用户名: 密码: 验证码:
氩气辉光放电等离子体室温下还原贵重金属催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
使用催化剂已经被公认为绿色化学基本原则之一。确切地说,催化在当前化学工业中起了非常重要的作用,将来也会变得越来越重要。催化过程的基本操作之一就是把催化剂进行还原,因为许多反应需要金属纳米颗粒作为活性物种。金属活性物种的催化性能与催化剂还原条件下决定的金属颗粒形貌及颗粒大小密切相关。进行催化剂还原应具备以下特点:操作简单,成本低,环保、不对环境造成危害,获得的金属颗粒分布均一、分散性好,不对载体产生负面影响。本文探索了氩气辉光放电等离子体对负载贵重金属催化剂的还原性能,同时,鉴于能源和环境问题日益严峻,选取了催化甲烷转化为研究对象,并分析了等离子体法制备的贵重金属催化剂和催化活性之间的关系。
     等离子体法制备催化剂的过程包括:浸渍、干燥、氩辉光放电等离子体处理、活化。通过等离子体处理后催化剂粉末表面颜色的变化及XPS、XRD、TEM、EDX表征技术分析可知,负载的贵重金属离子得到了还原。并且对于不同的催化体系,和常规氢气还原相比,等离子体还原的效果各不相同。
     对还原的Pd/HZSM-5催化剂表征发现,等离子体还原的Pd纳米颗粒在载体上高度分散,比常规氢气还原的金属颗粒小,催化甲烷分解制备的碳纳米管稠密、平滑且有弹性。
     对还原的Pd/γ-Al_2O_3催化剂表征发现,等离子体还原的Pd纳米颗粒,经过在惰性气体中活化后,金属颗粒长大,比常规氢气还原的颗粒尺寸大很多。在催化甲烷二氧化碳重整反应中,催化活性比氢气还原的低很多,并且催化反应机理和常规催化剂不同。
     对还原的Rh/γ-Al_2O_3催化剂表征发现,在高载量5wt%时,等离子体还原的纳米颗粒比常规氢气还原的大很多;在低载量1wt%时,和常规氢气还原的颗粒大小基本一样。1wt%Rh用于甲烷二氧化碳重整反应中,等离子体还原的催化剂具有常规氢气还原的催化剂相同的催化活性和稳定性。
     对还原的Ir/γ-Al_2O_3催化剂表征发现,不管是高载量5wt%还是低载量1wt%,等离子体还原的金属纳米颗粒尺寸比常规氢气还原的小很多。1wt%Ir用于甲烷二氧化碳重整反应中,等离子体还原的催化剂比常规氢气还原的活性高很多,且很稳定。催化作用机理与常规催化剂不同。
The use of catalyst is one of principles of green chemistry. Exactly, the catalysis plays an extremely important role in the present chemical industries and will be even more important in the future. One of the basic operations for the catalysis is the reduction since many reactions require metallic nano-particles as the active species. The catalytic properties of metal species are closely related to the morphology and particle size, which are normally determined by the conditions of the catalyst reduction. Reducing catalyst should possess the following conditions: simple operation, low cost, environmental friendly, uniform distribution of the metal particles obtained, good dispersion, and having no negative effect on the carrier. In this work, we explore the reduction properties of noble metal-loaded catalysts treated by argon glow discharge plasma. With regard to energy and environment problem, catalytic methane conversion was selected for study. At the same time, the relationship between plasma-reduced noble metal catalysts and catalytic activities were analyzed.
     The catalyst preparation process through plasma includes: impregnation, drying, argon glow discharge plasma treatment and activation. From the surface colour change of the catalyst powder during plasma treatment and XPS, XRD, TEM, EDX characterization results, noble metal-loaded ions were reduced. For the different catalytic system, compared to hydrogen-reduced catalysts, different recuction effects were obtained.
     For Pd/HZSM-5 catalyst, highly dispersed Pd nano-particles were obtained through plasma treatment and the particle size was smaller than that of hydrogen-reduced. Carbon nanotubes prepared by catalytic methane decomposition with plasma-reduced catalyst were dense, smooth, and elastic.
