用户名: 密码: 验证码:
低热值气体燃料燃烧技术及其工业应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低热值气体燃料是指热值小于1460kcal/Nm~3的气体燃料,广泛存在于煤炭生产、煤化工、石油化工、钢铁、冶金、纺织印染等行业的生产过程中,如高炉煤气、转炉煤气、炭黑尾气等。以上几类气体的热值均在600kcal/Nm~3以上,工业应用比较广泛。而更低热值水平的超低热值气体燃料工业应用研究机近年来才受到重视,这类气体热值更低,但来源更加广泛,总量也更巨大,强化其循环利用具有重要的节能和环保意义,也有利于提高能源利用率,进而缓解我国能源供需矛盾。
     基于此背景,本文选取了研究对象——300kcal/kg的超低热值气体燃料。并针对低热值气体燃料特点,提出了两种超低热值气体燃料的强化燃烧方法——高低热值气体燃料混合燃烧、燃煤与低热值气体燃料混合燃烧,并开展了实验和工业化应用研究。主要研究情况如下:
     (1)在高低热值气体燃料混合燃烧环节,基于回流区分级着火原理,本文通过旋流燃烧器的结构优化和调整燃料配比等措施研究了燃烧器的低热值气体稳燃性能,研究结果表明:当二次空气和主燃料喷口旋流角度均为60°时,燃烧器可实现300kcal/kg低热值主燃料的稳定燃烧,此时高低热值燃料供热比21:79,平均热值379kcal/kg。而采用乙炔掺烧时可以将主辅燃料平均热值进一步降低到300kcal/kg,原因在于乙炔等小分子燃料具有更好的着火和稳燃性能。
     同时,本文将实验成果应用到褐煤提质工艺的热解气热风炉中也取得了较好的燃烧效果,高低热值热量比达到了23.5:76.5,从而证明了基于回流区分级着火原理设计的气体燃烧器在低热值气体燃料稳燃方面具有独特优势。
     (2)在燃煤与低热值气体燃料混合燃烧环节,本文通过分体式燃烧和一体式燃烧实验对比发现:一体式燃烧装置性能更优,可实现273kcla/kg的低热值气体燃料稳定燃烧,其稳定燃烧条件是保证炉膛温度在850℃以上。同时,根据实验现象发现加煤速度与燃煤烟气温度、助燃的燃煤烟气温度与低热值气体可燃热值之间均存在边际递减效应,也根据实验现象总结出了吸热射流扩散燃烧和平衡极限热值等概念。
     在燃煤与低热值气体燃料混合燃烧实验基础上,本文还进行了褐煤提质工艺中燃煤替代LNG作为补充燃料的工业化应用研究,研究结果表明燃煤替代LNG方案技术上是可行的,经济效益也比较显著。投产后一年运行成本可节约1362.17万元,5个月内即可收回486.28万元的改造工程款。它的建成投产将大幅度降低系统运行成本,提升褐煤提质技术含量,从而有利于在褐煤提质技术大规模推广应用。
The low calorific value gas fuels whose calorific value is under1464kcal/Nm~3arewidely used in process of coal production, coal chemical industry, petrochemicalengineering, steel industry, metallurgical industry and textile industry. For instance,blast-furnace gas, converter gas and carbon black off-gas can be categorized as lowcalorific value gas. The calorific values of the gas that mentioned above are above600kcal/Nm~3, which can be utilized in industrial areas extensively and efficiently.However, the industrial applied research of super-low calorific value gas has come topublic attention in last several years. What is worth mentioning is that this kind of gas fuelcan be obtained easier in productive process than so called low calorific value gas. Andfor its large quantity in industrial areas, to develop the methods for its cyclic utilization isbeneficial to both energy conservation and environmental protection.
     As stated above, the super-low calorific value gas whose calorific value is300kcal/kgis chosen as the research subject under this study. According to the characteristics of thefuel evolved in this study, there propose two enhanced burning methods using lowcalorific value gas as working fuel. The first method is combined firing of both high andlow calorific value gas, while the second one is combined firing of coal and low calorificvalue gas. The research is conducted both experimentally and theoretically and the resultscan be used for future academic and industrial references. More details are as follow:
     1) Combined firing of both high and low calorific value gas fuel
     In this study, we experimentally investigate the stabilized combustion performance ofthe turbulent burner whose structure has been optimized with different ratios of mixed gasfuel--high and low calorific value gas. The analytical data show that when the swirl anglesof both secondary air flow and main fuel are60o, the stable combustion condition can beachieved using low calorific value gas with the calorific value300kcal/kg as main fuel. Inthis case, the ratio of high and low calorific value gas is21:79with the mean calorificvalue379kcal/kg. However, the mean calorific value of main fuel can be depressed to300kcal/kg if acetylene is added to main fuel as supplement, due to the moderate ignitability and stabilized combustion performance of acetylene.
