG on traumatic brain injury (TBI) inmice and explored whether the protective effects were associated with regulatingapoptosis and autophagy.
     Methods: Mice TBI model was established by weight drop device in adult micebased on procedures previously reported. Mice were pretreated with HNG (i.c.v.,0.1μgin5μL saline) or saline, and sacrificed at48h after TBI. Loss of plasmalemma integritywas evaluated by intraperitoneal injection of propidium iodide1h before sacrificing theanimal. The number of PI-positive cells in injured cortex, dentate gyrus, CA1and CA3regions was counted. Furthermore, the cumulative loss of brain tissue was determined toexplore whether PI-positive cells could represent TBI-induced cell lost. Moreover,motor test and Morris water maze were performed for detecting whether TBI-inducedcell loss would result in behavior deficits. We examined whether pretreatment (i.c.v.) orposttreatment (i.p.) with HNG at different time can reduce brain tissue damage, andimprove the recovery of motor and cognitive dysfunction. To explore theneuroprotective mechanism of HNG after TBI, mice was pretreated (i.c.v.) with HNGand brain tissues were obtained for specific protein analysis. We examined the levels ofapoptosis and autophagy related proteins.
     Results:(1) Compared to vehicle-treated group, HNG pretreatment (i.c.v.)decreased the number of PI-positive cells in injured cortex, dentate gyrus, CA1and CA3regions (P <0.01)48h post TBI. In contrast to injured mice, PI-positive cells werenot detected in brain regions from naive or sham-injured mice, or in the contralateralhemisphere of injured mice.(2) Compared to vehicle-treated groups, mice administeredHNG (i.c.v.,0.1μg) prior to TBI had significantly reduced lesion volume byapproximately25-30%at14days after TBI (P <0.01) and even at28days after TBI (P<0.01), administration of HNG at1h or2h after TBI decreased lesion volume (P <0.05), but this effect was not significant when HNG was given4h after TBI.(3)Following TBI, pre-treatment with HNG (i.c.v.,0.1μg) improved the recovery of motorfunctional outcome on days1to5post TBI compared to vehicle (P <0.05). However,mice administered HNG (i.p.,1μg) at1h post TBI had minor amelioration in motorperformance (on days2to3post TBI) versus vehicle-treated mice, and there were noamelioration in motor performance when HNG was administered at2h and4h postinjury.(4) In Morris water maze experiments, mice showed normal acquisition curveson both hidden and visible platforms, and selective quadrant search on the probe trialbefore suffering TBI. Mice administered HNG before TBI had significantly decreasedescape latency to the hidden platform (on days10to12post TBI) and performedsignificantly better in probe trial test compared with vehicle-treated mice. Compared tovehicle-treated group, mice administered HNG (i.p.,1μg) at1h,2h and4h post injuryrespectively had similar performance in hidden platform trials. However, miceadministered HNG (i.p.,1μg) at1h, but not2h and4h post injury, had significantlyimproved probe trial performance versus vehicle-treated animals (P <0.05).(5)Immunoblotting results showed that HNG pretreatment (i.c.v.) reversed TBI-inducedcleavage of caspase-3and PARP, increase of Bax and decline of Bcl-2in injured cortexand hippocampus. Analyses of caspase-3expression by immunofluorescent staining at48h after traumatic brain injury shown HNG decreased the number of positive cells atthe cortical area near the site of injury and in the hippocampus (CA1, CA3and DG). Tofurther explore the anti-apoptosis mechanism of HNG, cyt-c, caspase-8and caspase-9protein levels were also assessed after TBI. The TBI induced up-regulation of cyt-c,caspase-8, and caspase-9were also reversed by HNG.(6) Compared withvehicle-treated group, HNG pretreatment (i.c.v.) suppressed activation of LC3II, Beclin-1and Vps34, and maintained p62level in injured cortex and hippocampus postTBI. In addition, immunofluorescent staining at24h after traumatic brain injury shownHNG decreased the number of Beclin-1positive cells at the cortical area near the site ofinjury and in the hippocampus (CA1, CA3and DG).
     Conclusion:(1) HNG significantly suppressed TBI-induced cellular plasmalemmaintegrality disruption, reduced brain tissue damage, and improved the recovery of motorand cognitive dysfunction.(2) In addition, HNG was able to inhibit TBI-inducedapoptosis and autophagic activity, which may be involved in the neuroprotectivemechanism of HNG.
引文
[1] Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translationalchallenges and emerging therapeutic strategies. Trends Pharmacol Sci2010;31:596-604.
    [2] Kim JJ, Gean AD. Imaging for the diagnosis and management of traumatic braininjury. Neurotherapeutics2011;8:39-53.
    [3] Leker RR, Shohami E. Cerebral ischemia and trauma-different etiologies yet similarmechanisms: neuroprotective opportunities. Brain Res Rev2002;39:55-73.
    [4] McAllister TW. Neurobiological consequences of traumatic brain injury. DialoguesClin Neurosci2011;13:287-300.
    [5] Wong J, Hoe NW, Zhiwei F, Ng I. Apoptosis and traumatic brain injury. NeurocritCare2005;3:177-182.
    [6] Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RS. Bench-to-bedside review:Apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care2005;9:66-75.
    [7] Zhang YB, Li SX, Chen XP, Yang L, Zhang YG, Liu R, Tao LY. Autophagy isactivated and might protect neurons from degeneration after traumatic brain injury.Neurosci Bull2008;24:143-149.
    [8] Liu CL, Chen S, Dietrich D, Hu BR. Changes in autophagy after traumatic braininjury. J Cereb Blood Flow Metab2008;28:674-683.
    [9] Clark RS, Bayir H, Chu CT, Alber SM, Kochanek PM, Watkins SC. Autophagy isincreased in mice after traumatic brain injury and is detectable in human brain aftertrauma and critical illness. Autophagy2008;4:88-90.