     For Pd/γ-Al_2O_3 catalyst, after activation with protection of inert gas at elevated temperature, plasma-reduced Pd nano-particles aggregated and the particle size was much bigger than that of hydrogen-reduced. During the carbon dioxide reforming of methane, catalytic activities were much lower than that of hydrogen-reduced. Two kind of catalysts had different reaction mechanisms.
     For Rh/γ-Al_2O_3 catalyst, when the metal loading was 5wt%, plasma-reduced Rh nano-particles were much bigger than that of hydrogen-reduced. While the metal loading was 1wt%, the particle size was almost the same. During the carbon dioxide reforming of methane with 1wt%Rh, the catalytic activity and stability were the same for the two kinds of catalysts.
     For Ir/γ-Al_2O_3 catalyst, no matter how much loading, the particle size of plasma-reduced catalyst was smaller than that of hydrogen-reduced. During the carbon dioxide reforming of methane with 1wt%Ir, the higher activity and stability were obtained with plasma-reduced catalyst than hydrogen-reduced. Two kinds of catalysts had different reaction mechanisms.
引文
[1] Kvenvolden K A. A review of the geochemistry of methane in natural gas hydrate. Geochemistry, 1995, 23: 997~1008
    [2] Borowski W S. A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region: Offshore southeastern North America. Chemical Geology, 2004, 205: 311~346
    [3] Guo T M, Wu B H, Zhu Y H, et al. A review on the gas hydrate research in China. J. Petro. Sci. Eng., 2004, 41: 11~20
    [4] Sokolovskiia V D, Covillea N J, Parmalianab A, et al. Methane partial oxidation: Challenge and perspective. Catal. Today, 1998, 42: 191~195
    [5] 蔡启瑞,彭少逸,碳一化学中的催化作用,北京:化学工业出版社,1995,98~127
    [6] 张昕,贺德华,甲烷气相均相选择氧化合成甲醇,石油化工,2003,32(3): 195~199
    [7] 张昕,贺德华,Mo/ZrO2催化剂上甲烷选择氧化制甲醛,催化学报,2003,24(1):22~26
    [8] Xu Y D, Bao X H, Lin L W. Direct conversion of methane under non- oxidative conditions. J. Catal., 2003, 216: 386~395
    [9] Wang H X, Su L L, Zhuang J Q, et al. Post-steam-treatment of Mo/HZSM-5 catalysts: An alternative and effective approach for enhancing their catalytic performances of methane dehydroaromatization. J. Phys. Chem. B, 2003, 107: 12964~12972
    [10] Wang J G, Liu C J, Zhang Y P, et al. Effect of catalyst preparation on carbon nanotube growth. Molecular Simulation, 2003, 29: 667~670
    [11] Piao L Y, Li Y D, Chen J L, et al. Methane decomposition to carbon nanotubes and hydrogen on an alumina supported nickel aerogel catalyst. Catal. Today, 2002, 74: 145~155
    [12] d’Agostino R, Favia P, Oehr C, et al. Low-temperature plasma processing of materials: past, present, and future. Plasma Process. Polym., 2005, 2: 7~15
    [13] Venugopalan M, Veprek S. In: Topic in Current Chemistry: Plasma Chemistry IV (Boschke F L, ed.), Springer-Verlag, New York, 1983
    [14] Liu C J, Vissokov G P, Jang B. Catalyst preparation using plasma techno- logies. Catal. Today, 2002, 72: 173~184
    [15] Wang X H, Li J G., Kamiyama H, et al. Pyrogenic Iron(III)-doped TiO nanopowders synthesized in RF thermal plasma: phase formation, defect structure, band gap, and magnetic properties. 2J. Am. Chem. Soc., 2005, 127: 10982~10990
    [16] Stiehl J D, Kim T S, McClure S M, et al. Formation of molecularly chemisorbed oxygen on TiO -supported gold nanoclusters and Au(111) from exposure to an oxygen plasma jet. 2J. Phys. Chem. B., 2005, 109: 6316~6322
    [17] Thomann A L, Rozenbaum J P, Brault P, et al. Plasma synthesis of catalytic thin films. Pure Appl. Chem., 2002, 74: 471~474
