用户名: 密码: 验证码:
核壳结构复合催化材料AC@ZSM-5的构建及其费—托合成应用初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核壳结构催化材料(记作“核@壳”)可以解决因活性纳米粒子团聚、活性中心中毒、流失等而导致催化剂活性下降的问题,同时又给不同催化过程之间的耦合开启了全新途径。由于分子筛膜在分离和催化上的独特作用,在传统催化剂颗粒外表面包覆一层分子筛膜可将核催化剂的催化作用和分子筛膜的分离、催化过程结合起来以提高催化剂的整体性能。活性炭(AC)是重要的催化剂/催化剂载体,随着对AC孔结构和其表面物理化学性质认识的深入,活性炭材料在催化领域必将获得更多应用。由于AC颗粒表面的不平整性和憎水性,采用直接水热法很难在其表面生长分子筛膜。因此,在AC表面包覆一层分子筛膜有理论和现实意义。本文采用改进的晶种法和凝胶过渡层法在不规则AC颗粒表面得到连续致密的MFI型分子筛膜壳层,发现了此类材料独特的开裂机理。在成功制备分子筛膜包覆AC复合材料AC@MFI的基础上,在AC中引入Co、Zr活性组分,得到分子筛膜包覆的新型催化材料CoZr/AC@ZSM-5。以费-托合成为模型反应,对催化材料的反应性能进行了初步研究。论文的主要研究内容如下:
     AC直接用于水热合成,多数颗粒表面只有零星的分子筛晶粒附着。为了增加AC表面官能团以增加可供分子筛成核的中心,分别对AC进行空气氧化、硝酸处理、尿素水溶液水热处理和阳离子聚合物修饰等改性处理,处理之后分子筛晶粒在AC表面附着密度有所增加,但不足以成膜。有机物结焦和氧化铝过渡层辅助晶种二次生长法均能得到分子筛膜覆盖度比较高的AC颗粒。实验表明在无晶种条件下勃姆石凝胶层包覆的AC颗粒(AC@Gel)经水热后也能得到分子筛膜包覆比较完整的AC颗粒。
     以勃姆石凝胶为过渡层,在动态水热条件下可制备出均匀、致密分子筛膜包覆AC的复合材料AC@ZSM-5,产物中几乎不含分子筛粉末。Zeta电位测试表明凝胶层表面可以比AC表面吸附更多的分子筛前驱物。不同晶化时间样品的SEM结果表明凝胶层的使用消除了AC颗粒表面物理化学性质不均匀的影响,增加了AC表面可供分子筛晶粒成核的中心数目,使分子筛的结晶过程均发生在凝胶层/溶液界面。此外,考察了凝胶层使用量对成膜覆盖度、重复合成对膜厚及分子筛膜取向的影响。
     在用焙烧法去除分子筛膜中的模板剂时,AC@ZSM-5产生了严重的开裂和剥落。不同温度下的焙烧实验表明开裂发生在200~250℃。在AC@ZSM-5外表面二次涂覆凝胶有效地阻止了分子筛膜的开裂。热分析(TA)和程序升温脱附-质谱联用(TPD-MS)结果均表明在分子筛膜合成过程中AC吸附了大量的模板剂。在焙烧升温过程中AC内吸附的模板剂率先分解,此时分子筛膜壳层中的模板剂尚未开始分解,致密的分子筛壳层使得AC内产生的部分分解产物不能及时逸出发生爆破而导致分子筛膜开裂。二次涂覆凝胶层的方法增强了分子筛壳层的机械强度,使得在低升温速率下开裂现象极大缓和。三异丙苯吸附实验表明焙烧后无开裂的样品尚存有一些缺陷,经正硅酸四乙酯(TEOS)修饰和二次无模板剂水热合成之后缺陷明显减少。
     为了考察分子筛膜包覆型核壳结构材料的催化性能,论文选择了费-托合成为模型反应。首先分别以Co(NO3)2·6H2O和Zr(NO3)4·5H2O为前驱体,采用等体积浸渍法在AC颗粒中引入Co、Zr活性组分制备CoZr/AC催化剂,然后采用凝胶过渡层法合成分子筛膜包覆的CoZr/AC@ZSM-5催化材料;进而分别实验考察了CoZr/AC、CoZr/AC@ZSM-5以及CoZr/AC和分子筛混合装填CoZr/AC-ZSM-5催化剂上的反应效果,表明包覆分子筛膜后的催化剂能明显改变产物分布;最后,结合产物组成和对反应前后的催化剂表征结果,对CoZr/AC@ZSM-5催化剂上低的CO转化率、高的甲烷和低碳烃选择性做出了合理的解释。
To develop the catalytic materials with core-shell structure (denoted as "core@shell") can avoid the catalysts deactivation due to the coalescence, poison or loss of active species. It also provides a new way to couple different catalytic processes. Owing to the catalytic and separate properties of zeolite membrane, encapsulating solid catalyst particles by zeolite membrane can realize the integration of catalysis and separation process and improve their overall performance. Activated carbon (AC) is a typical catalyst or supports. And with the further understanding of its pore structure and surface physicochemical properties, AC will obtain increasing attention in chemical industry. As mentioned above, coating a zeolite membrane shell on AC can be expected to maintain the stabilities of AC-based catalysts. But for the roughness and hydrophobic property of AC surface, it is difficult to coat zeolite membranes on AC particles with direct hydrothermal synthesis. The objectives of this work are to develop a method to coat continuous and dense MFI-type zeolite membrane on the surface of irregular AC particles. Based on successfully fabricated composite material AC@ZSM-5, active species of Co and Zr are introduced into AC and the prepared catalysts (CoZr/AC@ZSM-5) are investigated in Fischer-Tropsch synthesis (FTS). The effects of the zeolite membrane shell on the reaction will be discussed. The main contents of the dissertation are as follows.
     After the direct hydrothermal synthesis, the zeolite crystals were loosely spread on AC particles with much of the surface uncoated. To increase the functional groups of AC surface, AC particles were pre-treated by air oxidation, concentrated nitric acid, urea solution and cationic polymer. Although the pretreatment enhanced the crystals coverage on AC, the attached zeolite crystals were still not sufficient to form a membrane. Secondary growth with the help of organics coking and intermediate alumina layer could obtain a better zeolite encapsulated AC particle. An important discovery was zeolite membrane fully covered AC particle could be prepared on the surface of boehmite gel/alumina coated AC particles, even no seeds deposited.
     Continuous and dense ZSM-5membranes encapsulated AC particles (AC@ZSM-5) were obtained by using intermediate boehmite gel layer with dynamic hydrothermal treatment. No powder mixed with final products was observed. Zeta potential tests indicated that there were more TPA-silicate precursors exist on the surface of boehmite gel coated AC (AC/Gel) than that on AC. In order to study the growth of membrane, a series of samples under different hydrothermal durations were synthesized and then examined with SEM. Results show that zeolite crystals nucleate at the support/solution interface rather than in solution with the help of the intermediate layer. Optimum conditions for synthesis of AC@ZSM-5were identified through synthesis and characterization of these core-shell structured particles prepared with varying the mass ratio of gel to AC and the times of coating.
     Template removal process of as-synthesized AC@ZSM-5was investigated. Serious cracking and peelings occurred during calcinations. Calcined tests indicated some cracks of membrane shell appeared with the temperatures in the range of200~250℃. By coating a secondary beohmite gel layer onto AC@ZSM-5, crack free samples were obtained. Combined the thermal gravity analyses (TG) with the temperature-programmed desorption/mass spectrum (TPD/MS) techniques, it was indicated that template contained in AC core and membrane shell decomposed in different way. For as-synthesized AC@ZSM-5, AC particles are wrapped by a compact membrane shells. As the temperatures increase, the template adsorbed in AC pyrolyzed first and the decomposed products like tripropylamine would accumulate in AC core. Subsequently, the inner pressure of the composite is strong enough to break through the membrane shell. An additional outer gel layer could increase the strength of the zeolite shell significantly and made crack free after calcination.1,3,5-Triisopropylbenzene (T/PB) adsorption tests suggested that defects like inter-crystalline gaps exist in shell membrane due to the shrink of crystals after template removal. Part of defects could be modified by using tetraethylorthosilicate (TEOS) or template-free secondary growth.