    [10] Rink A, Fung KM, Trojanowski JQ, Lee VM, Neugebauer E, McIntosh TK.Evidence of apoptotic cell death after experimental traumatic brain injury in the rat.Am J Pathol1995;147:1575-1583.
    [11] Beer R, Franz G, Srinivasan A, Hayes RL, Pike BR, Newcomb JK, Zhao X,Schmutzhard E, Poewe W, Kampfl A. Temporal profile and cell subtypedistribution of activated caspase-3following experimental traumatic brain injury. JNeurochem2000;75:1264-1273.
    [12] Beer R, Franz G, Krajewski S, Pike BR, Hayes RL, Reed JC, Wang KK, KlimmerC, Schmutzhard E, Poewe W, Kampfl A. Temporal and spatial profile of caspase8expression and proteolysis after experimental traumatic brain injury. J Neurochem2001;78:862-873.
    [13] Schweichel JU, Merker HJ. The morphology of various types of cell death inprenatal tissues. Teratology1973;7:253-266.
    [14] Zakeri Z, Bursch W, Tenniswood M, Lockshin RA. Cell death: programmed,apoptosis, necrosis, or other? Cell Death Differ1995;2:87-96.
    [15] Eskes R, Desagher S, Antonsson B, Martinou JC. Bid induces the oligomerizationand insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol2000;20:929-935.
    [16] Cain K, Bratton SB, Langlais C, Walker G, Brown DG, Sun XM, Cohen GM.Apaf-1oligomerizes into biologically active approximately700-kDa and inactiveapproximately1.4-MDa apoptosome complexes. J Biol Chem2000;275:6067-6070.
    [17] Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J. Caspase-12mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity byamyloid-beta. Nature2000;403:98-103.
    [18] Clark RS, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL,Loeffert JE, Graham SH. Increases in Bcl-2and cleavage of caspase-1andcaspase-3in human brain after head injury. FASEB J1999;13:813-821.
    [19] Clark RS, Kochanek PM, Watkins SC, Chen M, Dixon CE, Seidberg NA, Melick J,Loeffert JE, Nathaniel PD, Jin KL, Graham SH. Caspase-3mediated neuronaldeath after traumatic brain injury in rats. J Neurochem2000;74:740-753.
    [20] Keane RW, Kraydieh S, Lotocki G, Alonso OF, Aldana P, Dietrich WD. Apoptoticand antiapoptotic mechanisms after traumatic brain injury. J Cereb Blood FlowMetab2001;21:1189-1198.
    [21] Pike BR, Zhao X, Newcomb JK, Posmantur RM, Wang KK, Hayes RL. Regionalcalpain and caspase-3proteolysis of alpha-spectrin after traumatic brain injury.Neuroreport1998;9:2437-2442.
    [22] Yakovlev AG, Knoblach SM, Fan L, Fox GB, Goodnight R, Faden AI. Activationof CPP32-like caspases contributes to neuronal apoptosis and neurologicaldysfunction after traumatic brain injury. J Neurosci1997;17:7415-7424.
    [23] Yakovlev AG, Ota K, Wang G, Movsesyan V, Bao WL, Yoshihara K, Faden AI.Differential expression of apoptotic protease-activating factor-1and caspase-3genes and susceptibility to apoptosis during brain development and after traumaticbrain injury. J Neurosci2001;21:7439-7446.
    [24] Raghupathi R, Conti AC, Graham DI, Krajewski S, Reed JC, Grady MS,Trojanowski JQ, McIntosh TK. Mild traumatic brain injury induces apoptotic celldeath in the cortex that is preceded by decreases in cellular Bcl-2immunoreactivity.Neuroscience2002;110:605-616.
    [25] Raghupathi R, Strauss KI, Zhang C, Krajewski S, Reed JC, McIntosh TK.Temporal alterations in cellular Bax:Bcl-2ratio following traumatic brain injury inthe rat. J Neurotrauma2003;20:421-435.
    [26] Nakamura M, Raghupathi R, Merry DE, Scherbel U, Saatman KE, McIntosh TK.Overexpression of Bcl-2is neuroprotective after experimental brain injury intransgenic mice. J Comp Neurol1999;412:681-692.
    [27] Raghupathi R, Fernandez SC, Murai H, Trusko SP, Scott RW, Nishioka WK,McIntosh TK. BCL-2overexpression attenuates cortical cell loss after traumaticbrain injury in transgenic mice. J Cereb Blood Flow Metab1998;18:1259-1269.
    [28] Franz G, Beer R, Intemann D, Krajewski S, Reed JC, Engelhardt K, Pike BR,Hayes RL, Wang KK, Schmutzhard E, Kampfl A. Temporal and spatial profile ofBid cleavage after experimental traumatic brain injury. J Cereb Blood Flow Metab2002;22:951-958.
    [29] Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X.Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondriablocked. Science1997;275:1129-1132.
    [30] Buki A, Okonkwo DO, Wang KK, Povlishock JT. Cytochrome c release andcaspase activation in traumatic axonal injury. J Neurosci2000;20:2825-2834.
    [31] Diskin T, Tal-Or P, Erlich S, Mizrachy L, Alexandrovich A, Shohami E,Pinkas-Kramarski R. Closed head injury induces upregulation of Beclin1at thecortical site of injury. J Neurotrauma2005;22:750-762.
    [32] Lemasters JJ, Qian T, He L, Kim JS, Elmore SP, Cascio WE, Brenner DA. Role ofmitochondrial inner membrane permeabilization in necrotic cell death, apoptosis,and autophagy. Antioxid Redox Signal2002;4:769-781.
    [33] Bellu AR, Kiel JA. Selective degradation of peroxisomes in yeasts. Microsc ResTech2003;61:161-170.