    [18] Li Y L, Ishigaki T. Controlled one-step synthesis of nanocrystalline anatase and rutile TiO2 powders by in-flight thermal plasma oxidation. J. Phys. Chem. B, 2004, 108:15536~15542
    [19] Kizling M B, J?r?s S G. A review of the use of plasma techniques in catalyst preparation and catalytic reactions. Appl. Catal. A: General, 1996, 147: 1~21
    [20] Jang B W L, Reynolds J G, Boutonnet M, et al. Preface. Catal. Today, 2002, 72: 171
    [21] Jang B W L, Hammer T, Liu C J. Editorial. Catal. Today, 2004, 89: 1~2
    [22] Vissokov G P. Plasma-chemical preparation of nanostructured catalysts for low-temperature steam conversion of carbon monoxide: properties of catalysts. Catal. Today, 2004, 89: 213~221
    [23] Dhar R, Pedrow P D, Liddell K C, et al. Synthesis of Pt/ZrO2 catalyst on fecralloy substrates using composite plasma-polymerized films. IEEE Trans. on Plasma Sci., 2005, 33: 2035~2045
    [24] Philips J, Chen C K, Zea H, et al. Plasma torch generation of supported metal catalysts. Abstracts of papers of the American Chemical Society, 2003, 225: 51
    [25] Sharma R, Rimmer R D, Gunamgari J, et al. Plasma-assisted activation of supported Au and Pd catalysts for CO oxidation. IEEE Trans. on Ind. Appl., 2005, 41: 1373~1376
    [26] Koo I G, Lee M S, Shim J H, et al. Platinum nanoparticles prepared by a plasma-chemical reduction method. J. Mater. Chem., 2005, 15: 4125~4128
    [27] Okazaki K, Nozaki T. Ultrashort pulsed barrier discharges and applications. Pure Appl. Chem., 2002, 74: 447~452
    [28] Anastas P T, Kirchhoff M M. Origins, current status, and future challenges of green chemistry. Acc. Chem. Res., 2002, 35: 686~694
    [29] 贲育恒,等离子体处理催化剂过程温度参数的测定:[硕士学位论文],天津;天津大学,2004
    [30] Yu K L, Liu C J, Zhang Y P, et al. The preparation and characterization of highly dispersed PdO over alumina for low-temperature combustion of methane. Plasma Chem. Plasma Process., 2004, 24: 393~403
    [31] Liu C J, Wang J X, Yu K L, et al. Floating double probe characteristics of non-thermal plasmas in the presence of zeolite. J. Electrostatics, 2002, 54: 149~158
    [32] Zou J J, Liu C J, Zhang Y P. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment. Langmuir, 2006, 22: 2334~2339
    [33] Zhang Y P, Ma P S, Zhu X L, et al. A novel plasma-treated Pt/NaZSM-5 catalyst for NO reduction by methane. Catal. Commun., 2004, 5: 35~39
    [34] Liu C J, Yu K L, Zhu X L, et al. Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion. Appl. Catal. B: Environmental, 2004, 47: 95~100
    [35] Wang J G, Liu C J, Zhang Y P, et al. Partial oxidation of methane to syngas over glow discharge plasma treated Ni–Fe/Al2O3 catalyst. Catal. Today, 2004, 89: 183~191
    [36] Liu C J, Cheng D G, Zhang Y P, et al. Remarkable enhancement in the dispersion and low-temperature activity of catalysts prepared via novel plasma reduction-calcination method. Catal. Survery from Asia, 2004, 8: 111~118
    [37] Zhan J, Macias M, Knight D, et al. Study of RF plasma effect on metal dispersion and sintering resistance of alumina supported metal catalysts. Abstracts of papers of the American Chemical Society, 2004, 227: 225~226
    [38] Zhan J, Boopalachandran P, Jang B W L, et al. Rf plasma modification of supported PT catalysts for CO2-CH4 reforming. Abstracts of papers of the American Chemical Society, 2004, 227: 1080
    [39] Li Z H, Tian S X, Wang H T, et al. Plasma treatment of Ni catalyst via a corona discharge. J. Mol. Catal. A: Chemical, 2004, 211: 149~153
    [40] Legrand J C, Diamy A M, Riahi G, et al. Application of a dihydrogen afterglow to the preparation of zeolite-supported metallic nanoparticles. Catal.Today, 2004, 89: 177~182