     In order to test the potential use of core-shell structured AC@ZSM-5in Fischer-Tropsch synthesis, the active metals of cobalt and zirconium were introduced by incipient impregnating AC particles with Co(NO3)2-6H2O and solution. The obtained particles were denoted as CoZr/AC. Following the membrane synthesis using the intermediate layer as mentioned previously, the particles, named as CoZr/AC@ZSM-5, were obtained. For comparison, ZSM-5powders with the same Si/Al atomic ratio as the membrane shell were shaped to20~40mesh and used to mix with the CoZr/AC catalysts. The weight ratio of ZSM-5to CoZr/AC was1:10, which was identical with the mass ratio of membrane contained in CoZr/AC@ZSM-5. The FTS results of bare CoZr/AC, mixed CoZr/AC-ZSM-5and encapsuled CoZr/AC@ZSM-5were summarized. On the basis of the reaction results, the effects of the zeolite membrane shell on the reaction were illustrated.
引文
[1]于世涛,刘福胜.固体酸与精细化工[M].化学工业出版社,2006.
    [2]高滋.沸石催化与分离技术[M].北京:中国石化出版社,2009.
    [3]Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis [J]. Chem Rev,2012,112(2):1196-231.
    [4]Caruso F. Nanoengineering of particle surfaces [J]. Adv Mater,2001,13(1):11-22.
    [5]Chen M S, Kumar D, Yi C W, et al. The promotional effect of gold in catalysis by palladium-gold [J]. Science,2005.310(5746):291-3.
    [6]Cao A, Lu R, Veser G. Stabilizing metal nanoparticles for heterogeneous catalysis [J]. PCCP,2010,12(41):13499-510.
    [7]Sanchez J, Tsotsis T T, Theodore T. Catalytic membranes and catalytic membrane reactors [M]. VCH Verlagsgesellschaft Mbh,2002.
    [8]Coronas J, Santamaria J. State-of-the-art in zeolite membrane reactors [J]. Top Catal,2004,29(1-2):29-44.
    [9]Liu J, Qiao S Z, Chen J S, et al. Yolk/shell nanoparticles:new platforms for nanoreactors, drug delivery and lithium-ion batteries [J]. Chem Commun,2011, 47(47):12578-91.
    [10]Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles:classes, properties, synthesis mechanisms, characterization, and applications [J]. Chemical Reviews-Columbus,2012,112(4):2373.
    [11]Liz-Marzan L M, Giersig M, Mulvaney P. Synthesis of nanosized gold-silica core-shell particles [J]. Langmuir,1996,12(18):4329-35.
    [12]Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nature Materials, 2009,8(2):126-31.
    [13]Cargnello M, Ja e n J J D, Garrido J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3 [J]. Science,2012,337(6095):713-7.
    [14]Yin H, Ma Z, Chi M, et al. Heterostructured catalysts prepared by dispersing Au@Fe2O3 core-shell structures on supports and their performance in CO oxidation [J]. Catal Today,2011,160(1):87-95.
    [15]Yang Y, Liu X, Li X, et al. A yolk-shell nanoreactor with a basic core and an acidic shell for cascade reactions [J]. Angew Chem Int Ed,2012,51(36):9164-8.
    [16]Lin C H, Liu X Y, Wu S H, et al. Corking and uncorking a catalytic yolk-shell nanoreactor:Stable gold catalyst in hollow silica nanosphere [J]. J Phys Chem C, 2011,2(23):2984-8.
    [17]Ikeda S, Ishino S, Harada T, et al. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst [J]. Angew Chem,2006,118(42):7221-4.
    [18]Zhang L, Qiao S, Jin Y, et al. Magnetic hollow spheres of periodic mesoporous organosilica and Fe3O4 nanocrystals:Fabrication and structure control [J]. Adv Mater,2008,20(4):805-9.
    [19]金炜阳,程党国,陈丰秋,等.分子筛膜包覆型催化剂的制备和应用[J].化学进展2011,10(23):2021-30
    [20]Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998,36(3):159-75.
    [21]Li X G, Zhang Y, Meng M, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde [J]. J Membr Sci,2010,347(1-2):220-7.
    [22]Sun B, Qiao M, Fan K, et al. Fischer-Tropsch synthesis over molecular sieve supported catalysts [J]. ChemCatChem,2011,3(3):542-50.
    [23]He J J, Liu Z L, Yoneyama Y, et al. Multiple-functional capsule catalysts:A tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas [J]. Chem-Eur J,2006,12(32):8296-304.
    [24]Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction [J]. Angew Chem Int Ed, 2008,47(2):353-6.
    [25]王涛.活性炭负载Co基催化剂及其F-T合成反应的研究[D];中国科学院大连化学物理研究所,2006.
    [1]Liu J, Qiao S Z, Chen J S, et al. Yolk/shell nanoparticles:new platforms for nanoreactors, drug delivery and lithium-ion batteries [J]. Chem Commun,2011, 47(47):12578-91.
    [2]Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles:classes, properties, synthesis mechanisms, characterization, and applications [J]. Chemical Reviews-Columbus,2012,112(4):2373.
    [3]Jankiewicz B J, Jamiola D, Choma J, et al. Silica-metal core-shell nanostructures [J]. Adv Colloid Interface Sci,2012,170(1-2):28-47.
    [4]Sanles-Sobrido M, Perez-Lorenzo M, Rodriguez-Gonzalez B, et al. Highly active nanoreactors:Nanomaterial encapsulation based on confined catalysis [J]. Angew Chem Int Ed,2012,51(16):3877-82.
    [5]Cao A, Lu R, Veser G. Stabilizing metal nanoparticles for heterogeneous catalysis [J]. PCCP,2010,12(41):13499-510.
    [6]Zhang Q, Lee I, Ge J, et al. Surface-protected etching of mesoporous oxide shells for the stabilization of metal nanocatalysts [J]. Adv Funct Mater,2010,20(14): 2201-14.
    [7]Joo S H, Park J Y, Tsung C K, et al. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions [J]. Nature Materials, 2009,8(2):126-31.
    [8]Forman A J, Park J N, Tang W, et al. Silica-encapsulated Pd nanoparticles as a regenerable and sintering-resistant catalyst [J]. ChemCatChem,2010,2(10): 1318-24.
    [9]Arnal P M, Comotti M, Schuth F. High-temperature-stable catalysts by hollow sphere encapsulation [J]. Angew Chem Int Ed,2006,45(48):8404-7.
    [10]Mitsudome T, Mikami Y, Matoba M, et al. Design of a silver-cerium dioxide core-shell nanocomposite catalyst for chemoselective reduction reactions [J]. Angew Chem Int Ed,2012,51(1):136-9.
    [11]Farrauto R J, Hobson M, Kennelly T, et al. Catalytic chemistry of supported palladium for combustion of methane [J]. Appl Catal A:Gen,1992,81(2): 227-37.
    [12]Cargnello M, Jaen J J D, Garrido J C H, et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3 [J]. Science,2012,337(6095):713-7.
    [13]Lin C H, Liu X Y, Wu S H, et al. Corking and uncorking a catalytic yolk-shell nanoreactor:Stable gold catalyst in hollow silica nanosphere [J]. J Phys Chem C, 2011,2(23):2984-8.
    [14]Li K T, Hsu M H, Wang I. Palladium core-porous silica shell-nanoparticles for catalyzing the hydrogenation of 4-carboxybenzaldehyde [J]. Catal Commun, 2008,9(13):2257-60.
    [15]Ikeda S, Ishino S, Harada T, et al. Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst [J]. Angew Chem,2006,118(42):7221-4.