    [34] Roberts P, Moshitch-Moshkovitz S, Kvam E, O'Toole E, Winey M, Goldfarb DS.Piecemeal microautophagy of nucleus in Saccharomyces cerevisiae. Mol Biol Cell2003;14:129-141.
    [35] Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr OpinCell Biol2005;17:415-422.
    [36] Mizushima N. Methods for monitoring autophagy. Int J Biochem Cell Biol2004;36:2491-2502.
    [37] Tanida I, Tanida-Miyake E, Komatsu M, Ueno T, Kominami E. HumanApg3p/Aut1p homologue is an authentic E2enzyme for multiple substrates,GATE-16, GABARAP, and MAP-LC3, and facilitates the conjugation of hApg12pto hApg5p. J Biol Chem2002;277:13739-13744.
    [38] Codogno P, Meijer AJ. Atg5: more than an autophagy factor. Nat Cell Biol2006;8:1045-1047.
    [39] Baehrecke EH. Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol2005;6:505-510.
    [40] Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int JBiochem Cell Biol2004;36:2445-2462.
    [41] Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE,Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue ofmammalian p62, is required for the formation of protein aggregates in adult brain.J Cell Biol2008;180:1065-1071.
    [42] Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signalsautophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad SciU S A2008;105:20567-20574.
    [43] Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A,Bjorkoy G, Johansen T. p62/SQSTM1binds directly to Atg8/LC3to facilitatedegradation of ubiquitinated protein aggregates by autophagy. J Biol Chem2007;282:24131-24145.
    [44] Lai Y, Hickey RW, Chen Y, Bayir H, Sullivan ML, Chu CT, Kochanek PM, DixonCE, Jenkins LW, Graham SH, Watkins SC, Clark RS. Autophagy is increased aftertraumatic brain injury in mice and is partially inhibited by the antioxidantgamma-glutamylcysteinyl ethyl ester. J Cereb Blood Flow Metab2008;28:540-550.
    [45] Sadasivan S, Dunn WA, Jr., Hayes RL, Wang KK. Changes in autophagy proteinsin a rat model of controlled cortical impact induced brain injury. Biochem BiophysRes Commun2008;373:478-481.
    [46] Sehgal SN, Baker H, Vezina C. Rapamycin (AY-22,989), a new antifungalantibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo)1975;28:727-732.
    [47] Erlich S, Alexandrovich A, Shohami E, Pinkas-Kramarski R. Rapamycin is aneuroprotective treatment for traumatic brain injury. Neurobiol Dis2007;26:86-93.
    [48] Davis LM, Pauly JR, Readnower RD, Rho JM, Sullivan PG. Fasting isneuroprotective following traumatic brain injury. J Neurosci Res2008;86:1812-1822.
    [49] Luo CL, Li BX, Li QQ, Chen XP, Sun YX, Bao HJ, Dai DK, Shen YW, Xu HF, NiH, Wan L, Qin ZH, Tao LY, Zhao ZQ. Autophagy is involved in traumatic braininjury-induced cell death and contributes to functional outcome deficits in mice.Neuroscience2011;184:54-63.
    [50] Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, KawasumiM, Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K,Nishimoto I. A rescue factor abolishing neuronal cell death by a wide spectrum offamilial Alzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A2001;98:6336-6341.
    [51] Zapala B, Kaczynski L, Kiec-Wilk B, Staszel T, Knapp A, Thoresen GH,Wybranska I, Dembinska-Kiec A. Humanins, the neuroprotective andcytoprotective peptides with antiapoptotic and anti-inflammatory properties.Pharmacol Rep2010;62:767-777.
    [52] Zapala B, Staszel T, Kiec-Wilk B, Polus A, Knapp A, Wybranska I, Kaczynski L,Dembinska-Kiec A.[Humanin and its derivatives as peptides with potentialantiapoptotic and confirmed neuroprotective activities]. Przegl Lek2011;68:372-377.
    [53] Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I.Mechanisms of neuroprotection by a novel rescue factor humanin from Swedishmutant amyloid precursor protein. Biochem Biophys Res Commun2001;283:460-468.
    [54] Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T,Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A,Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursorprotein-mediated neuronal cell death. J Neurochem2003;84:864-877.
    [55] Jin H, Hu HT, Wang WX, Feng GF, Li YY, Yang WN.[Effect of [Gly14]-Humaninon Abeta(25-35)-induced PC12cell apoptosis]. Xi Bao Yu Fen Zi Mian Yi Xue ZaZhi2010;26:427-430.
    [56] Jin H, Liu T, Wang WX, Xu JH, Yang PB, Lu HX, Sun QR, Hu HT. Protectiveeffects of [Gly14]-Humanin on beta-amyloid-induced PC12cell death bypreventing mitochondrial dysfunction. Neurochem Int2010;56:417-423.
    [57] Jung SS, Van Nostrand WE. Humanin rescues human cerebrovascular smoothmuscle cells from Abeta-induced toxicity. J Neurochem2003;84:266-272.
    [58] Kariya S, Hirano M, Furiya Y, Ueno S. Effect of humanin on decreased ATP levelsof human lymphocytes harboring A3243G mutant mitochondrial DNA.Neuropeptides2005b;39:97-101.
    [59] Kariya S, Hirano M, Nagai Y, Furiya Y, Fujikake N, Toda T, Ueno S. Humaninattenuates apoptosis induced by DRPLA proteins with expanded polyglutaminestretches. J Mol Neurosci2005;25:165-169.
    [60] Kariya S, Takahashi N, Hirano M, Ueno S. Humanin improves impaired metabolicactivity and prolongs survival of serum-deprived human lymphocytes. Mol CellBiochem2003;254:83-89.
    [61] Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S. Humanininhibits cell death of serum-deprived PC12h cells. Neuroreport2002;13:903-907.
    [61] Li LM, Zhang Y, Qiao JT, Zhang C. Humanin protects neurons against apoptosisinduced by Abeta31-35through suppression of intrinsic pathway. Sheng Li XueBao2010;62:93-100.