     Furthermore, this combined firing method has proven to be efficient when it is appliedto pyrolysis gas furnace which is used in lignite upgrading process. In this case, the ratioof high and low calorific value gas is23.5:76.5. As a result, we can draw the conclusionthat the gas burner which is designed based on grading fire principle of recirculationzone has its own superiorities in ignitability and stabilized combustion performance.
     2) Combined firing of coal and low calorific value gas
     Compared with the separated device, the performance of integrated device is morepredominant. The low calorific value gas can obtain stable combustion condition whenthe temperature of hearth can be guaranteed to exceed850℃, even if the calorific valueof gas fuel is just273kcla/kg. Meanwhile, according to the experiment, the decreasededge effect is existed in the relationship between the feeding speed of coal and thetemperature of fuel-gas. The similar conclusion can be seen in the relationshipbetween temperature of fuel-gas emitted from combustion-supporting coal and thecalorific value of low calorific value gas.
     Based on the previous study, we also find that coal can substitute for LNG as the postcombustion, which is more reliable and economical in running lignite upgrading process.In detail, the running cost of lignite upgrading process can be cut down for13.6217million Yuan per year after reforming and the reform cost can be recovered in five months.In other word, The running cost would be dramatically decreased and the technology oflignite upgrading process would be improved if the reforming scheme is up and running.
引文
[1]赵洁,王建军,范剑峰.中国能源现状及发展前景分析[J].科技经济市场,2006,(08):13~14.
    [2]樊东黎.世界能源现状和未来[J].金属热处理,2011,36(10):119~131.
    [3]牛冲槐,张彤,张敏,樊燕萍.我国能源安全性分析[J].太原理工大学学报,2006,24(2):59-63.
    [4]沈国栋,路露.中国能源发展趋势浅析[J].黑龙江科技信息,2011,(23):25.
    [5]姜海勇.中国能源现状及未来发展战略[J].深圳特区科技,2006:42-44.
    [6]铁晓华.中国石油资源与经济的可持续发展研究[J].商场现代化.2010,(20):78~79.
    [7]曹博谦,陈彦玲.论我国石油资源的可持续利用[J].消费导刊,2008,(04):30~31.
    [8]胡徐腾,李振宇,王正元.我国能源化工面临的挑战及对策思考(Ⅱ)[J].化工进展,2006,25(4):351-356.
    [9]陈希.我国天然气发展问题与对策思考[J].生态经济,2011,(02):123~126,140.
    [10]郑得文,张光武等.国内外天然气资源现状与发展趋势[J].2008,38(01):47~51.
    [11]杨占玄,许立飞.我国天然气勘探开发现状与前景分析[J].2010,(09):160~162.
    [12]国家电力规划研究中心.我国中长期发电能力及电力需求发展预测[J].中国能源报,2013年2月18日第一版:1~7.
    [13]中国能源统计年鉴.2008年.
    [14]周志强.中国能源现状、发展趋势及对策[J].能源与环境,2008,06:09-10.
    [15]杜祥琬,中国能源的问题和可持续发展战略[J].决策咨询通讯,2007(1):1-7.
    [16]汪军,马其良,张振东.工程燃烧学[M].北京:中国电力出版社,2008.
    [17]刘永基.消防燃烧燃料.辽宁人民出版社,1992年09月第1版.
    [18]靳世平,钱壬章.开缝钝体燃烧器回流加热链着火分析[J].燃烧科学与技术,2003,9(3):244-246.
    [19]靳世平,钱壬章,宗仰炜,朱基木.气体回流区分级着火试验研究[J].工程热物理学报,1997,18(6):754-758.
    [20]唐强,罗渝东,张力,冉景煜.低热值煤层气燃烧器的影响因素及优化的数值模拟[J].动力工程,2007,27(3):344-348.