    [16]Harada T, Ikeda S, Ng Y H, et al. Rhodium nanoparticle encapsulated in a porous carbon shell as an active heterogeneous catalyst for aromatic hydrogenation [J]. Adv Funct Mater,2008,18(15):2190-6.
    [17]Harada T, Ikeda S, Hashimoto F, et al. Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation [J]. Langmuir,2010,26(22):17720-5.
    [18]Wu S H, Tseng C T, Lin Y S, et al. Catalytic nano-rattle of Au@hollow silica: towards a poison-resistant nanocatalyst [J]. J Mater Chem,2011,21(3):789-94.
    [19]Davis M E. Zeolites and molecular-sieves-not just ordinary catalysts [J]. Ind Eng Chem Res,1991,30(8):1675-83.
    [20]Vermeiren W, Gilson J P. Impact of zeolites on the petroleum and petrochemical industry [J]. Top Catal,2009,52(9):1131-61.
    [21]高滋.沸石催化与分离技术[M].北京:中国石化出版社,2009.
    [22]Burggraaf A, Cot L. Fundamentals of inorganic membrane science and technology [M]. Elsevier Science Ltd,1996.
    [23]Suzuki H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof [M]. Google Patents. 1987.
    [24]Mcleary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors:Progress and prospects [J]. Micropor Mesopor Mater,2006, 90(1-3):198-220.
    [25]Caro J, Noack M. Zeolite membranes-Recent developments and progress [J]. Micropor Mesopor Mater,2008,115(3):215-33.
    [26]Bernardo P, Drioli E, Golemme G. Membrane Gas Separation:A Review/State of the Art [J]. Ind Eng Chem Res,2009,48(10):4638-63.
    [27]Walcarius A. Zeolite-modified electrodes in electroanalytical chemistry [J]. Anal Chim Acta,1999,384(1):1-16.
    [28]Li Z J, Johnson M C, Sun M W, et al. Mechanical and dielectric properties of pure-silica-zeolite low-k materials [J]. Angew Chem Int Ed,2006,45(38): 6329-32.
    [29]Mitra A, Wang Z B, Cao T G, et al. Synthesis and corrosion resistance of high-silica zeolite MTW, BEA, and MFI coatings on steel and aluminum [J]. J Electrochem Soc,2002,149(10):B472-B8.
    [30]Fong Y Y, Abdullah A Z, Ahmad A L, et al. Development of functionalized zeolite membrane and its potential role as reactor combined separator for para-xylene production from xylene isomers [J]. Chem Eng J,2008,139(1): 172-93.
    [31]Caro J, Noack M, Kolsch P, et al. Zeolite membranes-state of their development and perspective [J]. Micropor Mesopor Mater,2000,38(1):3-24.
    [32]Jansen J C, Koegler J H, Van Bekkum H, et al. Zeolitic coatings and their potential use in catalysis [J]. Micropor Mesopor Mater,1998,21(4-6):213-26.
    [33]Mizukami F. Application of zeolite membranes, films and coatings [M]/Kiricsi I, Palborbely G, Nagy J B, et al. Porous Materials in Environmentally Friendly Processes.1999:1-12.
    [34]Denexter M J, Jansen J C, Vandegraaf J M, et al. Zeolite-based membranes preparation, performance and prospects [J]. Recent Advances and New Horizons in Zeolite Science and Technology,1996,102:413-54.
    [35]Coronas J, Santamaria J. State-of-the-art in zeolite membrane reactors [J]. Top Catal,2004,29(1-2):29-44.
    [36]Dong J H, Lin Y S, Hu M Z C, et al. Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes [J]. Micropor Mesopor Mater,2000,34(3):241-53.
    [37]Marcano J, Tsotsis T. Catalytic membranes and membrane reactors [M].2002.
    [38]Ciavarella P, Moueddeb H, Miachon S, et al. Experimental study and numerical simulation of hydrogen/isobutane permeation and separation using MFI-zeolite membrane reactor [J]. Catal Today,2000,56(1):253-64.
    [39]Jafar J J, Budd P M, Hughes R. Enhancement of esterification reaction yield using zeolite A vapour permeation membrane [J]. J Membr Sci,2002,199(1): 117-23.
    [40]Nomura M, Bin T, Nakao S. Selective ethanol extraction from fermentation broth using a silicalite membrane [J]. Sep Purif Technol,2002,27(1):59-66.
    [41]Julbe A, Farrusseng D, Jalibert J, et al. Characteristics and performance in the oxidative dehydrogenation of propane of MFI and V-MFI zeolite membranes [J]. Catal Today,2000,56(1):199-209.
    [42]Liu Q L, Wang T H, Guo H C, et al. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation [J]. Micropor Mesopor Mater,2009,120(3):460-6.
    [43]Dominguez-Dominguez S, Berenguer-Murcia A, Morallon E, et al. Zeolite LTA/carbon membranes for air separation [J]. Micropor Mesopor Mater,2008, 115(1-2):51-60.
    [44]Yildirim M H, Curos A R, Motuzas J, et al. Nafion (R)/H-ZSM-5 composite membranes with superior performance for direct methanol fuel cells [J]. Journal of Membrane Science,2009,338(1-2):75-83.
    [45]Kumar P, Ida J, Kim S, et al. Ordered mesoporous membranes:Effects of support and surfactant removal conditions on membrane quality [J]. J Membr Sci,2006, 279(1-2):539-47.
    [46]Hedlund J, Jareman F. Texture of MFI films grown from seeds [J]. Curr Opin Colloid In,2005,10(5-6):226-32.
    [47]Morigami Y, Kondo M, Abe J, et al. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane [J]. Sep Purif Technol, 2001.25(1-3):251-60.
    [48]Urtiaga A, Gorri E, Casado C, et al. Pervaporative dehydration of industrial solvents using a zeolite NaA commercial membrane [J]. Sep Purif Technol,2003, 32(1-3):207-13.
    [49]Wang Z B, Ge Q Q, Shao J, et al. High performance zeolite LTA pervaporation membranes on ceramic hollow fibers by dipcoating-wiping seed deposition [J]. J Am Chem Soc,2009,131(20):6910-1.
    [50]成岳,李健生,王连军,等.ZSM-5分子筛膜的研究进展[J].化学进展,2006,18(2/3):221-9.
    [51]Wang C, Liu X F, Cui R L, et al. Formation and reparation of defects in zeolite membranes [J]. Progress in Chemistry,2008,20(12):1860-7.
    [52]Flanigen E, Bennett J, Grose R, et al. Silicalite, a new hydrophobic crystalline silica molecular sieve [J]. Nature,1978,271:512-6.
    [53]Auerbach S M, Carrado K A, Dutta P K. Handbook of zeolite science and technology [M]. CRC,2003.
    [54]Li X G, Zhang Y, Meng M, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde [J]. J Membr Sci,2010,347(1-2):220-7.
    [55]Mosca A, Hedlund J, Webley P A, et al. Structured zeolite NaX coatings on ceramic cordierite monolith supports for PSA applications [J]. Micropor Mesopor Mater,2010,130(1-3):38-48.
    [56]Yan Y S, Davis M E, Gavalas G R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment [J]. J Membr Sci,1997,123(1): 95-103.
    [57]Jeong H K, Krohn J, Sujaoti K, et al. Oriented molecular sieve membranes by heteroepitaxial growth [J]. J Am Chem Soc,2002,124(44):12966-8.
    [58]Okubo T, Wakihara T, Plevert J, et al. Heteroepitaxial growth of a zeolite [J]. Angew Chem Int Ed,2001,40(6):1069-71.
    [59]Wakihara T, Yamakita S, Iezumi K, et al. Heteroepitaxial growth of a zeolite film with a patterned surface-texture [J]. J Am Chem Soc,2003,125(41):12388-9.