    [41] Zhu A M, Pittman K, Macias M, et al. Proceedings of the 17th International Symposium on Plasma Chemistry, Toronto, Canada, August 7-12, 2005
    [42] Ratanatawanate C, Macias M, Zhu A M, et al. Hydrogenation of aromatics via RF plasma derived NI catalysts. Abstracts of papers of the American Chemical Society, 2005, 229: 874
    [43] Zhang Y, Chu W, Cao W, et al. A plasma-activated Ni/alpha-Al2O3 catalyst for the conversion of CH4 to syngas. Plasma Chem. Plasma Process, 2000, 20: 137~144
    [44] Zou J J, Zhang Y P, Liu C J. Reduction of supported noble metal ions using glow discharge plasma, Langmuir, (in press)
    [45] Kim S S, Lee H, Na B K, et al. Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge. Catal. Today, 2004, 89: 193~200
    [46] Cheng D G, Xie Y B, He F, et al. Reduction of Pd/HZSM-5 using oxygen glow discharge plasma for a highly durable catalyst preparation (manuscript in the preparation)
    [47] 郭凤华,等离子体处理还原Pd/γ-Al2O3催化剂及其在葡萄糖氧化制葡萄糖酸钠反应中的应用:[硕士学位论文],天津;天津大学,2006
    [48] 邹吉军,等离子体处理制备高效催化剂的基础研究:[博士学位论文],天津;天津大学,2005
    [49] Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56~58
    [50] Guo T, Nikolaev P, Thess A, et al. Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett., 1995, 243: 49~54
    [51] Yacaman M J, Yoshicla M M, Rando L. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett., 1993, 62: 202~204
    [52] 张爱民, 须沁华,过渡金属氧化物和金属负载型沸石催化剂上合成纳米碳管及其表征,化学学报,2000, 58(7): 876~883
    [53] Ivanov V, Fonseca A, Nagy J B, et a1. Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon, 1995, 33: 1727~1738
    [54] Ivanov V,Nagy J B,Lambin P H,et a1. The study of carbon nanotubules produced by catalytic method. Chem. Phys. Lett., 1994, 223: 329~335
    [55] 唐紫超,王育煌,固体酸催化条件下碳纳米管的形成,应用化学, 1997,14(2): 32~35
    [56] Hernadi K, Fonseca A, Nagy J B, et a1. Production of nanotubes by the catalytic decomposition of different carbon-containing compounds. Appl. Catal. A: Genaral, 2000, 199: 245~255
    [57] Nikolaev P, Bronikowski M J, Bradley P K, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett., 1999, 313: 91~97
    [58] Alvarez W E, Kitiyanan B, Borgna A, et al. Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon, 2001, 39: 547~558
    [59] Lee C J, Park J, Kim J M, et a1. Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chem. Phys. Lett., 2000, 327: 277~283
    [60] 王升高,汪建华,微波等离子体化学气相沉积法低温合成碳纳米管,化学学报, 2002, 60(5): 957~960
    [61] Fischer F, Tropsch H. Brennst. Chem., 1928, 3: 39~45
    [62] Ashcroft A T, Cheetham A K, Green M L H, et al. Partial oxidation of methane to synthesis gas using carbon dioxide. Nature, 1991, 352: 225~226
    [63] Bradford M C J, Vannice M A. Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Appl. Catal. A: General, 1996, 142: 73~96
    [64] Ruckenstein E, Hu Y H. Carbon dioxide reforming of methane over nickel/alkaline earth metal oxide catalysts. Appl. Catal. A: General, 1995, 133: 149~161
    [65] Takanabe K , Nagaoka K , Nariai K, et al. Titania-supported cobalt and nickel bimetallic catalysts for carbon dioxide reforming of methane. J. Catal., 2005, 232: 268~275
    [66] Xiao T C, Thomas S, Andrew P E Y, et al. Effect of molybdenum additives on the performance of supported nickel catalysts for methane dry reforming. Appl. Catal. A: General, 2003, 253: 225~235
    [67] Lemonidou A A, Vasalos I A. Carbon dioxide reforming of methane over 5 wt.% Ni/CaO-Al2O3 catalyst. Appl. Catal. A: General, 2002, 228: 227~235
    [68] Dias J A C, Assaf J M. Influence of calcium content in Ni/CaO/γ-Al2O3 catalysts for CO2-reforming of methane. Catal. Today, 2003, 85: 59~68