    [62] Wang D, Li H, Yuan H, Zheng M, Bai C, Chen L, Pei X. Humanin delays apoptosisin K562cells by downregulation of P38MAP kinase. Apoptosis2005;10:963-971.
    [63] Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH.Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury ismediated by a PI3K/Akt pathway. Brain Res2008;1227:12-18.
    [64] Zhao ST, Huang XT, Zhang C, Ke Y. Humanin protects cortical neurons fromischemia and reperfusion injury by the increased activity of superoxide dismutase.Neurochem Res2012;37:153-160.
    [65] Zhao ST, Zhao L, Li JH. Neuroprotective Peptide humanin inhibits inflammatoryresponse in astrocytes induced by lipopolysaccharide. Neurochem Res2013;38:581-588.
    [66] Mamiya T, Ukai M.[Gly(14)]-Humanin improved the learning and memoryimpairment induced by scopolamine in vivo. Br J Pharmacol2001;134:1597-1599.
    [67] Matsuoka M. Humanin; a defender against Alzheimer's disease? Recent Pat CNSDrug Discov2009;4:37-42.
    [68] Matsuoka M. Humanin signal for Alzheimer's disease. J Alzheimers Dis2011;24Suppl2:27-32.
    [69] Krejcova G, Patocka J, Slaninova J. Effect of humanin analogues on experimentallyinduced impairment of spatial memory in rats. J Pept Sci2004;10:636-639.
    [70] Guo F, Jing W, Ma CG, Wu MN, Zhang JF, Li XY, Qi JS.[Gly(14)]-humaninrescues long-term potentiation from amyloid beta protein-induced impairment inthe rat hippocampal CA1region in vivo. Synapse2010;64:83-91.
    [71] Miao J, Zhang W, Yin R, Liu R, Su C, Lei G, Li Z. S14G-Humanin amelioratesAbeta25-35-induced behavioral deficits by reducing neuroinflammatory responsesand apoptosis in mice. Neuropeptides2008;42:557-567.
    [72] Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y,Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I. A humanin derivative,S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J NeurosciRes2005;79:714-723.
    [73] Zhang W, Miao J, Hao J, Li Z, Xu J, Liu R, Cao F, Wang R, Chen J. Protectiveeffect of S14G-humanin against beta-amyloid induced LTP inhibition in mousehippocampal slices. Peptides2009;30:1197-1202.
    [74] Xu X, Chua CC, Gao J, Hamdy RC, Chua BH. Humanin is a novel neuroprotectiveagent against stroke. Stroke2006;37:2613-2619.
    [75] Muzumdar RH, Huffman DM, Calvert JW, Jha S, Weinberg Y, Cui L, Nemkal A,Atzmon G, Klein L, Gundewar S, Ji SY, Lavu M, Predmore BL, Lefer DJ. Acutehumanin therapy attenuates myocardial ischemia and reperfusion injury in mice.Arterioscler Thromb Vasc Biol2010;30:1940-1948.
    [76] Nishimoto I, Matsuoka M, niikura T. Unravelling the role of Humanin. Trends MolMed2004;10:102-105.
    [77] Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derivedpeptide humanin in stress resistance. J Mol Endocrinol2013;50:R11-19.
    [78] Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM.Humanin, a newly identified neuroprotective factor, uses the G protein-coupledformylpeptide receptor-like-1as a functional receptor. J Immunol2004;172:7078-7085.
    [79] Matsuoka M, Hashimoto Y. Humanin and the receptors for humanin. MolNeurobiol2010;41:22-28.
    [80] Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M. Humanin inhibitsneuronal cell death by interacting with a cytokine receptor complex or complexesinvolving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell2009;20:2864-2873.
    [81] Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T,Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A,Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursorprotein-mediated neuronal cell death. J Neurochem2003;84:864-877.
    [82] Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC.Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature2003;423:456-461.
    [83] Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, et al.Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax familyprotein BimEL. J Biol Chem2005;280:15825-15835.
    [84] Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC. Humanin binds andnullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem2005;280:15815-15824.
    [85] Jain KK. Neuroprotection in traumatic brain injury. Drug Discov Today2008;13:1082-1089.
    [86] Etemadrezaie H, Baharvahdat H, Shariati Z, Lari SM, Shakeri MT, Ganjeifar B.The effect of fresh frozen plasma in severe closed head injury. Clin NeurolNeurosurg2007;109:166-171.
    [87] Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG,Lo EH, Ericsson M, Moskowitz MA. Acute plasmalemma permeability andprotracted clearance of injured cells after controlled cortical impact in mice. JCereb Blood Flow Metab2008;28:490-505.
    [88] Unal-Cevik I, Kilinc M, Can A, Gursoy-Ozdemir Y, Dalkara T. Apoptotic andnecrotic death mechanisms are concomitantly activated in the same cell aftercerebral ischemia. Stroke2004;35:2189-2194.
    [89] Kelly KJ, Sandoval RM, Dunn KW, Molitoris BA, Dagher PC. A novel method todetermine specificity and sensitivity of the TUNEL reaction in the quantitation ofapoptosis. Am J Physiol Cell Physiol2003;284:C1309-1318.
    [90] Unal Cevik I, Dalkara T. Intravenously administered propidium iodide labelsnecrotic cells in the intact mouse brain after injury. Cell Death Differ2003;10:928-929.
    [91] Luo CL, Chen XP, Yang R, Sun YX, Li QQ, Bao HJ, Cao QQ, Ni H, Qin ZH, TaoLY. Cathepsin B contributes to traumatic brain injury-induced cell death through amitochondria-mediated apoptotic pathway. J Neurosci Res2010;88:2847-2858.
    [92] Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG. Responses to corticalinjury: I. Methodology and local effects of contusions in the rat. Brain Res1981;211:67-77.