    [60]Yonkeu A L, Buschmann V, Miehe G, et al. Structural characterization of a new "core-shell" zeolite overgrowth system:faujasite on micro sized EMT-crystals [J]. Cryst Eng,2001,4(2-3):253-67.
    [61]Mintova S, Hedlund J, Valtchev V, et al. ZSM-5 films prepared from template free precursors [J]. J Mater Chem,1998,8(10):2217-21.
    [62]Pan M, Lin Y S. Template-free secondary growth synthesis of MFI type zeolite membranes [J]. Micropor Mesopor Mater,2001,43(3):319-27.
    [63]Khan E A, Hu E, Lai Z. Preparation of metal oxide/zeolite core-shell nanostructures [J]. Micropor Mesopor Mater,2009,118(1-3):210-7.
    [64]Lai Z P, Khan E A, Hu E P. Preparation of metal oxide/zeolite core-shell nanostructures [J]. Micropor Mesopor Mater,2009,118(1-3):210-7.
    [65]Collier P, Golunski S, Malde C, et al. Active-site coating for molecular discrimination in heterogeneous catalysis [J]. J Am Chem Soc,2003,125(41): 12414-5.
    [66]Devi R N, Meunier F C, Le Goaziou T, et al. Modulating the selectivity for CO and butane oxidation over heterogeneous catalysis through amorphous catalyst coatings [J]. J Phys Chem C,2008.112(29):10968-75.
    [67]Dong A G, Wang Y J, Wang D J, et al. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors [J]. Micropor Mesopor Mater,2003,64(1-3):69-81.
    [68]Berenguer-Murcia, Morallon E, Cazorla-Amoros D, et al. Preparation of silicalite-1 layers on Pt-coated carbon materials:a possible electrochemical approach towards membrane reactors [J]. Micropor Mesopor Mater,2005, 78(2-3):159-67.
    [69]Bouizi Y, Rouleau L, Valtchev V P. Factors controlling the formation of core-shell zeolite-zeolite composites [J]. Chem Mater,2006,18(20):4959-66.
    [70]Matsukata M, Ogura M, Osaki T, et al. Conversion of dry gel to microporous crystals in gas phase [J]. Top Catal,1999,9(1):77-92.
    [71]Wee L H, Tosheva L, Itani L, et al. Steam-assisted synthesis of zeolite films from spin-coated zeolite precursor coatings [J]. J Mater Chem,2008,18(30):3563-7.
    [72]Chang C Y, Tsai W T, Lee H C. Desorption kinetics of N.N-dimethylformamide vapor from granular activated carbon and hydrophobic zeolite [J]. Sep Sci Technol,1996,31(12):1675-86.
    [73]Alfaro S, Arruebo M, Coronas J, et al. Preparation of MFI type tubular membranes by steam-assisted crystallization [J]. Micropor Mesopor Mater,2001, 50(2-3):195-200.
    [74]Matsufuji T, Nishiyama N, Ueyama K, et al. Permeation characteristics of butane isomers through MFI-type zeolitic membranes [J]. Catal Today,2000,56(1-3): 265-73.
    [75]Okada K, Kameshima Y, Madhusoodana C D, et al. Preparation of zeolite-coated cordierite honeycombs prepared by an in situ crystallization method [J]. Sci Technol Adv Mat,2004,5(4):479-84.
    [76]Dong A, Wang Y, Tang Y, et al. Hollow zeolite capsules:a novel approach for fabrication and guest encapsulation [J]. Chem Mater,2002,14(8):3217-9.
    [77]Shi J, Ren N, Zhang Y H, et al. Studies on formation of hollow silicalite-1 microcapsules [J]. Micropor Mesopor Mater,2010,132(1-2):181-7.
    [78]Dong A, Wang Y, Tang Y, et al. Hydrothermal conversion of solid silica beads to hollow silicalite-1 sphere [J]. Chem Lett,2003,32(9):790-1.
    [79]Li Y S, Yang W S. Microwave synthesis of zeolite membranes:A review [J]. J Membr Sci,2008,316(1-2):3-17.
    [80]Wang L, Xu Y P, Wei Y, et al. Structure-directing role of amines in the ionothermal synthesis [J]. J Am Chem Soc,2006,128(23):7432-3.
    [81]Deng Y H, Cai Y, Sun Z K, et al. Multifunctional mesoporous composite microspheres with well-designed nanostructure:A highly integrated catalyst system [J]. J Am Chem Soc,2010,132(24):8466-73.
    [82]Zou X Q, Wong K L, Thomas S, et al. Platinum clusters confined in FAU-LTA hierarchical porous composite with a core-shell structure [J]. Catal Today,2011, 168(1):140-6.
    [83]Wang Z Y, Wan W, Sun J L, et al. Epitaxial growth of core-shell zeolite X-A composites [J]. Crystengcomm,2012,14(6):2204-12.
    [84]Bouizi Y, Diaz I, Rouleau L, et al. Core-shell zeolite microcomposites [J]. Adv Funct Mater,2005,15(12):1955-60.
    [85]Lai Z, Tsapatsis M, Nicolich J. Siliceous ZSM-5 membranes by secondary growth of b-oriented seed layers [J]. Adv Funct Mater,2004,14(7):716-29.
    [86]Bouizi Y, Rouleau L, Valtchev V P. Bi-phase MOR/MFI-type zeolite core-shell composite [J]. Micropor Mesopor Mater,2006,91(1-3):70-7.
    [87]Miyamoto M, Kamei T, Nishiyama N, et al. Single crystals of ZSM-5/silicalite composites [J]. Adv Mater,2005.17(16):1985-8.
    [88]Van Vu D, Miyamoto M, Nishiyama N, et al. Catalytic activities and structures of silicalite-1/H-ZSM-5 zeolite composites [J]. Micropor Mesopor Mater,2008, 115(1-2):106-12.
    [89]Van Vu D, Miyamoto M, Nishiyama N, et al. Selective formation of para-xylene over H-ZSM-5 coated with polycrystalline silicalite crystals [J]. J Catal,2006, 243(2):389-94.
    [90]Van Vu D, Miyamoto M, Nishiyama N, et al. Morphology control of Silicalite/HZSM-5 composite catalysts for the formation of para-Xylene [J]. Catal Lett,2009,127(3):233-8.
    [91]Chen D M, Wang J, Ren X Q, et al. Silicalite-1 shell synthesized onto cylinder-shaped ZSM-5 extrudate for disproportionation of toluene into para-xylene [J]. Catal Lett,2010,136(1-2):65-70.
    [92]Teng H, Wang J, Chen D, et al. Silicalite-1 membrane on millimeter-sized HZSM-5 zeolite extrudates:Controllable synthesis and catalytic behavior in toluene disproportionation [J]. J Membr Sci,2011,381(1-2):197-203
    [93]Ji Y J, Zhang B, Xu L, et al. Core/shell-structured A1-MWW@B-MWW zeolites for shape-selective toluene disproportionation to para-xylene [J]. J Catal,2011, 283(2):168-77.
    [94]Qian X F, Du J M, Li B, et al. Controllable fabrication of uniform core-shell structured zeolite@SBA-15 composites [J]. Chemical Science,2011,2(10): 2006-16.
    [95]Parida S K, Dash S, Patel S, et al. Adsorption of organic molecules on silica surface [J]. Adv Colloid Interface Sci,2006,121(1-3):77-110.
    [96]Melero J A, Van Grieken R, Morales G. Advances in the synthesis and catalytic applications of organosulfonic-functionalized mesostructured materials [J]. Chem Rev,2006,106(9):3790-812.
    [97]Fryxell G E. The synthesis of functional mesoporous materials [J]. Inorg Chem Commun,2006,9(11):1141-50.
    [98]He J J, Yoneyama Y, Xu B L, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins [J]. Langmuir,2005,21(5): 1699-702.
    [99]Yang G H, He J J, Zhang Y, et al. Design and modification of zeolite capsule catalyst, a confined reaction field, and its application in one-step isoparaffin synthesis from syngas [J]. Energy & Fuels,2008,22(3):1463-8.