    [69] Wang S B, Lu G Q. Role of CeO2 in Ni/CeO2-Al2O3 catalysts for carbon dioxide reforming of methane. Appl. Catal. B: Environmental, 1998, 19: 267~277
    [70] Roh H S, Potdar H S, Jun K W. Carbon dioxide reforming of methane over co-precipitated Ni-CeO2, Ni-ZrO2 and Ni-Ce-ZrO2 catalysts. Catal. Today, 2004, 93-95: 39~44
    [71] Francisco P, Nora N N, Maria G G, et al. Characterization of Ni/SiO2 and Ni/Li-SiO2 catalysts for methane dry reforming. Catal. Today, 2005, 107–108: 856~862
    [72] Masai M, Kado H, Miyake A, et al. Methane reforming by carbon dioxide and steam over supported Pd, Pt, and Rh catalysts. Stud. Surf. Sci. Catal., 1988, 36: 67~71
    [73] Vernon P D F, Green M L H, Cheetham A K, et al. Partial oxidation of methane to synthesis gas and carbon dioxide as an oxidizing agent for methane conversion. Catal. Today, 1992, 13: 417~426
    [74] Rostrup-Nielsen J R, Bak-Hansen J H. CO2-Reforming of methane over transition metals. J. Catal., 1993, 144: 38~49
    [75] Solymosi F, Kutsán G, Erd?helyi A. Catalytic reaction of CH4 with CO2 over alumina-supported Pt metals. Catal. Lett., 1991, 11: 149~156
    [76] Nagaoka K, Aika K I. Effect of additives on the stability of Pd/Al2O3 for carbon dioxide reforming of methane. Bull. Chem. Soc. Jpn., 2001, 74: 1841~1846
    [77] Damyanova S, Bueno J M C. Effect of CeO2 loading on the surface and catalytic behaviors of CeO2-Al2O3-supported Pt catalysts. Appl. Catal. A: General, 2003, 253: 135~150
    [78] Bitter J H, Hally W, Seshan K, et al. The role of the oxidic support on the deactivation of Pt catalysts during the CO2 reforming of methane. Catal. Today, 1996, 29: 349~353
    [79] Erd?helyi A, Cserényi J, Solymosi F. Activation of CH4 and its reaction with CO2 over supported Rh catalysts. J. Catal., 1993, 141: 287~299
    [80] Tsipouriari V A, Efstathiou A M, Zhang Z L, et al. Reforming of methane with carbon dioxide to synthesis gas over supported Rh catalysts. Catal. Today, 1994, 21: 579~587
    [81] Zhang Z L, Tsipouriari V A, Efstathiou A M, et al. Reforming of methane with carbon dioxide to synthesis gas over supported rhodium catalysts. J. Catal.,1996, 158: 51~63
    [82] Wang H Y, Ruckenstein E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts: the effect of support. Appl. Catal. A: General, 2000, 204: 143~152
    [83] Nakamura J, Aikawa K, Sato K, et al. Role of support in reforming of CH4 with CO2 over Rh catalysts. Catal. Lett., 1994, 25: 265~270
    [84] Yokota S, Okumura K, Niwa M. Support effect of metal oxide on Rh catalysts in the CH4-CO2 reforming reaction. Catal. Lett., 2002, 84: 131~134
    [85] Nakagawa K, Anzai K, Matsui N, et al. Effect of support on the conversion of methane to synthesis gas over supported iridium catalysts. Catal. Lett., 1998, 51: 163~167
    [86] Erd?helyi A, Cserényi J, Papp E, et al. Catalytic reaction of methane with carbon dioxide over supported palladium. Appl. Catal. A: General, 1994, 108: 205~219
    [87] Bradford M C J, Vannice M A. CO2 reforming of CH4 over supported Ru catalysts. J. Catal., 1999, 183: 69~75
    [88] Crisafulli C, Scirè S, Maggiore R, et al. CO2 reforming of methane over Ni-Ru and Ni-Pd bimetallic catalysts. Catal. Lett., 1999, 59: 21~26
    [89] Crisafulli C, Scirè S, Minicò S, et al. Ni-Ru bimetallic catalysts for the CO2 reforming of methane. Appl. Catal. A: General, 2002, 225: 1~9
    [90] Hou Z Y, Yashima T. Small amount of Rh-promoted Ni catalysts for methane reforming with CO2. Catal. Lett., 2003, 89: 193~197
