用户名: 密码: 验证码:
一维及二维数字化正电子寿命谱仪的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正电子谱学是一种发展成熟的核物理与核技术检测手段,它在凝聚态物理、材料科学工程、化学、生物科学与工程等领域有着广泛的应用。正电子谱学具有其他材料分析与检测手段所无法比拟的优势和前景,其主要研究手段包括正电子寿命谱仪(PALS)、正电子多普勒展宽谱仪(DBS)、正电子角关联谱仪(ACAR)、慢正电子束(SPB)等实验技术。该方法最大的特点是:1、对凝聚态物质中的纳米尺度缺陷极为灵敏。2、它是一种无损检测手段,不会对检测材料造成损伤。正电子湮没过程的各种参数如寿命、动量、能量和位置的探测方法和技术也在不断地改善,尤其是目前正电子湮没技术逐渐趋向于数字化方式,可以使数据在离线过程中灵活使用,大大提高了后期数据处理的多样化方式。此外正电子湮没产生的各种信息的关联测量技术也发展很快,这种组合测量可以克服原来单一湮没信息给微结构的分析可能带来的不全面因素。在多聚物材料科学中,以电子偶素(Ps)的形成和湮没机制作为检测介孔材料结构特性的方法越来越受到材料研究者的重视,如何准确地获取介孔特性参数已成为研究者主要任务。
     本论文的第一项工作是以研究介孔材料中Ps的形成与湮没机制的探测为目标,采用商用数字化采集设备,研制与搭建了一台数字化的正电子湮没寿命谱仪,并取得如下成果:
     1.首次实现了基于DRS4高速数字采集开发板与掺铈溴化镧闪烁体组合而成的新型数字化正电子寿命谱仪。在该谱仪中,分别使用了脉冲基线甄别法、脉冲幅度甄别法、脉冲面积甄别法与脉冲上升时间甄别法对采集的脉冲信号进行甄别判选。在离线数字化恒比定时过程中,分别使用了线性插值法、拉格朗日插值法、埃尔米特插值法、高斯函数拟合法、三次函数拟合法等多种数字化算法计算脉冲恒比点时间,实现了正电子寿命谱的测试与测量,讨论了提高正电子寿命谱仪时间分辨率的多种方法,大大简化了正电子寿命谱仪的电子学系统组件,实现了正电子寿命谱仪的小型化、简便化与实用化。
     2.为了提高正电子寿命谱的解谱精度与智能化分析过程,我们根据人工神经元网络算法设计了一套前向反馈型网络(BP网络)算法的正电子寿命谱解谱程序。该算法不仅能够省去在常规解析正电子寿命谱中需要预设初始参数的过程,还可以自动识别未知寿命数量与比例分布的正电子寿命谱,这加强了解析正电子寿命谱的智能化过程,其对每一个寿命谱数据都能够给出精确的数值与分布的结果。此外,还研究了神经元网络算法在解正电子寿命谱过程中,网络结构的各个参数对解谱精度的影响。经过不断实验,最终生成了在较广范围内具有良好解谱效果的神经元网络算法。
     本论文的第二项工作是自主研发了一套基于常规液体源的二维正电子寿命谱仪,并取得了以下成果:
     1、在我国首次实现了基于商用数字采集卡的二维数字化正电子寿命幅度关联谱仪。该谱仪可以同时记录湮没事件的寿命与能量信息,通过二维作图,以研究不同湮没能量处的寿命信息与不同湮没寿命处的能量信息。并将该谱仪的时间分辨率提高到226ps、能量分辨率提高到9.6%(511keV),并且比较了不同探测方案对谱仪各项性能的影响。讨论了制约谱仪探测精度与效率的瓶颈,以及相应的解决方法。
     2、使用该谱仪研究了在γ-Al2O3载体中掺杂不同质量比的α-Fe2O3纳米氧化物粉末(0%、16wt%α-Fe2O3/γ-Al2O3、50wt%α-Fe2O3/γ-Al2O3、α-Fe2O3)的Ps信息,主要研究了Ps在多孔材料内部的相互转换问题。并结合使用常规物理检测手段如TEM、XRD以研究混合粉末的结晶度及晶粒尺寸大小,使用XRF以确定混合粉末中Fe元素的相对比例、使用EPR谱仪以探测单位质量材料内的未配对电子浓度。我们使用二维正电子寿命谱仪进行测量,发现当未配对电子浓度不断增加时,在寿命信息中发现样品的第四寿命t4急剧变小,强度14急剧变小,而第三寿命t3与强度13并未发生较大改变;在湮没能谱信息中发现随着未配对电子浓度增加,3γ/2γ的相对比在不断降低。这两方面的信息说明了o-Ps发生3光子湮没的寿命减小,强度降低,并验证了材料内部未配对电子浓度对o-Ps的湮没起着重要的作用。当未配对电子浓度越高,o-Ps发生湮没的概率就会越高,未配对电子促进了o-Ps向p-Ps的转换过程。
     综上,本博士论文的研究工作主要基于对现有正电子谱仪探测技术的研发与探索,并取得了一定的物理成果。
Positron annihilation technique (PAT) is a developed nuclear science and technology methods which are applied in the condensed matter physics, materials science and engineering, chemistry, biology science and engineering etc. It has incomparable advantages and prospects than the other methods. PAT contains positron annihilation lifetime spectroscopy (PALS), Doppler broadening spectroscopy (DBS), Positron angular correlation spectroscopy (ACAR), slow positron beam (SPB) etc. The advantages of this technique includes:First, it has a good sensitivity to the nano-scale defects in condensed matter. Second, it is a non-destructive methods. It doesn't bring any new defects in the material. The methods to detect various parameters of positron annihilation such as:lifetime, momentum, energy and position are constantly improving, especially tends to the digital acquisition system which is flexibility in the use of the offline data processing. This technology progress makes a variety of data processing modes. In addition, various kinds of techniques to measure the related information in positron annihilation developed rapidly. This combination of techniques can overcome conventional single lost information making the micro-structure analysis incomplete. In polymer material science, the detection of the porous material structure properties with postronium(Ps) formation and annihilation mechanisms arouse more and more attention. How to accurately obtain the porous characteristic parameters has become the primary mission.