    [21]王家楣,彭峰.废气燃烧器结构对流动和排放物浓度的影响[J].清华大学学报,2005,45(5):666-669.
    [22]周晓波,蒋杰,张号,张传美.进风量对燃气燃烧器燃烧及NOx排放特性影响[J].煤炭燃烧,2012,18(2):85-89.
    [23]马爱纯,吴慧卿,张智谋,刘艳军,肖佩林,黄柏良,欧俭平.高效低污染燃气燃烧器及其燃烧特性实验[J].工业炉,2007,29(3):5-8.
    [24]陈伟鹏,赵增武,邢守正,龚志军,李保卫,武文斐.燃气炉内旋流强度对NOx生成特性的影响[J].钢铁研究学报,2008,20(1):6-9.
    [25]欧俭平,吴青娇,赵迪,肖佩林,张兴华.高效低污染燃气燃烧器燃烧特性的数值模拟[J].金属热处理,2009,34(4):105-109.
    [26]颜蓓蓓.低热值燃气预混火焰燃烧机理研究:[博士学位论文],天津:天津大学,2010.
    [27]张园锁,侯玉柱等.超低热值燃气微型燃气轮机试验研究[J].燃气轮机技术,2009,22(1):21-24.
    [28]彭好义,蒋绍坚,周孑民.高温空气燃烧技术的开发利用,技术优势及其展望[J].工业加热,2004,3(33):11-15.
    [29]朱瑾娟.高温空气燃烧技术的特点与发展现状[J].能源与环境,2012,(1):31-33.
    [30]代朝红,温治,朱宏祥,徐海,李洪利,刘洪,郑克明.高温空气燃烧技术的研究现状及发展趋势[J].工业加热,2002(3):14-18
    [31]王爱华,蔡九菊,王连勇,田红,高广铁.高温空气燃烧技术进展与应用[J].中国冶金,2006,16(8):1-6.
    [32]王关晴,程乐鸣,等.高温空气燃烧技术中燃烧特性的研究进展[J].动力工程,2007,27(1):81-89.
    [33]饶文涛,杜军.蓄热燃烧技术研究现状分析[J].宝钢技术,2001,(04):12-15.
    [34]刘赵淼,王秀丽,于海源,马重芳,隋允康.国内高温空气燃烧技术发展现状和趋势[J].北京工业大学学报,2006,32(7):614-621.
    [35]陈翠梧.高温空气燃烧模型研究和结构优化[M].2010,12.
    [36] Tadashi Tanigawa, Mistunobu Morita. Experimental and Theoretical AnalysisResult for High Temperature Air combustion. International Joint Power GenarationConference.1998(1):207-214.
    [37] Ashwani K. Gupta, Toshiaki Hasegawa. Height temperature air combustion Flamecharacteristic, challenges and opportunities. Hsiao, Tsechiang, Yoshikawa, Kunio.High temperature air combustion. Beijing.1999. Beijing:9-28.
    [38] www.ask.com(2000,3,12)
    [39]祁海鹰,李宇红等.高温低氧燃烧条件下氮氧化物的生成特性.燃烧科学与技术,2002,8(1):17-22.
    [40]杜军,饶文涛等.陶瓷蓄热体阻力特性的实验研究[J].工业炉,2002,24(01):6-9.
    [41]高仲龙,张先掉,高家锐.关于工业加热炉发展方向的再探讨—从自身预热式烧嘴谈起[J].工业炉.1997(1):1.
    [42]赵振永,邱峰.蓄热式高温预热烧嘴蓄热室传热性能研究[J].工业炉,1996(1):17-21.
    [43] Yutaka Suzukawa, et al. Heat transfer improvement and NOx reduction by highlypreheated air combustion[J]. Energy Conversion Management.1997,38(10):1061-1073.
    [44] Nishimura et al. Low NOx Combustion Under High Preheated Air TemperatureCondition in a Industrial Furnace. Energy Conversation and Management.1997,38(10):1353-1363.
    [45] L M Dearden, J D Massingham et al. Air-preheat burners with air-stagingcontrolling NOx emissions from high-temprature[J]. Journal of the Institute ofEnergy.1996,69(3):23-30.
    [46] Donghee Han, M. G. Mungal et al. Prediction of NOx Control by Basic andAdvanced Gas Reburning Using the Two-Stage Lagrangian Model. Combustion andFlame.1999,119:483-493.