    [93] Geddes DM, Cargill RS,2nd, LaPlaca MC. Mechanical stretch to neurons resultsin a strain rate and magnitude-dependent increase in plasma membranepermeability. J Neurotrauma2003;20:1039-1049.
    [94] Regan RF, Wang Y, Ma X, Chong A, Guo Y. Activation of extracellularsignal-regulated kinases potentiates hemin toxicity in astrocyte cultures. JNeurochem2001;79:545-555.
    [95] Schmitt TH, Frezzatti WA, Jr., Schreier S. Hemin-induced lipid membrane disorderand increased permeability: a molecular model for the mechanism of cell lysis.Arch Biochem Biophys1993;307:96-103.
    [96] You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, WhalenMJ. Necrostatin-1reduces histopathology and improves functional outcome aftercontrolled cortical impact in mice. J Cereb Blood Flow Metab2008;28:1564-1573.
    [97] Morris RG. Episodic-like memory in animals: psychological criteria, neuralmechanisms and the value of episodic-like tasks to investigate animal models ofneurodegenerative disease. Philos Trans R Soc Lond B Biol Sci2001;356:1453-1465.
    [98] Emery E, Aldana P, Bunge MB, Puckett W, Srinivasan A, Keane RW, Bethea J,Levi AD. Apoptosis after traumatic human spinal cord injury. J Neurosurg1998;89:911-920.
    [99] Love S, Barber R, Wilcock GK. Apoptosis and expression of DNA repair proteinsin ischaemic brain injury in man. Neuroreport1998;9:955-959.
    [100] Adams JM. Ways of dying: multiple pathways to apoptosis. Genes Dev2003;17:2481-2495.
    [101] Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediatedapoptosis pathways. Int J Biochem Cell Biol2000;32:1123-1136.
    [102] Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, Bruun JA, Shvets E, McEwanDG, Clausen TH, Wild P, Bilusic I, Theurillat JP, Overvatn A, Ishii T, Elazar Z,Komatsu M, Dikic I, Johansen T. A role for NBR1in autophagosomal degradationof ubiquitinated substrates. Mol Cell2009;33:505-516.
    [103] Nezis IP, Simonsen A, Sagona AP, Finley K, Gaumer S, Contamine D, Rusten TE,Stenmark H, Brech A. Ref(2)P, the Drosophila melanogaster homologue ofmammalian p62, is required for the formation of protein aggregates in adult brain.J Cell Biol2008;180:1065-1071.
    [104] Kim PK, Hailey DW, Mullen RT, Lippincott-Schwartz J. Ubiquitin signalsautophagic degradation of cytosolic proteins and peroxisomes. Proc Natl Acad SciU S A2008;105:20567-20574.
    [105] Pankiv S, Clausen TH, Lamark T, Brech A, Bruun JA, Outzen H, Overvatn A,Bjorkoy G, Johansen T. p62/SQSTM1binds directly to Atg8/LC3to facilitatedegradation of ubiquitinated protein aggregates by autophagy. J Biol Chem2007;282:24131-24145.
    [106] Rebecca T, Marquez, Liang X. Bcl-2:Beclin1complex: multiple, mechanismsregulating autophagy/apoptosis toggle switch. Am J Cancer Res2012;2:214-221.
    [107] S. Pattingre, A. Tassa, X. Qu, R. Garuti, X.H. Liang, N. Mizushima, M. Packer,M.D. Schneider, B. Levine.Bcl-2antiapoptotic proteins inhibit beclin1dependentautophagy. Cell2005;122:927-39.
    [108] Bramlett HM, Dietrich WD. Pathophysiology of cerebral ischemia and braintrauma: similarities and differences. J Cereb Blood Flow Metab2004;24:133-150.
    [109] Raghupathi R. Cell death mechanisms following traumatic brain injury. BrainPathol2004;14:215-222.
    [110] Schmitt TH, Frezzatti WA, Jr., Schreier S. Hemin-induced lipid membranedisorder and increased permeability: a molecular model for the mechanism of celllysis. Arch Biochem Biophys1993;307:96-103.
    [111] Geddes DM, Cargill RS,2nd, LaPlaca MC. Mechanical stretch to neurons resultsin a strain rate and magnitude-dependent increase in plasma membranepermeability. J Neurotrauma2003;20:1039-1049.
    [112] Regan RF, Wang Y, Ma X, Chong A, Guo Y. Activation of extracellularsignal-regulated kinases potentiates hemin toxicity in astrocyte cultures. JNeurochem2001;79:545-555.
    [113] Hunsberger JG, Austin DR, Chen G, Manji HK. Cellular mechanisms underlyingaffective resiliency: the role of glucocorticoid receptor-andmitochondrially-mediated plasticity. Brain Res2009;1293:76-84.
    [114] Gray NA, Zhou R, Du J, Moore GJ, Manji HK. The use of mood stabilizers asplasticity enhancers in the treatment of neuropsychiatric disorders. J ClinPsychiatry2003;64Suppl5:3-17.
    [115] Edinger AL, Thomoson CB. Death by design: apoptosis, necrosis and autophagy.Curr Opin Cell Bio2004; l16:663-669.
    [116] Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing:crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol2007;8:741-752.
    [117] Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes ofphosphatidylinositol3'-kinases are involved in signaling pathways that controlmacroautophagy in HT-29cells. J Biol Chem2000;275:992-998.
    [1] Hashimoto Y, Niikura T, Tajima H, Yasukawa T, Sudo H, Ito Y, Kita Y, Kawasumi M,Kouyama K, Doyu M, Sobue G, Koide T, Tsuji S, Lang J, Kurokawa K, NishimotoI. A rescue factor abolishing neuronal cell death by a wide spectrum of familialAlzheimer's disease genes and Abeta. Proc Natl Acad Sci U S A2001;98:6336-6341.