    [100]Yang G H, Tan Y S, Han Y Z, et al. Increasing the shell thickness by controlling the core size of zeolite capsule catalyst:Application in iso-paraffin direct synthesis [J]. Catal Commun,2008,9(15):2520-4.
    [101]Ren N, Yang Y H, Zhang Y H, et al. Heck coupling in zeolitic microcapsular reactor:A test for encaged quasi-homogeneous catalysis [J]. J Catal,2007, 246(1):215-22.
    [102]Ren N, Yang Y H, Shen J, et al. Novel, efficient hollow zeolitically microcapsulized noble metal catalysts [J]. J Catal,2007,251(1):182-8.
    [103]Shi J, Li X, Wang Q R, et al. Platinum-encapsulated zeolitically microcapsular catalyst for one-pot dynamic kinetic resolution of phenylethylamine [J]. J Catal, 2012,291:87-94.
    [104]Shi J, Chen L F, Ren N, et al. Zeolitic microcapsule with encapsulated platinum nanoparticles for one-pot tandem reaction of alcohol to hydrazone [J]. Chem Commun,2012,48(68):8583-5.
    [105]Yang G, Wang D, Yoneyama Y, et al. Facile synthesis of H-type zeolite shell on a silica substrate for tandem catalysis [J]. Chem Commun,2012,48:1263-5
    [106]史泰尔斯A.B.催化剂载体与负载型催化剂[M].北京:中国石化出版社,1992.
    [107]Zhong Y J, Chen L, Luo M F, et al. Fabrication of zeolite-4A membranes on a catalyst particle level [J]. Chem Commun,2006,27:2911-2.
    [108]Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction [J]. Angew Chem Int Ed, 2008,47(2):353-6.
    [109]Li X G, He J J, Meng M, et al. One-step synthesis of H-beta zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity [J]. J Catal,2009, 265(1):26-34.
    [110]Zhou J L, Zhang X F, Zhang J, et al. Preparation of alkali-resistant, Sil-1 encapsulated nickel catalysts for direct internal reforming-molten carbonate fuel cell [J]. Catal Commun,2009,10(14):1804-7.
    [111]Yang G H, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis [J]. J Am Chem Soc,2010,132(23):8129-36.
    [112]郏其庚,罗启云,郑国炉.活性炭的应用[M].上海:华东理工大学出版社,2002.
    [113]Berl E. Formation and properties of activated carbon. [J]. T Faraday Soc,1938, 34(2):1040-52.
    [114]刘振宇,郑经堂,王茂章,等.多孔炭的纳米结构及其解析[J].化学进展,2001,13(1):10-8.
    [115]郑经堂,张引枝,王茂章.多孔炭材料的研究进展及前景[J].化学进展,1996,8(03):241-50.
    [116]Yang R T, Wiley J. Adsorbents:fundamentals and applications [M].2003.
    [117]Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998,36(3):159-75.
    [118]Auer E, Freund A, Pietsch J, et al. Carbons as supports for industrial precious metal catalysts [J]. Appl Catal A-Gen,1998,173(2):259-71.
    [119]Radovic L R, Walker P L, Jenkins R G. Importance of carbon active sites in the gasification of coal chars [J]. Fuel,1983,62(7):849-56.
    [120]Radovic L. Chemistry and physics of carbon [M]. CRC,2004.
    [121]Marsh H, Rodriguez-Reinoso F. Activated Carbon [M]. Elsevier Science & Technology Books.2006:542.
    [122]Moreno-Castilla C, Ferro-Garcia M A, Joly J P, et al. Activated carbon surface modifications by nitric-acid, hydrogen-peroxide, and ammonium peroxydisulfate treatments [J]. Langmuir,1995,11(11):4386-92.
    [123]Calvino-Casilda V, Lopez-Peinado A J, Duran-Valle C J, et al. Last Decade of Research on Activated Carbons as Catalytic Support in Chemical Processes [J]. Catal Rev,2010,52(3):325-80.
    [124]Stein A, Wang Z Y, Fierke M A. Functionalization of porous carbon materials with designed pore architecture [J]. Adv Mater,2009,21(3):265-93.
    [125]Boehm H P. Surface oxides on carbon and their analysis:a critical assessment [J]. Carbon,2002,40(2):145-9.
    [126]Boehm H P. Chemical identification of surface groups [J]. Advances in catalysis, 1966,16:179-274.
    [127]Derbyshire F J, Debeer V H J, Abotsi G M K, et al. The influence of surface functionality on the activity of carbon-supported catalysts [J]. Appl Catal,1986, 27(1):117-31.
    [128]Chen J P, Wu S N, Chong K H. Surface modification of a granular activated carbon by citric acid for enhancement of copper adsorption [J]. Carbon,2003, 41(10):1979-86.
    [129]Ozaki A, Aika K, Hori H. A new catalyst system for ammonia synthesis [J]. Bull Chem Soc Jpn,1971,44:3216.
    [130]炭素材料学会编(日),高尚愚,陈维译,et al.活性炭基础与应用[M].北京:中国林业出版社,1984.
    [131]Marsh H, Heintz E A, Rodriguez-Reinoso F. Introduction to carbon technologies [M]. Universidad de Alicante,1997.
    [132]Serp P, Figueiredo J L. Carbon materials for catalysis [M]. Wiley Online Library, 2009.
    [133]Lu C, Wey M, Chen L. Application of polyol process to prepare AC-supported nanocatalyst for VOC oxidation [J]. Appl Catal A:Gen,2007,325(1):163-74.
    [134]Wu J, Lin Z, Tsai F, et al. Low-temperature complete oxidation of BTX on Pt/activated carbon catalysts [J]. Catal Today,2000,63(2-4):419-26.
    [135]Liou R M, Chen S H. CuO impregnated activated carbon for catalytic wet peroxide oxidation of phenol [J]. J Hazard Mater,2009,172(1):498-506.
    [136]Cordero T, Rodriguez-Mirasol J, Bedia J, et al. Activated carbon as catalyst in wet oxidation of phenol:Effect of the oxidation reaction on the catalyst properties and stability [J]. Appl Catal B Environ,2008,81(1-2):122-31.
    [137]Carrettin S, Mcmorn P, Johnston P, et al. Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide [J]. Chem Commun,2002,2002(7):696-7.
    [138]Matos J, Laine J. Ethylene conversion on activated carbon-supported NiMo catalysts:effect of the support [J]. Appl Catal A:Gen,2003,241(1-2):25-38.
    [139]Cabiac A, Delahay G, Durand R, et al. The influence of textural and structural properties of Pd/carbon on the hydrogenation of cis, trans, trans-1,5, 9-cyclododecatriene [J]. Appl Catal A:Gen,2007,318:17-21.
    [140]Aksoylu A, Faria J, Pereira M, et al. Highly dispersed activated carbon supported platinum catalysts prepared by OMCVD:a comparison with wet impregnated catalysts [J]. Appl Catal A:Gen,2003,243(2):357-65.
    [141]Diaz E, Mohedano A, Calvo L, et al. Hydrogenation of phenol in aqueous phase with palladium on activated carbon catalysts [J]. Chem Eng J,2007,131(1-3): 65-71.
    [142]Silvestre-Albero J, Serrano-Ruiz J, Sepulveda-Escribano A, et al. Modification of the catalytic behaviour of platinum by zinc in crotonaldehyde hydrogenation and iso-butane dehydrogenation [J]. Appl Catal A:Gen,2005,292:244-51.
    [143]Dandekar A, Baker R, Vannice M. Carbon-supported copper catalysts:II. crotonaldehyde hydrogenation [J]. J Catal,1999,184(2):421-39.
    [144]Makkee M, Wiersma A, Van De Sandt E, et al. Development of a palladium on activated carbon for a conceptual process in the selective hydrogenolysis of CC12F2 (CFC-12) into CH2F2 (HFC-32) [J]. Catal Today,2000,55(1-2):125-37.