    [47] T. lshii, C. Zhang et al. Effects of Models on the Prediction of NO Formation in aRegenerative Furnace[J]. Journal of Energy Resources Technology.2000,122(4):224-228.
    [48]饶文涛.第三代燃烧新技术--多孔介质燃烧技术研发及应用[J].四川冶金,2010.
    [49] Weinberg F J. Combustion temperature the futune[J]. Nature,1971,210:233-239.
    [50] Sathe S B, Kulkami M R, Peck R E et al. An experimental and theoretical study ofporous radiant burner performance[C]//23rdsymposium on combustion TheCombustion Institute, Pittsburgh,1990:1011-1018.
    [51] Yoshizawa Y, Sasaki K, Echigo R. Analytical study of the structure of radiationcontrolled flame[J]. International Journal of Heat and Mass Transfer,1988,31(2):311-319.
    [52] Hsu P F. Experimental and numerical study of premixed combustion withinnonbomogeneous porous media[J]. Combustion Science and Technology,1993,90(1):149-172.
    [53] Hsu P F, Mathews R D. The necessity of using detailed kinetics in mode forcombustion within porous media[J]. Combustion and Flame,1993,93:457-466.
    [54] Pereira F A, Oliveira A A. Analysis of the combustion with excess enthalpy inporous media[M]. Proceeding of the European Combustion Meeting,2003
    [55] Khanna R, Goel R, Ellzey J L. Measurements of emissions and radiation formethane combustion within a porous medium burner[J]. Combustion Science andTechnology,1994,99(1):133-142.
    [56] Xiong T Y.Experimental study of ultra low emission radiant porousbumer[C]//AFRC1991Spring Members Only Meeting Connecticut,1991:219-224.
    [57]钟凡.天燃气在多孔陶瓷板辐射器中预混燃烧的数值模拟[M].哈尔滨工业大学硕士论文,2006.
    [58]史俊瑞.多孔介质中预混气体超绝热燃烧机理及其火焰特性的研究[D].大连:大连理工大学,2007.
    [59]王慧玲.预混气体在多孔介质内燃烧的工业应用和数值模拟研究[M].东北大学硕士论文,2009.
    [60]李艳红,徐吉皖.多孔陶瓷板城市燃气预混燃烧的数学模拟[J].上海交通大学学报,1999,33(8):1001-1003.
    [61]何洪,张建霞,戴洪兴等.贵金属纤维催化剂的CH4催化燃烧活性[J].北京工业大学学报,2006,32(12):1097-1101.
    [62]杨玉霞,肖利华,徐贤伦.负载型钯催化剂上甲烷催化燃烧的研究进展[J].工业催化,2004,12(3):1-5.
    [63]吴武玲,方奕文等.催化燃烧催化剂的研究进展[J].天然气化工,2008.
    [64]袁强,杨乐夫,史春开等.氧化物助剂对负载型钯催化剂活性改善的研究[J].功能材料,2001,10:1107-1109.
    [65] Vincent De Jong, Mariusz K, Robert Louw. Formation of dioxins in the catalyticcombustion of chlorobenzene and a micropollutant like mixture on Pt/Al2O3[J].Environ Sci Technol,2004,38(19):5217-5223.
    [66] Nuhu A, Hussein G, Soares J et al.Methanol oxidation on Au/TiO2catalyst[J].Topics Catal,2007,44(1-2):293-297.
    [67] Lvarez-Merino M A, Riberiro M F, Silva J M et al. Activated carbon and tungstenoxide supported on activated carbon catalysts for toluene catalytic combustion[J].Environ Sci Technol,2004,38:4664-4670.
    [68]李丽娜,陈耀强,龚茂初等. Fe2O3/YSZ Al2O3催化剂在甲烷催化燃烧中的催化剂性能研究[J].高等学校化学学报,2003,24(1):2235-2238.
    [69] Carrascull A L, Ponzi M I, Ponzi E N. Catalytic combustion of soot on KNO3/ZrO2catalysis: Effect of potassium nitrate loading on activity [J]. Ind Eng Chem Res,2003,42(4):692-697.
    [70] Soiron S, Aymard L, Rougier A et al. Mechanical activation of perovskite typeoxides for catalytic combustion [J]. Topics Catal,2001,16/17(1-4):391-395.
    [71]潘智勇,张长斌,余长春等.负载型镧锰钙钛矿催化剂上甲烷催化燃烧的研究[J].分子催化,2003,17(4):274-278.