    [2] Zapala B, Kaczynski L, Kiec-Wilk B, Staszel T, Knapp A, Thoresen GH, WybranskaI, Dembinska-Kiec A. Humanins, the neuroprotective and cytoprotective peptideswith antiapoptotic and anti-inflammatory properties. Pharmacol Rep2010;62:767-777.
    [3] Zapala B, Staszel T, Kiec-Wilk B, Polus A, Knapp A, Wybranska I, Kaczynski L,Dembinska-Kiec A.[Humanin and its derivatives as peptides with potentialantiapoptotic and confirmed neuroprotective activities]. Przegl Lek2011;68:372-377.[4] D’Adamio L, Lacana E, VitoP: Functional cloning of genesinvolved in T-cell receptor-induced programmed cell death. Semin Immunol1997;9:17-23.
    [5] Hashimoto Y, Ito Y, Niikura T, Shao Z, Hata M, Oyama F, Nishimoto I. Mechanismsof neuroprotection by a novel rescue factor humanin from Swedish mutant amyloidprecursor protein. Biochem Biophys Res Commun2001;283:460-468.
    [6] Tajima H, Niikura T, Hashimoto Y, Ito Y, Kita Y, Terashita K, Yamazaki K, Koto A,Aiso S, Nishimoto I. Evidence for in vivo production of Humanin peptide, aneuroprotective factor against Alzheimer's disease-related insults. Neurosci Lett2002;324:227-231.
    [7] Muzumdar RH, Huffman DM, Atzmon G, Buettner C, Cobb LJ, Fishman S,Budagov T, Cui L, Einstein FH, Poduval A, Hwang D, Barzilai N, Cohen P.Humanin: a novel central regulator of peripheral insulin action. PLoS One2009;4:e6334.
    [8] Bachar AR, Scheffer L, Schroeder AS, Nakamura HK, Cobb LJ, Oh YK, LermanLO, Pagano RE, Cohen P, Lerman A. Humanin is expressed in human vascularwalls and has a cytoprotective effect against oxidized LDL-induced oxidativestress. Cardiovasc Res2010;88:360-366.
    [9] Muzumdar RH, Huffman DM, Calvert JW, Jha S, Weinberg Y, Cui L, Nemkal A,Atzmon G, Klein L, Gundewar S, Ji SY, Lavu M, Predmore BL, Lefer DJ. Acutehumanin therapy attenuates myocardial ischemia and reperfusion injury in mice.Arterioscler Thromb Vasc Biol2010;30:1940-1948.
    [10] Cui AL, Zhao L, Li LM, Qiao JT, Zhang C.[Recent progress in neuroprotection ofhumanin against Alzheimer's disease-relevant neurotoxicity]. Sheng Li Ke Xue JinZhan2006;37:302-306.
    [11] Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Humanin: after thediscovery. Mol Neurobiol2004;30:327-340.
    [12] Niikura T, Yamada M, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Characterizationof V642I-AbetaPP-induced cytotoxicity in primary neurons. J Neurosci Res2004;77:54-62.
    [13] Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC.Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature2003;423:456-461.
    [14] Nishimoto I, Matsuoka M, niikura T. Unravelling the role of Humanin. Trends MolMed2004;10:102-105.
    [15] Yen K, Lee C, Mehta H, Cohen P. The emerging role of the mitochondrial-derivedpeptide humanin in stress resistance. J Mol Endocrinol2013;50:R11-19.
    [16] Hashimoto Y, Niikura T, Ito Y, Sudo H, Hata M, Arakawa E, Abe Y, Kita Y,Nishimoto I. Detailed characterization of neuroprotection by a rescue factorhumanin against various Alzheimer's disease-relevant insults. J Neurosci2001;21:9235-9245.[17] Yamagishi Y, Hashimoto Y, Niikura T, Nishimoto I.Identification of essential amino acids in Humanin, a neuroprotective factor againstAlzheimer's disease-relevant insults. Peptides2003;24:585-595.
    [18] Maftei M, Tian X, Manea M, Exner TE, Schwanzar D, von Arnim CA, PrzybylskiM. Interaction structure of the complex between neuroprotective factor humaninand Alzheimer's beta-amyloid peptide revealed by affinity mass spectrometry andmolecular modeling. J Pept Sci2012;18:373-382.
    [19] Sponne I, Fifre A, Koziel V, Kriem B, Oster T, Pillot T. Humanin rescues corticalneurons from prion-peptide-induced apoptosis. Mol Cell Neurosci2004;25:95-102.
    [20] Zhai D, Luciano F, Zhu X, Guo B, Satterthwait AC, Reed JC. Humanin binds andnullifies Bid activity by blocking its activation of Bax and Bak. J Biol Chem2005;280:15815-15824.
    [21] Ikonen M, Liu B, Hashimoto Y, Ma L, Lee KW, Niikura T, Nishimoto I, Cohen P.Interaction between the Alzheimer's survival peptide humanin and insulin-likegrowth factor-binding protein3regulates cell survival and apoptosis. Proc NatlAcad Sci U S A2003;100:13042-13047.
    [22] Terashita K, Hashimoto Y, Niikura T, Tajima H, Yamagishi Y, Ishizaka M,Kawasumi M, Chiba T, Kanekura K, Yamada M, Nawa M, Kita Y, Aiso S,Nishimoto I. Two serine residues distinctly regulate the rescue function ofHumanin, an inhibiting factor of Alzheimer's disease-related neurotoxicity:functional potentiation by isomerization and dimerization. J Neurochem2003;85:1521-1538.
    [23] Arakawa T, Kita Y, Niikura T. A rescue factor for Alzheimer's diseases: discovery,activity, structure, and mechanism. Curr Med Chem2008;15:2086-2098.
    [24] Niikura T, Tajima H, Kita Y. Neuronal cell death in Alzheimer's disease and aneuroprotective factor, humanin. Curr Neuropharmacol2006;4:139-147.