    [145]Li Puma G, Bono A, Krishnaiah D, et al. Preparation of titanium dioxide photocatalyst loaded onto activated carbon support using chemical vapor deposition:A review paper [J]. J Hazard Mater,2008,157(2-3):209-19.
    [146]Bashkova S, Bandosz T. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon [J]. J Colloid Interface Sci,2009,333(1):97-103.
    [147]Wang T, Ding Y, Lv Y, et al. Influence of lanthanum on the performance of Zr-Co/activated carbon catalysts in Fischer-Tropsch synthesis [J]. J Nat Gas Chem,2008,17(2):153-8.
    [148]Storch H. Review of development of processes for synthesis of liquid fuels by hydrogenation of carbon monoxide.[Review, work in Germany and USA from 1938 to 1948; Synol, OXO, and isoparaffin synthesis; deposition of C on Fe catalysts] [J]. Chem Eng Prog,1948,44(6):
    [149]Eilers J, Posthuma S, Sie S. The shell middle distillate synthesis process (SMDS) [J]. Catal Lett,1990,7(1):253-69.
    [150]陈建刚,相宏伟,李永旺,等.费托法合成液体燃料关键技术研究进展[J].化工学报,2003,54(4):516-23.
    [151]寇元.合成气催化转化的绿色化学[J].催化学报,2008,29(9):817-22.
    [152]Khodakov A Y, Chu W, Fongarland P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chem Rev,2007,107(5):1692-744.
    [153]代小平,余长春,沈师孔.费-托合成制液态烃研究进展[J].化学进展,2000,12(3):268-81.
    [154]Ma W P, Ding Y J, Lin L W. Fischer-Tropsch synthesis over activated-carbon-supported cobalt catalysts:Effect of Co loading and promoters on catalyst performance [J]. Ind Eng Chem Res,2004,43(10):2391-8.
    [155]Sun B, Qiao M, Fan K, et al. Fischer-Tropsch synthesis over molecular sieve supported catalysts [J]. ChemCatChem,2011,3(3):542-50.
    [156]Iglesia E, Reyes S C, Soled L. Reaction-transport selectivity models and the design of Fischer-Tropsch catalysts [J]. Chemical Industries-New York-Marcel Dekker,1993,199.
    [157]Kuipers E, Scheper C, Wilson J, et al. Non-ASF product distributions due to secondary reactions during Fischer-Tropsch synthesis [J]. J Catal,1996,158(1): 288-300.
    [158]Reuel R, Bartholomew C. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt [J]. J Catal,1984,85(1): 78-88.
    [159]邵燕,姚楠,卢春山,等.用于选择性合成清洁液体燃料的钻基F-T合成催化剂[J].化学进展,2010,22(10):1911-20.
    [160]Li Y, Wang T, Wu C, et al. Gasoline-range hydrocarbon synthesis over cobalt-based Fischer-Tropsch catalysts supported on SiO2/HZSM-5 [J]. Energy & fuels,2008,22(3):1897-901.
    [161]Jothimurugesan K, Gangwal S. Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer-Tropsch synthesis [J]. Ind Eng Chem Res,1998, 37(4):1181-8.
    [162]Martinez A, Rollan J, Arribas M A, et al. A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer-Tropsch catalysts [J]. J Catal,2007,249(2):162-73.
    [163]Bessell S. Support effects in cobalt-based fischer-tropsch catalysis [J]. Appl Catal A:Gen,1993,96(2):253-68.
    [164]Huang X, Hou B, Wang J, et al. CoZr/H-ZSM-5 hybrid catalysts for synthesis of gasoline-range isoparaffins from syngas [J]. Appl Catal A:Gen,2011,
    [165]Bao J, Yang G, Okada C, et al. H-type zeolite coated iron-based multiple-functional catalyst for direct synthesis of middle isoparaffins from syngas [J]. Appl Catal A:Gen,2011,
    [166]Khodakov A Y, Griboval-Constant A, Bechara R, et al. Pore size effects in Fischer Tropsch synthesis over cobalt-supported mesoporous silicas [J]. J Catal, 2002,206(2):230-41.
    [167]Martinez A, Lopez C, Marquez F, et al. Fischer-Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts:the influence of metal loading, cobalt precursor, and promoters [J]. J Catal,2003,220(2):486-99.
    [168]Rohde M P, Unruh D, Schaub G. Membrane application in Fischer-Tropsch synthesis reactors-Overview of concepts [J]. Catal Today,2005,106(1-4): 143-8.
    [1]Katsuki H, Furuta S, Watari T, et al. ZSM-5 zeolite/porous carbon composite: Conventional-and microwave-hydrothermal synthesis from carbonized rice husk [J]. Micropor Mesopor Mater,2005,86(1-3):145-51.
    [2]Katsuki H, Komarneni S. Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk [J]. J Solid State Chem,2009,182(7): 1749-53.
    [3]Ma J H, Tan J D, Du X W, et al. Effects of preparation parameters on the textural features of a granular zeolite/activated carbon composite material synthesized from elutrilithe and pitch [J]. Micropor Mesopor Mater,2010,132(3):458-63.
    [4]Onyestyak G. Pinewood char templated mordenite/carbon honeycomb composite [J]. New J Chem,2006,30(7):1058-64.
    [5]De La Iglesia, Sanchez J L, Coronas J. Hierarchical silicalite-1 structures based on pyrolized materials [J]. Mater Lett,2011,65(19-20):3124-7.
    [6]Liu Q L, Wang T H, Guo H C, et al. Controlled synthesis of high performance carbon/zeolite T composite membrane materials for gas separation [J]. Micropor Mesopor Mater,2009,120(3):460-6.
    [7]Liu Q, Wang T, Liang C, et al. Zeolite married to carbon:A new family of membrane materials with excellent gas separation performance [J]. Chem Mater, 2006,18(26):6283-8.
    [8]Smith S P J, Linkov V M, Sanderson R D, et al. Preparation of hollow-fibre composite carbon-zeolite membranes [J]. Microporous Mater,1995,4(5):385-90.
    [9]Vandervaart R, Bosch H, Keizer K, et al. Preparation of an MFI zeolite coating on activated carbon [J]. Microporous Mater,1997,9(3-4):203-7.
    [10]Titiloye J, Hussain I. Synthesis and characterization of silicalite-1/carbon-graphite membranes [J]. J Colloid Interface Sci,2008,318: 50-8.
    [11]Garcia-Martinez J. Cazorla-Amoros D, Linares-Solano A, et al. Synthesis and characterisation of MFI-type zeolites supported on carbon materials [J]. Micropor Mesopor Mater,2001,42(2-3):255-68.
    [12]Berenguer-Murcia A, Garcia-Martinez J, Cazorla-Amoros D, et al. Silicalite-1 membranes supported on porous carbon discs [J]. Micropor Mesopor Mater, 2003,59(2-3):147-59.
    [13]Zhang X F, Wang T H, Liu H, et al. Preparation of composite carbon-zeolite membranes using a simple method [J]. J Mater Sci,2004.39(16-17):5603-5.
    [14]Berenguer-Murcia. Morallon E, Cazorla-Amoros D, et al. Preparation of silicalite-1 layers on Pt-coated carbon materials:a possible electrochemical approach towards membrane reactors [J]. Micropor Mesopor Mater,2005, 78(2-3):159-67.
    [15]Li X G, Zhang Y, Meng M, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde [J]. J Membr Sci,2010,347(1-2):220-7.
    [16]Yoldas B E. Alumina gels that form porous transparent Al2O3 [J]. J Mater Sci, 1975.10:1856-60.
    [17]Chau J L H, Tellez C, Yeung K L, et al. The role of surface chemistry in zeolite membrane formation [J]. J Membr Sci,2000,164(1-2):257-75.