    [72] Rida K, Benabbas A, Bouremmad F et al. Effect of calcination temperrature on thestructural characteristics and catalytic activity for propene combustion of sol-gelserived lanthanum chromite perovskite[J].Sci Direct,2007,327:173-179.
    [73] Astier M, Garbowski E, Primet M. BaMgAl10O17as Host Matrix for Mn in theCatalytic Combustion of Methane [J]. Catal Lett,2004,95(1-2):31-37.
    [74]余倩,余林,黄应敏等.二甲醚燃烧用掺杂钡、镍六铝酸盐催化剂的研究[J].无机盐工业,2006,38(11):15-17.
    [75]蒋政,李进军,郝郑平等.铁取代六铝酸盐的制备及其对甲烷燃烧的催化性能[J].催化学报,2004,25(6):485-489.
    [76]蒋政,侯红霞,郝郑平等. La促进型六铝酸盐Ba1-xLaxFeAl11O19-δ催化甲烷燃烧性能[J].物理化学学报,2004,20(11):1313-1319.
    [77] Cui M S,Wang L S,Zhao N et al. La-hexaaluminate catalyst preparation and itsperformance for methane catalytic combustion [J]. J Rare Earths,2006,24(6):690-694.
    [78] Li S Q, Wang X L. Catalytic combustion of methane over Mn-substituted Ba-La-hexaaluminate nano-particles[J]. JAl-loys Compounds,2007,432:333-337.
    [79]张晓红,胡瑞生,戴莹莹等.反相微乳法合成稀土六铝酸盐催化剂及其甲烷催化燃烧研究[J].分子催化,2007,21(1):75-78.
    [80]任晓光,于君英,宋永吉等. Fe、Mn掺杂六铝酸镧的微乳液制法及性能研究[J].燃料化学学报,2007,35(2):233-236.
    [81]任晓光,郑建东,宋永吉等.金属螯合凝胶法制备六铝酸盐催化剂的研究及其甲烷燃烧活性的研究[J].化学学报,2007,36(1):11-16.
    [82] Till. Numerical simulation of oxygen-enriched combustion in industrial processes.Computational Fluid Dynamics.2003,(3):42-52.
    [83]刘毅.富氧助燃技术及其应用[J].节能与环保,2005,(2):28.
    [84]石家良.富氧燃烧节能新技术在玻璃池炉上应用[J].北京节能,1991,(3):1-31.
    [85]沈光林.膜法富氧助燃技术在工业锅炉中应用[J].工业锅炉,2002,(6):20-24.
    [86] G. J. Nathan, J. M, I. Z. T. A lwahabi et al. Impacts of a jet s' ex it flow pattern onmixing and combustion performance [J]. Progress in Energy and CombustionScience,2006,32(5-6):496-538.
    [87] N. Syred. A review of oscillation mechanisms and the role of the precessing vortexcore (PVC) in swirl combustion systems [J]. Progress in Energy and CombustionScience,2006,32(2):93-161.
    [88] H. Suzuk, I. N. Kasag, I. Y. Suzuki. Active control of an axisymmetric jet withdistributed electrom agnetic flap actuators [J]. Experiment in Fluids,2004,36(3):498-509.
    [89] N. Kurimoto1, Y. Suzuki, N. Kasagi. Active control of lifted diffusion flames witharrayed microactuators. Experiment in Fluids,2005,39(6):995-1008.
    [90] T. K. Kim, J. Park, H. D. Shin. Mixing mechanism near the nozzle exit in atoneexcited non-p remixed jet flame [J]. Combustion Science and Technology,1993,89(1-4):83-100.
    [91] John C, Wagner. NOx emission reduction by oscillating combustion [J].GasTechnology Inst itute, Final report for U. S. Department of Energy,2004.
    [92]徐旭常,吕俊复,张海.燃烧理论与燃烧设备[M].北京:科学出版社,2012.
    [93]陈学俊,陈听宽.锅炉原理[M].北京:机械工业出版社,1982.
    [94]胡震岗,黄信仪.燃料与燃烧概论[M].北京:清华大学出版社,1995.
    [95]徐旭常,周力行.燃烧技术手册[M].北京:化学工业出版社,2008.
    [96]毛健雄,毛健全,赵树民.煤的清洁燃烧[M].北京:科学出版社,1998.
