用户名: 密码: 验证码:
船舶操纵模拟器中拖轮子系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,大型船舶操纵模拟器已经广泛的应用在人员培训、航道设计、方案论证和模拟试验等领域,并取得了可喜的成果。随着船舶向大型化,甚至是超大型化发展,对大船的操纵变得越来越困难,比如:进出港:靠、离泊位等。在这种情况下,拖轮协助大船进行操纵已经成为一个帮助大型船舶进出港;靠、离泊位的重要手段。从逐步完善大型航海模拟器的角度看,把拖轮作为一个本船加入到航海模拟器中来,真实地模拟拖轮与大型船舶共同操纵是非常必要的。它不仅给大型船舶驾驶员真实的拖轮助操效果,同时也为拖轮驾驶员提供了逼真的操纵环境。由STCW78/95公约对具有三维视景的航海模拟器的规定和航海模拟器应用领域的需求可以看出,航海模拟器要为操作者提供尽可能逼真而完善的操作环境。其中,船舶操纵数学模型和三维视景占有比较突出的地位,视景的好坏和船舶操纵数学模型的准确与否是整个航海模拟器系统成败的关键所在。
     本文对拖轮操纵模拟器应具备的视景系统、操纵环境及拖轮运动模型的特点等问题进行了分析研究。采用MMG分离建模的思想建立了一个较为精确、较为完整的拖轮操纵数学模型。在建模过程中,作者对坐标系的建立、裸体船的水动力计算、直航阻力的计算、螺旋桨处的伴流系数、推力减额系数的计算、导管桨的四象限推力系数、转矩系数的计算、双桨的推力、横向力、转矩的计算、主机的计算模型等问题进行了详细的分析,建立了一个适用于当前大型航海模拟器的三自由度的拖轮操纵运动数学模型。除此之外,作者还对拖轮在顶推、拖带等工况下的运动数学模型进行了初步的研究,提出了一些简化的拖轮运动数学模型。在建立的运动模型的基础上,采用三维建模软件建立了真三维的拖轮船体几何模型,利用场景管理软件OpenGVS开发了视景驱动程序,将拖轮作为一个独立的本船加入到航海模拟器中来,并在航海模拟器的三维视景系统中对拖轮加以显示。最后,还以悬链线作为缆绳的数学模型,经过几何变换将悬链线转化为三维模型,根据缆绳的长度、出缆点和缆桩的坐标信息在航海模拟器的视景系统中对缆绳进行实时显示。
Presently, large ship handling simulator has been used widely in seafarers training, sea route design, project argumentation and simulating test, and delightful result has been obtained. As the development of vessels' becoming larger and larger even extremely larger, manipulating vessels becomes difficult more and more, such as: entering or leaving port, berthing or unberthing etc. Under this condition, tug's assistance to large ships has been become an important means to help large ship enter or leave port. From the point of view of improving large ship handling simulator, it's necessary to adding the tug model to ship handling simulator as an own ship that can simulate the manipulability between tug and large ship. It can provide real effects of tug's assistance to ship officer but also provide a vivid manipulating environment to tug officer.
    According to the request for application field of the ship handling simulator with 3-D scene system in the STCW/78/95, we know that ship handling simulator should provide manipulating environment as vivid and perfect as possible to ship officers.
    Here, ships manoeuvring mathematical model and 3-D scene system are the most important parts. Stand or fall of scene and nicety or not of the ship manoeuvring mathematical model are the key of the whole ship handling simulator.
    This paper did some researches on characteristics of scene system, manipulating environment and tug mathematical model in tug simulator. According to the MMG's separated modeling theory, an integrated and accurate mathematical model is established. During the course of modeling, constitution of coordinate system, calculation of ship hull force, calculation of water resistance, calculation of wake fraction of propeller and thrust deduction factor, calculation of thrust and torque coefficient of ducted propeller, calculation of thrust, transverse force and torque of twin-stern propeller, mathematical model of main engine have been talked about in detail. Then, a 3 DOF tug manoeuvring mathematical model is established which can be applied to the large ship handling simulator. Furthermore, this paper does some elementary researches on mathematical model of tug's pushing and pulling and provides a simple mathematical model.
    Based on the established mathematical model, the author establishes a real 3D geometrical model of tug ship with 3D modeling software, develops a 3D engine of scene system with OpenGVS, adds the tug as a ownship to ship handling simulator and displays the tug model in the scene system. In the end, the author uses catenary as mathematical model of mooring lines, transforms centenary to 3-D model with geometrical transform, real-time displays the mooring lines in the scene system of ship handling simulator according to the coordinate information of length of mooring lines, mooring point and mooring stakes.
引文
[1] 陈昌文.船舶操纵模拟器三维视景专用多细节层次图形数据库.大连海事大学,硕士学位论文,1998.3
    [2] 石爱国,杨宝璋,康强.新型航海模拟器研究与教学.上海海运学院学报,中国航海模拟器教学研究会论文选集,1998.5
    [3] The Ship Analytics International Maritime Simulation and TrainingNewsletter Vol. 4 Fall. 1996
    [4] 尹勇,金一丞,李志华.分布式航海仿真系统中的网络通讯.系统仿真学报,2000(11):621~624
    [5] DNV Standard for Certification of Maritime Simulator Systems(NEW), 1999
    [6] 施朝健,王捷.舟山航海学校船桥模拟器及有关技术.上海海运学院学报,1996,17(1):49~52.