    [18]Cai R, Liu Y, Gu S, et al. Ambient pressure dry-gel conversion method for zeolite mfi synthesis using ionic liquid and microwave heating [J]. J Am Chem Soc, 2010:12776-7
    [1]Beers A E W, Nijhuis T, Aalders N, et al. BEA coating of structured supports-performance in acylation [J]. Appl Catal A:Gen,2003,243(2):237-50.
    [2]Lai R, Yan Y S, Gavalas G R. Growth of ZSM-5 films on alumina and other surfaces [J]. Micropor Mesopor Mater,2000,37(1-2):9-19.
    [3]Xu X C, Yang W S, Liu J, et al. Synthesis of NaA zeolite membranes from clear solution [J]. Micropor Mesopor Mater,2001,43(3):299-311.
    [4]Chen G X, Bedi R S, Yan Y S, et al. Initial colloid deposition on bare and zeolite-coated stainless steel and aluminum:Influence of surface roughness [J]. Langmuir,2010,26(15):12605-13.
    [5]Chau J L H, Tellez C, Yeung K L, et al. The role of surface chemistry in zeolite membrane formation [J]. J Membr Sci,2000,164(1-2):257-75.
    [6]Bueno-Lopez A, Lozano-Castello D, Such-Basanez I, et al. Preparation of beta-coated cordierite honeycomb monoliths by in situ synthesis-utilisation as Pt support for NOx abatement in diesel exhaust [J]. Appl Catal B Environ,2005, 58(1-2):1-7.
    [7]Naskar M K, Kundu D, Chatterjee M. Influence of PVP buffer layer on the formation of NaA zeolite membrane [J]. J Porous Mater,2011,18(3):319-27.
    [8]Das N. Effect of cellulose buffer layer on synthesis and gas permeation properties of NaA zeolite membrane [J]. Ceram Int,2010.36(4):1193-9.
    [9]Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation [J]. Science,2003,300(5618):456.
    [10]Zhang F Z, Fuji M, Takahashi M. Effect of mesoporous silica buffer layer on the orientation of MFI zeolite membranes [J]. J Am Ceram Soc,2005,88(8):2307-9.
    [11]Roque-Malherbe R M A. Adsorption and diffusion in nanoporous materials [M]. CRC,2007.
    [12]Dandekar A, Baker R T K, Vannice M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and drifts [J]. Carbon,1998.36(12):1821-31.
    [13]Sing K, Everett D, Haul R, et al. IUPAC Recommendations 1984:reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem,1985,57(4): 603-19.
    [14]Zhang F Z, Fuji M, Takahashi M. In situ growth of continuous b-oriented MFI zeolite membranes on porous a-alumina substrates precoated with a mesoporous silica sublayer [J]. Chem Mater,2005,17(5):1167-73.
    [15]Schoeman B. A spectroscopic study of the initial stage in the crystallization of TPA-silicalite-1 from clear solutions [J]. Stud Surf Sci Catal,1997,105:647-54.
    [16]De Moor P P E A, Beelen T P M, Komanschek B U, et al. Imaging the assembly process of the organic-mediated synthesis of a zeolite [J]. Chem-Eur J,1999, 5(7):2083-8.
    [17]De Moor P P E A, Beelen T P M, Van Santen R A. In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI [J]. J Phys Chem B,1999,103(10):1639-50.
    [18]Gualtieri M L, Gualtieri A F, Prudenziati M. Seeded growth of TPA-MFI films using the fluoride route [J]. Micropor Mesopor Mater,2008,111 (1-3):604-11.
    [19]Caro J, Noack M. Zeolite membranes-Recent developments and progress [J]. Micropor Mesopor Mater,2008,115(3):215-33.
    [20]Davis M E. Ordered porous materials for emerging applications [J]. Nature,2002, 417(6891):813-21.
    [1]Nelson P H, Tsapatsis M, Auerbach S M. Modeling permeation through anisotropic zeolite membranes with nanoscopic defects [J]. J Membr Sci,2001, 184(2):245-55.
    [2]Bowen T C, Noble R D, Falconer J L. Fundamentals and applications of pervaporation through zeolite membranes [J]. J Membr Sci,2004,245(1):1-33.
    [3]王聪,刘秀芬,崔瑞利,等.沸石分子筛膜的缺陷及其修复[J].化学进展,2008,20(12):1860-7.
    [4]Lassinantti M, Jareman F, Hedlund J, et al. Preparation and evaluation of thin ZSM-5 membranes synthesized in the absence of organic template molecules [J]. Catal Today,2001,67(1-3):109-19.
    [5]Meng L, Jiang H, Chen R Z, et al. Template-free synthesis of TS-1 zeolite film on tubular mullite support [J]. Appl Surf Sci,2011,257(6):1928-31.
    [6]Gualtieri M L, Gualtieri A F, Hedlund J. The influence of heating rate on template removal in silicalite-1:An in situ HT-XRPD study [J]. Micropor Mesopor Mater. 2006,89(1-3):1-8.
    [7]Jansen J C, Koegler J H, Van Bekkum H, et al. Zeolitic coatings and their potential use in catalysis [J]. Micropor Mesopor Mater,1998,21(4-6):213-26.
    [8]Geus E, Van Bekkum H. Calcination of large MFI-type single crystals, Part 2: Crack formation and thermomechanical properties in view of the preparation of zeolite membranes [J]. Zeolites,1995,15(4):333-41.
    [9]Noack M, Schneider M, Dittmar A, et al. The change of the unit cell dimension of different zeolite types by heating and its influence on supported membrane layers [J]. Micropor Mesopor Mater,2009,117(1-2):10-21.
    [10]Gilbert K H, Baldwin R M, Way J D. The effect of heating rate and gas atmosphere on template decomposition in silicalite-1 [J]. Ind Eng Chem Res, 2001,40(22):4844-9.
    [11]Pachtova O, Kocirik M, Zikanova A, et al. A comparative study of template removal from silicalite-1 crystals in prolytic and oxidizing regimes [J]. Micropor Mesopor Mater,2002,55(3):285-96.
    [12]Gualtieri M L, Anderson C, Jareman F, et al. Crack formation in alpha-alumina supported MFI zeolite membranes studied by in situ high temperature synchrotron powder diffraction [J]. J Membr Sci,2007,290(1-2):95-104.
    [13]Denexter M J, Vanbekkum H, Rijn C J M, et al. Stability of oriented silicalite-1 films in view of zeolite membrane preparation [J]. Zeolites,1997,19(1):13-20.
    [14]Caro J, Noack M, Kolsch P, et al. Zeolite membranes-state of their development and perspective [J]. Micropor Mesopor Mater,2000,38(1):3-24.
    [15]Geus E R, Jansen J C, Vanbekkum H. Calcination of large MFI-type single-crystals, Part 1:Evidence for the occurrence of consecutive growth forms and possible diffusion-barriers arising thereof [J]. Zeolites,1994,14(2):82-8.
    [16]Heng S, Lau P P S, Yeung K. L, et al. Low-temperature ozone treatment for organic template removal from zeolite membrane [J]. J Membr Sci,2004, 243(1-2):69-78.
    [17]Jansen J, Kashchiev D, Erdem-Senatalar A. Preparation of coatings of molecular sieve crystals for catalysis and separation [J]. Stud Surf Sci Catal,1994,85: 215-50.
    [18]Dong J H, Lin Y S, Hu M Z C, et al. Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes [J]. Micropor Mesopor Mater,2000,34(3):241-53.
    [19]Jeong H K, Lai Z P, Tsapatsis M, et al. Strain of MFI crystals in membranes:An in situ synchrotron X-ray study [J]. Micropor Mesopor Mater,2005,84(1-3): 332-7.
    [20]Akhtar F, Ojuva A, Wirawan S K, et al. Hierarchically porous binder-free silicalite-1 discs:a novel support for all-zeolite membranes [J]. J Mater Chem, 2011,21(24):8822-8.
    [21]Yan Y S, Davis M E, Gavalas G R. Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment [J]. J Membr Sci,1997,123(1): 95-103.