    [97]常弘哲,张永廉,沈际群.燃料与燃烧[M].上海:上海交通大学出版社,1993.
    [98]张斌全.燃烧理论基础[M].北京:北京航空航天大学出版社.1990.
    [99]傅维鏕,卫景彬,詹焕青,孙文超,陈以理,韩洪樵,黄维胜.一种强化型同向射流火焰稳定方法及其燃烧器[P].中国专利, CN85100050A,1986-06-1.
    [100]周力行.燃烧理论和化学流体力学[M].北京:科学出版社,1986.
    [101]傅维鏕,张永廉,王清安.燃烧学[M].北京:高等教育出版社,1989.
    [102]雷震春.电磁感应加热无油直接点火燃烧器的试验研究[M].浙江大学硕士论文,2002.
    [103] Stephen R. Turns. An Introduction To Combustion. Concepts and Applications.SECOND EDITION. International Editions2000[M]. Printed in Singapore
    [104](英)斯柏尔丁(D.B.Spalding)著(常弘哲等译).燃烧与传质[M].北京:国防工业出版社,1984
    [105]万俊华,郜冶等.燃烧理论基础[M].哈尔滨:哈尔滨工程大学出版社,2007
    [106]张艳春,喻健良等.层流预混火焰传播特性概述[J].化工装备技术,2003.
    [107]严传俊,范玮.燃烧学[M].西安:西北工业大学出版社,2005.
    [108] Williams FA. Combustion Theory[M]. Benjamin Cummings,1985.
    [109]王阳.烃类燃料的预混层流火焰燃烧特性研究[M].天津大学硕士论文,2008.
    [110] Turns S R. An Introduction to Combustion [J]. Concepts and Application. McGraw.Hill,2000.
    [111]周力行.燃烧理论和化学流体力学[M].北京:科学出版社,1986.
    [112] Metghalchi M and Keck J K. Burning Velicity of Mixture of Air with Methanol,Isooctane and Indolene at High Pressure and Temperatures[J]. Combustion andFlame,1982,48:191-210
    [113]岑可法,姚强,骆仲泱.燃烧理论与污染控制[M].北京:机械工业出版社,2004
    [114]许晋源.燃烧学[M].北京:机械工业出版社,1990
    [115]霍然.工程燃烧概论[M].合肥:中国科技大学出版社,2001
    [116]张奇,白春华等.燃烧与爆炸基础[M].北京:北京理工大学出版社,2007
    [117] Chen S I, Kovitz A A. Ignition in the laminar wake of a flat flame. Proceeding ofthe Combustion Institue,1956,17:418-426.
    [118] Kundu K M, Banerjee D, Bhaduri D. Theoretical analysis on flame stability by abluff-body. Combustion Science and Technology,1972,17:153-162.
    [119]傅维鏕,卫景彬.燃烧物理学基础[M].北京:机械工业出版社,1984.
    [120]仇晓龙,张海,吴玉新等.反扩散火焰温度场特性的实验研究.2010年中国工程热物理学会燃烧学年会会议论文.广州,2010: No.104332.
    [121] Mikofski M A, Williams TC, Shaddix CR,et al. Flame height measurement oflaminar inverse diffusion flames[J]. Combustion and flame,2006,146:63-72.
    [122]陈福龙.低热值煤气燃烧实验研究[M].华中科技大学硕士论文,2009.
    [123] Sobiesiak A,Wenzell J C. Characteristics and structure of inverse flames of naturalgas. Proceedings of the Combustion Institute,2005,30(1):743-749.
    [124] Sze L K, Cheung C S, Leung C W. Appearance, temperature and NOx emission oftwo inverse diffusion flames with different port design[J]. Combustion and Flame,2006,144(1-2):237-248.
    [125]郑成航.低热值气体多孔介质燃烧机理与工业化[D].浙江大学博士论文,2011.
    [126]娄马宝.低热值气体燃料(高炉煤气)的利用[J].燃气轮机技术.2000,13(3):16-18.
    [127]贺永德.现代煤化工技术手册[M].北京:北京化学工业出版社,2004.
    [128]邵俊杰.褐煤提质技术现状及我国褐煤提质技术发展趋势探讨[J].神华科技,2009,7(2):17—22.
    [129]戴和武,谢可玉.褐煤利用技术[M].北京:煤炭工业出版社,1999..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700