    [7] 孙腾达.船舶操纵模拟器三维视景的实用化研究,大连海事大学硕士论文,2001年3月
    [8] 古文贤,赵月林.港内操纵大船使用拖轮的探讨.大连海事大学学报,1995,21(3):8~9
    [9] 马会,吴兆麟.港口航道水域操船环境危险度的综合评价.大连海事大学学报,1998,24(3):15~18
    [10] 王逢辰,古文贤,郑经略.船舶操纵与避碰(上册).1995,人民交通出版社:36~44
    [11] A.B. MorriSn & J.H. Wulder (1998), "Tugs: Decision Making ThroughSimulation", PortTechnology International no. 8, 5 pp. 179-183.
    [12] 刘斯云.航海模拟器视景系统中自主拖轮运动规划算法及实现的研究,大连海事大学硕士论文,2001年3月
    [13] 岩井聪,操船论.周沂、王立真译.1984,人民交通出版社
    [14] Philippe Husni. Visual Simulation White Paper. 1990
    [15] Nomenclature for Treating the Motion of a Submerged Body Through, SNAMETechnical and Research Bulletin, 1952, pp. 1~5
    [16] Norrbin N. H., Theory and Observation on the Use of a Mathematical Model forShip Manoeuvring in Deep and Confined Waters, Publication of SSPA. Sweden, 1970,No.68
    [17] 贾欣乐 杨盐生,船舶运动数学模型——机理建模与辨识建模,第一版,1999,大连海事大学出版社,pp.1-443
    [18] 周昭明 盛子寅 冯悟时,多用途货船的操纵性预报计算,船舶工程,1983,第6期,pp.21-29
    [19] 吴秀恒,船舶操纵性与耐波性,第二版,1999,人民交通出版社,P99-112
    [20] Katsuro Kijimam,Yasuaki Nakiri, On the Practical Prediction Method for Ship Manoeuvring Characteristics, International conference on Marine Simulation and Ship Maneuverability, Kanazawa Japan, 2003
    [21] 李世谟,周俊麟.船舶阻力.1984,武汉水运工程学院PP.144-173
    
    
    [22] 杨盐生.船舶阻力系数和推力系数计算的数据库方法.大连海事大学学报,1995,21(4):14~17
    [23] 林钧.超浅吃水宽幅船型阻力的实用估算法.船舶,1997,5:PP.16~19
    [24] 长江船舶设计院.内河船舶设计手册.船体分册.北京:人民交通出版社,1977
    [25] Mori,M., A Note on Hull Form Design(Part 24),Journal of Ship Science ,Vol.48,pp.40-49,1995
    [26] 平野雅祥,初期设计时船操縦运动计算法日本造船学会论文集,1980,第147号
    [27] 松本 他,操縦运动数学船体·推进器·舵干渋效果,关西造船协会志,1983,No.190,pp.45-61
    [28] 芳村康男,浅水域操縦运动数学检讨—MMG浅水域摘用,关西造船协会志,1986,第200号,P41-50
    [29] Van Lammeren W.EA. et al, The Wageningen B-Screw Series, Tans. of SNAME,1969, P269-317
    [30] 高桥通雄 矢崎敦生,展开面积比大 AU型设计图表,船舶,1971,44(1),P59-65
    [31] The SSPA Standards Propeller Family Open Water Characteristics, Statens Skeppsprovningsanstalt, 1967, No.60
    [32] 芳村康 男野本谦作,增减速伴操縦运动取扱,日本造船学会论文集,1978,第144号,pp.57-69
    [33] 杨盐生 方祥麟,港内拖轮协助操船仿真数学模型的研究,中国航海,1997,第2期,P19-24
    [34] 中国造船编辑部,中国船用螺旋桨系列试验图谱集,1983
    [35] Michael J. Young, Visual C++6从入门到精通,邱仲潘等,第1版,1999,电子工业出版社,pp.1-132
    [36] 李丽 王震领,MATLAB工程计算及应用,第1版,2001,人民邮电出版社,pp.1-293
    [37] 李庆阳 王能超 易 大义,数值分析,第3版,2000,华中理工大学出版社,P154-203
    [37] 严似松 黄根余,拖航系统静水中操纵运动的模拟计算,中国船舶,1997,第4期,PP.12-19
    [39] 滕野正隆等,李承建译.双桨双舵船的操纵运动模型,日本造船学会论文集,第163号,1988
    [40] 小瀬平尾吉川中川,港内曳船性能关研究,日本造船学会论文集,1987,第162号,PP.133-138
    [41] 饶滚金,航海模拟器中三维视景的实用化研究,大连海事大学硕士论文,1999,3
    [42] 孙腾达、金一丞,航海模拟器视景中本船船首图形绘制方法,大连:大连海事大学学报,2001,1
    [43] 孙腾达,航海模拟器中三维视景的实用化研究,大连海事大学硕士论文,1999,3
    [44] 彭群生、鲍虎军、金小刚,计算机真实感图形的算法基础,第一版,北京:科学出版社,1999,364,65
    
    
    [45] MultiGen Inc, MultiGen On Line Help Document, 1997
    [46] CORYPHEAEUS, Designer's Workbench 3.1 Reference, Second Edition,December, 1995
    [47] 汪成为、高文、王行仁,灵境(虚拟现实)技术理论、实现及应用,第1版,1996,清华大学出版社、广西科学技术出版社
    [48] 魏毅,用OpenGL开发航海模拟器视景的研究,大连海事大学硕士论文,1998.3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700