    [91] Hou Z Y, Chen P, Fang H L, et al. Production of synthesis gas via methane reforming with CO2 on noble metals and small amount of noble-(Rh-) promoted Ni catalysts. International Journal of Hydrogen Energy, 2006, 31: 555~561
    [92] Vorontsov A V, Dubovitskaya V P. Selectivity of Photocatalytic oxidation of gaseous ethanol over pure and modified TiO2. J. Catal., 2004, 221: 102~109
    [93] Mallick K, Witcomb M J, Scurrell M S. Supported gold catalysts prepared by in situ reduction technique: preparation, characterization and catalytic activity measurements. Appl. Catal. A: General, 2004, 259: 163~168
    [94] Fu X, Zeltner W A, Anderson M A. The gas-phase photocatalytic mineralization of benzene on porous titania-based catalysts. Appl. Catal. B: Environmental, 1995, 6: 209~224
    [95] Deng J F, Li H, Wang W. Progress in design of new amorphous alloy catalysts. Catal. Today, 1999, 51: 113~125
    [96] Lee S P, Chen Y W. Nitrobenzene hydrogen on Ni-P, Ni-B and Ni-P-B ultrafine materials. J. Mol. Catal. A: Chemical, 2000, 152, 213~223
    [97] Wang L, Li W, Zhang M, et al. The interaction between the NiB amorphous alloy and TiO2 support in the NiB/TiO2 amorphous catalysts. Appl. Catal. A: General, 2004, 259: 185~190
    [98] 周新文,李东亮,郑红霞等,化学还原法制备Ag-TiO2 光催化抗菌材料的研究,无机盐工业,2005, 37(5): 31~33
    [99] Sato S. Photoelectrochemical preparation of Pt/TiO2 catalysts. J. Catal., 1985, 92: 11~16
    [100] Litter M I. Heterogeneous photocatalysis: transition metal ions in photo- catalytic systems. Appl. Catal. B: Environmental, 1999, 23: 89~114
    [101] Kraeutler B, Bard A J. Heterogeneous photocatalytic preparation of supported catalysts. Photodeposition of platinum on TiO2 powder and other substrates. J. Am. Chem. Soc., 1978, 100: 4317~4318
    [102] Zhang F, Guan N, Li Y et al. Control of morphology of silver clusters coated on titanium dioxide during photocatalysis. Langmuir, 2003, 19: 8230~8234
    [103] Arabatzis I M, Stergiopoulos T, Andreeva D et al. Characterization and photocatalytic activity of Au/TiO2 thin film for azo-dye degradation. J. Catal., 2003, 220: 127~135
    [104] Armelao L, Barreca D, Bottaro G et al. Au/TiO2 nanosystems: a combined rf-sputting/sol-gel approach. Chem. Mater., 2004, 16: 3331~3338
    [105] Beck K M, Sasaki T, Koshizaki N. Characterization of nanocomposite materials prepared by laser ablation of Pt/ TiO2 bi-combinant targets. Chem. Phys. Lett., 1999, 301: 336~342
    [106] Fu J, Hu R, Zhang W et al. Preparation and characterization of gold thin film electrode modified by microbe. Chinese Chem. Lett., 1999, 10: 311~312
    [107] 孙道华,李清彪,林永生等,生物还原法制备负载型钯催化剂,石油化工,2006, 35(5): 434~437
    [108] He J, Ichinose I, Kunitake T, et al. In situ synthesis of noble metal nanoparticles in ultrathin TiO -gel films by a combination of ion-exchange and reduction processes. 2Langmuir, 2002, 18: 10005~10010
    [109] Koo I G, Lee M S, Lee W M. Low temperature plasma-chemical treatment ofPdCl2 film by atmospheric pressure hydrogen plasma. Thin Solid Films, 2006, 506: 350~354
    [110] Pol V G, Grisaru H, Gedanken A. Coating noble metal nanocrystals (Ag, Au, Pd, and Pt) on polystyrene spheres via ultrasound irradiation. Langmuir, 2005, 21: 3635~3640
    [111] Sugiyama K, Anan G, Shimada T, et al. Catalytic ability of plasma heat-treated metal oxides on vapor-phase Beckmann rearrangement. Surf. Coatings Tech., 1999, 112: 76~79
    [112] Givens K E, Dillard J G. Hydrodesulfurization of thiophere using rhodium( Ⅲ ) zeolites: 13X and ZSM-5. J. Catal., 1984, 86: 108~120