    [25] Hashimoto Y, Tsuji O, Niikura T, Yamagishi Y, Ishizaka M, Kawasumi M, Chiba T,Kanekura K, Yamada M, Tsukamoto E, Kouyama K, Terashita K, Aiso S, Lin A,Nishimoto I. Involvement of c-Jun N-terminal kinase in amyloid precursorprotein-mediated neuronal cell death. J Neurochem2003;84:864-877.
    [26] Jin H, Hu HT, Wang WX, Feng GF, Li YY, Yang WN.[Effect of [Gly14]-Humaninon Abeta(25-35)-induced PC12cell apoptosis]. Xi Bao Yu Fen Zi Mian Yi Xue ZaZhi2010;26:427-430.
    [27] Jin H, Liu T, Wang WX, Xu JH, Yang PB, Lu HX, Sun QR, Hu HT. Protectiveeffects of [Gly14]-Humanin on beta-amyloid-induced PC12cell death bypreventing mitochondrial dysfunction. Neurochem Int2010;56:417-423.
    [28] Kariya S, Hirano M, Nagai Y, Furiya Y, Fujikake N, Toda T, Ueno S. Humaninattenuates apoptosis induced by DRPLA proteins with expanded polyglutaminestretches. J Mol Neurosci2005;25:165-169.
    [29] Kariya S, Takahashi N, Ooba N, Kawahara M, Nakayama H, Ueno S. Humanininhibits cell death of serum-deprived PC12h cells. Neuroreport2002;13:903-907.
    [30] Li LM, Zhang Y, Qiao JT, Zhang C. Humanin protects neurons against apoptosisinduced by Abeta31-35through suppression of intrinsic pathway. Sheng Li XueBao2010;62:93-100.
    [31] Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH.Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury ismediated by a PI3K/Akt pathway. Brain Res2008;1227:12-18.
    [32] Zhao ST, Huang XT, Zhang C, Ke Y. Humanin protects cortical neurons fromischemia and reperfusion injury by the increased activity of superoxide dismutase.Neurochem Res2012;37:153-160.
    [33] Zhao ST, Zhao L, Li JH. Neuroprotective Peptide humanin inhibits inflammatoryresponse in astrocytes induced by lipopolysaccharide. Neurochem Res2013;38:581-588.
    [34] Men J, Zhang X, Yang Y, Gao D. An AD-related neuroprotector rescuestransformed rat retinal ganglion cells from CoCl(2)-induced apoptosis. J MolNeurosci2012;47:144-149.
    [35] Kariya S, Hirano M, Furiya Y, Ueno S. Effect of humanin on decreased ATP levelsof human lymphocytes harboring A3243G mutant mitochondrial DNA.Neuropeptides2005;39:97-101.
    [36] Kariya S, Takahashi N, Hirano M, Ueno S. Humanin improves impaired metabolicactivity and prolongs survival of serum-deprived human lymphocytes. Mol CellBiochem2003;254:83-89.
    [37] Wang D, Li H, Yuan H, Zheng M, Bai C, Chen L, Pei X. Humanin delays apoptosisin K562cells by downregulation of P38MAP kinase. Apoptosis2005;10:963-971.
    [38] Jung SS, Van Nostrand WE. Humanin rescues human cerebrovascular smoothmuscle cells from Abeta-induced toxicity. J Neurochem2003;84:266-272.
    [39] Takano T, Yamanouchi Y, Nagafuchi S, Yamada M: Assignment of thedentatorubral and pallidoluysian atrophy (DRPLA) gene to12p13.31byfluorescence in situ hybridization. Genomics1996;32:171-172.
    [40] Moulder KL, Onodera O, Burke JR, Strittmatter WJ, Johnson EM Jr: Generation ofneuronal intranuclear inclusions by polyglutamine-GFP: analysis of inclusionclearance and toxicity as a function of polyglutamine length. J Neurosci1999;19:705-715.
    [41] Kariya S, Hirano M, Furiya Y, Sugie K, Ueno S. Humanin detected in skeletalmuscles of MELAS patients: a possible new therapeutic agent. Acta Neuropathol2005;109:367-372.
    [42] Zacharias DG, Kim SG, Massat AE, Bachar AR, Oh YK, Herrmann J,Rodriguez-Porcel M, Cohen P, Lerman LO, Lerman A. Humanin, a cytoprotectivepeptide, is expressed in carotid atherosclerotic [corrected] plaques in humans.PLoS One2012;7:e31065.
    [43] Mamiya T, Ukai M.[Gly(14)]-Humanin improved the learning and memoryimpairment induced by scopolamine in vivo. Br J Pharmacol2001;134:1597-1599.
    [44] Matsuoka M. Humanin; a defender against Alzheimer's disease? Recent Pat CNSDrug Discov2009;4:37-42.
    [45] Matsuoka M. Humanin signal for Alzheimer's disease. J Alzheimers Dis2011;24Suppl2:27-32.
    [46] Krejcova G, Patocka J, Slaninova J. Effect of humanin analogues on experimentallyinduced impairment of spatial memory in rats. J Pept Sci2004;10:636-639.
    [47] Guo F, Jing W, Ma CG, Wu MN, Zhang JF, Li XY, Qi JS.[Gly(14)]-humaninrescues long-term potentiation from amyloid beta protein-induced impairment inthe rat hippocampal CA1region in vivo. Synapse2010;64:83-91.
    [48] Miao J, Zhang W, Yin R, Liu R, Su C, Lei G, Li Z. S14G-Humanin amelioratesAbeta25-35-induced behavioral deficits by reducing neuroinflammatory responsesand apoptosis in mice. Neuropeptides2008;42:557-567.
    [49] Tajima H, Kawasumi M, Chiba T, Yamada M, Yamashita K, Nawa M, Kita Y,Kouyama K, Aiso S, Matsuoka M, Niikura T, Nishimoto I. A humanin derivative,S14G-HN, prevents amyloid-beta-induced memory impairment in mice. J NeurosciRes2005;79:714-723.