    [22]Li X G, Zhang Y, Meng F Z, et al. Hydroformylation of 1-Hexene on Silicalite-1 Zeolite Membrane Coated Pd-Co/AC Catalyst [J]. Top Catal,2010,53(7-10): 608-14.
    [23]Choi J, Jeong H K, Snyder M A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing [J]. Science,2009,325(5940): 590-3.
    [24]Geus E R, Vanbekkum H. Calcination of Large Mfi-Type Single-Crystals.2. Crack Formation and Thermomechanical Properties in View of the Preparation of Zeolite Membranes [J]. Zeolites,1995,15(4):333-41.
    [25]Li X G, Zhang Y, Meng M, et al. Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde [J]. J Membr Sci,2010,347(1-2):220-7.
    [26]Pan M, Lin Y S. Template-free secondary growth synthesis of MFI type zeolite membranes [J]. Micropor Mesopor Mater,2001,43(3):319-27.
    [27]Parker L M, Bibby D M, Patterson J E. Thermal-Decomposition of ZSM-5 and Silicalite Precursors [J]. Zeolites,1984,4(2):168-74.
    [28]Kanezashi M, O'brien J, Lin Y S. Thermal stability improvement of MFI-type zeolite membranes with doped zirconia intermediate layer [J]. Micropor Mesopor Mater,2007,103(1-3):302-8.
    [29]Berenguer-Murcia A, Garcia-Martinez J, Cazorla-Amoros D, et al. Silicalite-1 membranes supported on porous carbon discs [J]. Micropor Mesopor Mater, 2003,59(2-3):147-59.
    [30]Soulard M, Bilger S, Kessler H, et al. Thermoanalytical characterization of MFI-type zeolites prepared either in the presence of OH- or of F- ions [J]. Zeolites,1987,7(5):463-70.
    [31]Choudhary V R, Sansare S D. Thermal-decomposition of crystalline molecular-sieve (C3H7)3N-AlPO4-5 [J]. J Therm Anal,1987,32(3):777-84.
    [32]Gao X T, Yeh C Y, Angevine P. Mechanistic study of organic template removal from ZSM-5 precursors [J]. Micropor Mesopor Mater,2004,70(1-3):27-35.
    [33]Moreno-Castilla C, Ferro-Garcia M A, Joly J P, et al. Activated carbon surface modifications by nitric-acid, hydrogen-peroxide, and ammonium peroxydisulfate treatments [J]. Langmuir,1995,11(11):4386-92.
    [34]Cai R, Liu Y, Gu S, et al. Ambient pressure dry-gel conversion method for zeolite MFI synthesis using ionic liquid and microwave heating [J]. J Am Chem Soc, 2010,132(37):12776-7.
    [35]Wegner K, Dong J H, Lin Y S. Polycrystalline MFI zeolite membranes:xylene pervaporation and its implication on membrane microstructure [J]. J Membr Sci, 1999,158(1-2):17-27.
    [36]De Moor P P E A, Beelen T P M, Van Santen R A. In situ observation of nucleation and crystal growth in zeolite synthesis. A small-angle X-ray scattering investigation on Si-TPA-MFI [J]. The Journal of Physical Chemistry B,1999, 103(10):1639-50.
    [37]De Moor P P E A, Beelen T P M, Komanschek B U, et al. Imaging the assembly process of the organic-mediated synthesis of a zeolite [J]. Chem-Eur J,1999, 5(7):2083-8.
    [1]Barrault J, Guilleminot A, Achard J, et al. Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts [J]. Appl Catal,1986,21(2):307-12.
    [2]Guerrero-Ruiz A, Sepulveda-Escribano A, I. R-R. Carbon monoxide hydrogenation over carbon supported cobalt or ruthenium catalysts. Promoting effects of magnesium, vanadium and cerium oxides [J]. Appl Catal A:Gen,1994, 120(1):71-83.
    [3]Rodriguez-Reinoso F. The role of carbon materials in heterogeneous catalysis [J]. Carbon,1998,36(3):159-75.
    [4]王涛.活性炭负载Co基催化剂及其F-T合成反应的研究[D];中国科学院大连化学物理研究所,2006.
    [5]熊建民.合成气制液体燃料F-T合成Co/AC催化剂的研究[D];中国科学院大连化学物理研究所,2005.
    [6]Moradi G, Basir M, Taeb A, et al. Promotion of Co/SiO2 Fischer-Tropsch catalysts with zirconium [J]. Catal Commun,2003,4(1):27-32.
    [7]王涛,丁云杰,熊建民,等.Zr助剂对Co/AC催化剂催化费-托合成反应性能的影响[J].催化学报,2005,26(3):178-82.
    [8]He J J, Yoneyama Y, Xu B L, et al. Designing a capsule catalyst and its application for direct synthesis of middle isoparaffins [J]. Langmuir,2005,21(5):1699-702.
    [9]Bao J, He J, Zhang Y, et al. A core/shell catalyst produces a spatially confined effect and shape selectivity in a consecutive reaction [J]. Angew Chem Int Ed, 2008,47(2):353-6.
    [10]石玉梅,姚楠,卢春山,等.用于费-托合成的高分散型钻基催化剂[J].化学进展,2009,21(10):2044-52,
    [11]Reuel R C, Bartholomew C H. The stoichiometries of H2 and CO adsorptions on cobalt:Effects of support and preparation [J]. J Catal,1984,85(1):63-77.
    [12]Jothimurugesan K, Gangwal S. Titania-supported bimetallic catalysts combined with HZSM-5 for Fischer-Tropsch synthesis [J]. Ind Eng Chem Res,1998,37(4): 1181-8.
    [13]穆仕芳,尚如静,魏灵朝,等.费托合成钴基催化剂预处理研究进展[J].天然气化工,2011,36(2):46-9.
    [14]Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J]. Appl Catal A:Gen,1997,161(1):59-78.
    [15]Bezemer G L, Bitter J H, Kuipers H P C E, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts [J]. J Am Chem Soc,2006,128(12):3956-64.
    [16]Dandekar A, Baker R T K, Vannice M A. Characterization of activated carbon, graphitized carbon fibers and synthetic diamond powder using TPD and drifts [J]. Carbon,1998,36(12):1821-31.
    [17]Huber G W, Corma A. Synergies between bio-and oil refineries for the production of fuels from biomass [J]. Angew Chem Int Ed,2007,46(38): 7184-201.
    [18]Dong J H, Lin Y S, Liu W. Multicomponent hydrogen/hydrocarbon separation by MFI-type zeolite membranes [J]. AlChE J,2000,46(10):1957-66.
    [19]Moon J H, Bae J H, Bae Y S, et al. Hydrogen separation from reforming gas using organic templating silica/alumina composite membrane [J]. J Membr Sci, 2008,318(1-2):45-55.
    [20]Boudart M, Aldag A, Vannice M. On the slow uptake of hydrogen by platinized carbon [J]. J Catal,1970,18(1):46-51.
    [21]Reuel R, Bartholomew C. Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt [J]. J Catal,1984,85(1): 78-88.
    [22]Lu Y, Lee T. Influence of the feed gas composition on the Fischer-Tropsch synthesis in commercial operations [J]. J Nat Gas Chem,2007,16(4):329-41.
    [23]He J J, Liu Z L, Yoneyama Y, et al. Multiple-functional capsule catalysts:A tailor-made confined reaction environment for the direct synthesis of middle isoparaffins from syngas [J]. Chem-Eur J,2006,12(32):8296-304.
    [24]Newsome D S. The water-gas shift reaction [J]. Cat Rev-Sci Eng,1980,21(2): 275-318.
    [25]Yang G H, Tsubaki N, Shamoto J, et al. Confinement effect and synergistic function of H-ZSM-5/Cu-ZnO-Al2O3 capsule catalyst for one-step controlled synthesis [J]. J Am Chem Soc,2010,132(23):8129-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700