    [113] Zimowska M, Wagner J B, Dziedzic J, et al. Some aspects of metal-support strong interactions in Rh/Al2O3 catalyst under oxidising and reducing conditions. Chem. Phys. Lett., 2006, 417: 137~142
    [114] Nylén U, Pawelec B, Boutonnet M, et al. Catalytic ring opening of naphthenic structures Part II. In-depth characterization of catalysts aimed at upgrading LCO into a high-quality diesel-blending component. Appl. Catal. A: General, 2006, 299: 14~29
    [115] Meyyappan M, Delzeit L, Cassell A, et al. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol., 2003, 12: 205~216
    [116] Song I K, Cho Y S, Choi G S, et al. The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition. Diamond Relat. Mater., 2004, 13: 1210~1213
    [117] Kim U, Pcionek R, Aslam D M, et al. Synthesis of high-density carbon nanotube films by microwave plasma chemical vapor deposition. Diamond Relat. Mater., 2001, 10: 1947~1951
    [118] Taniguchi M, Nagao H, Hiramatsu M, et al. Preparation of dense carbon nanotube film using microwave plasma-enhanced chemical vapor deposition. Diamond Relat. Mater., 2005, 14: 855~858
    [119] Yen J H, Leu I C, Lin C C, et al. Effect of catalyst pretreatment on the growth of carbon nanotubes. Diamond Relat. Mater., 2004, 13: 1237~1241
    [120] Kyung S J, Lee Y H, Kim C W, et al. Effect of pretreatment on the deposition of carbon nanotubes by using atmospheric-pressure plasma-enhanced chemical-vapor deposition. J. Korean Phys. Soc., 2005, 47: 463~468
    [121] Yu K L, Zou J J, Ben Y H, et al. Synthesis of NiO- embedded carbon nanotubes using corona discharge enhanced chemical vapor deposition,Diamond Relat. Mater., 2006, 15: 1217~1222
    [122] Choi W S, Choi S H, Hong B, et al. Effect of hydrogen plasma pretreatment on growth of carbon nanotubes by MPECVD, Mater. Sci. Eng. C, 2006, 26: 1211~1214
    [123] Hochtl M, Jentys A, Vinek H. Alkane conversion over Pd/SAPO molecular sieves: influence of acidity, metal concentration and structure. Catal. Today, 2001, 65: 171~177
    [124] Takenaka S, Shigeta Y, Tanabe E, et al. Methane decomposition into hydrogen and carbon nanofibers over supported Pd-Ni catalysts. J. Catal., 2003, 220: 468~477
    [125] Vajtai R, Kordas K, Wei BQ, et al. Carbon nanotubes network growth on palladium seeds. Mater. Sci. Eng. C, 2002, 19: 271~274
    [126] Breton Y, Verstraete M, Fleurier R, et al. Anomalous ESR behavior of carbon nanofilaments grown from palladium seeds. Carbon, 2004, 42: 1049~1052
    [127] Wong Y M, Wei S, Kang W P, et al. Carbon nanotubes field emission devices grown by thermal CVD with palladium as catalysts. Diamond Relat. Mater., 2004, 13: 2105~2112
    [128] Lee S Y, Yamada M, Miyake M. Synthesis of carbon nanotubes and carbon nanofilaments over palladium supported catalysts. Sci. Technol. Adv. Mater., 2005, 6: 420~426
    [129] Chen P, Wu X, Lin J, et al. Comparative studies on the structure and electronic properties of carbon nanotubes prepared by the catalytic pyrolysis of CH4 and disproportionation of CO. Carbon, 2000, 38: 139~143
    [130] Charlier A, McRae E, Heyd R, et al. Classification for double-walled carbon nanotubes. Carbon, 1999, 37: 1779~1783
    [131] Sinnott S B, Andrews R, Qian D, et al. Model of carbon nanotube growth through chemical vapor deposition. Chem. Phys. Lett., 1999, 315: 25~30
    [132] Gavillet J, Loiseau A, Ducastelle F, et al. Microscopic mechanism for the catalyst assisted growth of single-wall carbon nanotubes. Carbon, 2002, 40: 1649~1663
    [133] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett., 1998, 292: 567~574