    [50] Zhang W, Miao J, Hao J, Li Z, Xu J, Liu R, Cao F, Wang R, Chen J. Protectiveeffect of S14G-humanin against beta-amyloid induced LTP inhibition in mousehippocampal slices. Peptides2009;30:1197-1202.
    [51] Niikura T, Sidahmed E, Hirata-Fukae C, Aisen PS, Matsuoka Y. A humaninderivative reduces amyloid beta accumulation and ameliorates memory deficit intriple transgenic mice. PLoS One2011;6:e16259.
    [52] Yuan L, Han WN, Li SF, Liu XJ, Wu MN, Qi JS.[[Gly14]-humanin protectsagainst Abeta(31-35)-induced impairment of spatial learning and memory in rats].Sheng Li Xue Bao2012;64:625-632.
    [53] Zhang W, Li Z, Hao J, Zhang Z, Liu L, Mao N, Miao J, Zhang L. S14G-humaninimproves cognitive deficits and reduces amyloid pathology in the middle-agedAPPswe/PS1dE9mice. Pharmacol Biochem Behav2012;100:361-369.
    [54]Xu X, Chua CC, Gao J, Hamdy RC, Chua BH. Humanin is a novel neuroprotectiveagent against stroke. Stroke2006;37:2613-2619.
    [55] Lue Y, Swerdloff R, Liu Q, Mehta H, Hikim AS, Lee KW, Jia Y, Hwang D, CobbLJ, Cohen P, Wang C. Opposing roles of insulin-like growth factor binding protein3and humanin in the regulation of testicular germ cell apoptosis. Endocrinology2010;151:350-357.
    [56] Moretti E, Giannerini V, Rossini L, Matsuoka M, Trabalzini L, Collodel G.Immunolocalization of humanin in human sperm and testis. Fertil Steril2010;94:2888-2890.
    [57] Hoang PT, Park P, Cobb LJ, Paharkova-Vatchkova V, Hakimi M, Cohen P, Lee KW.The neurosurvival factor Humanin inhibits beta-cell apoptosis via signal transducerand activator of transcription3activation and delays and ameliorates diabetes innonobese diabetic mice. Metabolism2010;59:343-349.
    [58] Bodzioch M, Lapicka-Bodzioch K, Zapala B, Kamysz W, Kiec-Wilk B,Dembinska-Kiec A. Evidence for potential functionality of nuclearly-encodedhumanin isoforms. Genomics2009;94:247-256
    [59] Liang G, Zhang XD, Wang LJ, Sha YS, Zhang JC, Miao SY, Zong SD, Wang LF,Koide SS. Identification of differentially expressed genes of primary spermatocyteagainst round spermatid isolated from human testis using the laser capturemicrodissection technique. Cell Res2004;14:507-512.
    [60] Colon E, Strand ML, Carlsson-Skwirut C, Wahlgren A, Svechnikov KV, Cohen P,Soder O. Anti-apoptotic factor humanin is expressed in the testis and preventscell-death in leydig cells during the first wave of spermatogenesis. J Cell Physiol2006;208:373-385.
    [61] Ying G, Iribarren P, Zhou Y, Gong W, Zhang N, Yu ZX, Le Y, Cui Y, Wang JM.Humanin, a newly identified neuroprotective factor, uses the G protein-coupledformylpeptide receptor-like-1as a functional receptor. J Immunol2004;172:7078-7085.
    [62] Matsuoka M, Hashimoto Y. Humanin and the receptors for humanin. MolNeurobiol2010;41:22-28.
    [63] Harada M, Habata Y, Hosoya M, Nishi K, Fujii R, Kobayashi M, Hinuma S.N-Formylated humanin activates both formyl peptide receptor-like1and2.Biochem Biophys Res Commun2004;324:255-261.
    [64] Devosse T, Guillabert A, D'Haene N, Berton A, De Nadai P, Noel S, Brait M,Franssen JD, Sozzani S, Salmon I, Parmentier M. Formyl peptide receptor-like2isexpressed and functional in plasmacytoid dendritic cells, tissue-specificmacrophage subpopulations, and eosinophils. J Immunol2009;182:4974-4984.
    [65] Hashimoto Y, Suzuki H, Aiso S, Niikura T, Nishimoto I, Matsuoka M. Involvementof tyrosine kinases and STAT3in Humanin-mediated neuroprotection. Life Sci2005;77:3092-3104.
    [66] Hashimoto Y, Kurita M, Aiso S, Nishimoto I, Matsuoka M. Humanin inhibitsneuronal cell death by interacting with a cytokine receptor complex or complexesinvolving CNTF receptor alpha/WSX-1/gp130. Mol Biol Cell2009;20:2864-2873.
    [67] Le Y, Murphy PM, Wang JM. Formyl-peptide receptors revisited. Trends inImmunology2002;23541-548.
    [68] Zou P, Ding Y, Sha Y, Hu B, Nie S. Humanin peptides block calcium influx of rathippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides2003;24:679-685.
    [69] Chiba T, Yamada M, Aiso S. Targeting the JAK2/STAT3axis in Alzheimer'sdisease. Expert Opin Ther Targets2009;13:1155-1167.
    [70] Luciano F, Zhai D, Zhu X, Bailly-Maitre B, Ricci JE, Satterthwait AC, Reed JC.Cytoprotective peptide humanin binds and inhibits proapoptotic Bcl-2/Bax familyprotein BimEL. J Biol Chem2005;280:15825-15835.
    [71] Oh YK, Bachar AR, Zacharias DG, Kim SG, Wan J, Cobb LJ, Lerman LO, Cohen P,Lerman A. Humanin preserves endothelial function and prevents atheroscleroticplaque progression in hypercholesterolemic ApoE deficient mice. Atherosclerosis2011;219:65-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700