    [134] Chen D, Christensen K O, Fernández E O, et al. Synthesis of carbon nanofibers: effect of Ni crystal size during methane decomposition. J. Catal., 2005, 229: 82~96
    [135] Richardson J T, Paripatyadar S A. Carbon dioxide reforming of methane with supported rhodium. Appl. Catal., 1990, 61: 293~309
    [136] Meirovitch E, Segal A. Storing concentrated sunlight in the chemical bond: Unique stability and internal regulation—A simulative theoretical investigation. Sol. Energy, 1991, 46: 219~229
    [137] Levy M, Levitan R, Meirovitch E, et al. Chemical reactions in a solar furnace 2: Direct heating of a vertical reactor in an insulated receiver. Experiments and computer simulations. Sol. Energy, 1992, 48: 395~402
    [138] Gadalla A M, Bower B. The role of catalyst support on the activity of nickel for reforming methane with CO2. Chem. Engng. Sci., 1988, 43: 3049~3062
    [139] Rostrup-Nielsen J R. Promotion by poisoning. Stud. Surf. Sci. Catal. 1991, 68: 85~101
    [140] Zhang Z L, Verkios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts. Catal. Today, 1994, 21: 589~595
    [141] Horiuchi T, Sakuma K, Fukui T, et al. Suppression of carbon deposition in the CO2-reforming of CH4 by adding basic metal oxides to a Ni/Al2O3 catalyst. Appl. Catal. A: General, 1996, 144: 111~120
    [142] Kim G J, Cho D S, Kim K H, et al. The reaction of CO2 with CH4 to synthesize H2 and CO over nickel-loaded Y-zeolites . Catal. Lett., 1994, 28: 41~52
    [143] Schulz P G, Gonzalez M G, Quincoces C E, et al. Methane reforming with carbon dioxide. The behavior of Pd/α-Al2O3 and Pd-CeOx/α-Al2O3 catalysts. Ind. Eng. Chem. Res., 2005, 44: 9020~9029
    [144] Mark M F, Maier W F. CO2-reforming of methane on supported Rh and Ir catalysts. J. Catal., 1996, 164: 122~130
    [145] Ferreira-Aparicio P, Guerrero-Ruiz A, Rodríguez-Ramos I. Comparative study at low and medium reaction temperatures of syngas production by methane reforming with carbon dioxide over silica and alumina supported catalysts. Appl. Catal. A: General, 1998, 170: 177~187
    [146] Solymosi F, Erd?helyi A, Lancz M. Surface interaction between H2 and CO2 over palladium on various supports. J. Catal., 1985, 95: 567~577
    [147] Erd?helyi A, Pásztor M, Solymosi F. Catalytic hydrogenation of CO2 over supported palladium. J. Catal., 1986, 98: 166~177
    [148] Ruckenstein E, Pulvermacher B. Kinetics of crystallite sintering during heat treatment of supported metal catalysts. AIChE J., 1973, 19: 356~364
    [149] Ruckenstein E, Pulvermacher B. Growth kinetics and size distribution of supported metal crystallites. J. Catal., 1973, 29: 224~245
    [150] Flynn P C, Wanke S E. A model of supported metal catalyst sintering: Ⅰ. Development of model. J. Catal., 1974, 34: 390~399
    [151] Flynn P C, Wanke S E. A model of supported metal catalyst sintering: Ⅱ. Application of model. J. Catal., 1974, 34: 400~410
    [152] Lietz G, Lieske H, Spindler H, et al. Reaction of platinum in oxygen- and hydrogen-treated Pt/γ-Al2O3 catalysts: II. Ultraviolet-visible studies, sintering of platinum, and soluble platinum. J.Catal., 1983, 81: 17~25
    [153] Foger K, Jaeger H. The effect of chlorine treatments on the dispersion of platinum metal particles supported on silica and γ-alumina. J.Catal., 1985, 92: 64~78
    [154] Campbell W G, Lynch D T, Wanke S E. Monte carlo simulation of supported metal catalyst sintering and redispersion. AIChE J., 1988, 34:1528~1538
    [155] Moulder J F, Stickle W F, Sobol P E, et al. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Minnesota, 1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700