     The first task of this paper is to study the Ps formation and annihilation mechanisms in the porous material with a digital positron annihilation spectrometer and the following achievements are:
     1. We first successfully developed a new type of digital positron annihilation lifetime spectrometer based on the DRS4evaluation board and cerium-doped lanthanum bromide scintillators. In this study we respectively used the pulse baseline discriminator method, the pulse amplitude discriminator method, the pulse area discriminator method, the pulse rise time discriminator method to discriminate the pulse. Then we separately used the linear interpolation, Lagrange interpolation, Hermite interpolation, Gaussian fitting method, the cubic fitting method etc for the digital constant fraction discrimination. We tested a positron annihilation lifetime and discussed the means to improve the performance of the apparatus. This improvement makes the positron annihilation lifetime spectrometer more simple, small and practical.
     2. In order to improve the accuracy and intelligent of analysing the positron lifetime spectrum, we developed a new method-Back Propagation Network(BP) which is one of the Artifical Neural Networks to analysis the spectrum. This algorithm not only eliminates the need for presetting parameter in the conventional arithmetic but also can automatically identify the composition of the unknown lifetime spectrum, which makes the resolution of the spectrum more intelligent. It can give the exact value and distribution of the spectrum. In addition, we also studied the accuracy of analysing the spectrum with various parameters of the neural network structure. At last we generate a good neural network for solution in a wide range.
     The second task of this paper is to develop a two-dimensional positron annihilation lifetime spectrometer used the conventional liquid source and the following results were obtained:
     1. We used the commercial digital acquisition to build a new type of two-dimensional digital positron annihilation spectrometer. This instrument could record the energy and lifetime of the annihilation event simultaneously. By the two-dimensional mapping, we can research the energy information with the different lifetime and the lifetime information with the different energy. The time resolution of the spectrometer is226ps and the energy resolution is9.6%(at511keV). We compare the different detection methods make the different performance of the spectrometer and discuss the constraints and solution of the spectrometer.
     We use the spectrometer to study the Ps information in the different quality ratio of mixed nanopowders between γ-Al2O3and a-Fe2O3(0%,16wt%α-Fe2O3/γ-Al2O3,50wt%α-Fe2O3/y-Al2O3, a-Fe2O3). We want to explain the Ps mutual conversion issues from o-Ps to p-Ps in the porous material, and we also used the other conventional physical approach such as TEM, XRD, XRF, EPR to study the grain size and the unpaired electron concentration about the material. When we use the two-dimensional positron annihilation lifetime to measure the material, we found that with the increase of the unpaired electron concentration, the fourth lifetime and intensity is decreased sharply, but the third lifetime and intensity remain unchanged; we also found that the3y/2y ratio in the energy spectrum is decreased slowly with the increase of the unpaired electron concentration. The two information shows that o-Ps which create three photon annihilation is reduced, and proved that the unpaired
引文
[1]Dirac P A M, On the annihilation of electrons and protons. Proceedings of the Cambridge Philosophical Society,26,361-375 (1930).
    [2]Anderson C D, The Positive Electron. Physical Review,41,405-421 (1932).
    [3]Chao C Y. PNAS,16 (6),431-433 (1930).
    [4]Brandt W, Dupasquier A, Positron Solid-State Physics, Amsterdam:North-Holland (1983).
    [5]Schrader, Jean. Positron and Positronium Chemistry. Amsterdam:North-Holland (1983).
    [6]王少阶,陈志权,王波等.湖北科学技术出版社,6-7(2008).
    [7]郁伟中,正电子物理及应用.科学出版社,6-7(2003).
    [8]Shearer J W, Deutsch M, Physical Review,82,2,336 (1951).
    [9]Deutsch M, Phys. Rev.82,455,83,866 (1951).
    [10]Bell R E, Graham R L, Physical Review,90,4,644-654 (1953).
    [11]Landes H S, Berko S, Zuchelli A J, Phys Rev,103,828 (1956).
    [12]Watson B B, Lind D A, Dumond J W M, Physical Review,74,10,1561 (1948).
    [13]Lynn K G, Goland A N, Hurst J J, Bulletin Of The American Physical Society,21,3,233 (1976).
    [14]Kong W, Xi C Y, Ye B J, Nucl Instrum Meth B,225,4,623 (2004).
    [15]叶邦角,翁惠民,周先意,韩荣典,原子核物理评论,3(2003).
    [16]Mills A P, Applied Physics,23,2,189 (1980).
    [17]Wheeler J A. Annual of New York Academic of Science,48,219 (1949).
    [18]Rich A, Reviews of Modern Physics,53,1,127 (1981).
    [19]Maex K, Baklanov M R, Shamiryan, D, Journal of Applied Physics,93,11,8793 (2003).
    [20]Mills A P, Physical Review Letters,46,11,717 (1981).
    [21]Nagashima Y, Kakimoto M, Hyodo T, Physical Review A,52,1,258 (1995)
    [22]Brown C J, Humberston J W, Journal of Physics B,18,12,401 (1985).
    [23]Ferrell R A, Physical Review,108,2,167 (1957).
    [24]Mogensen O E, Journal of Chemical Physics,60,3,998 (1974).
    [25]Yoshida S, Phelps A V, Pitchford L C, Phys. Rev. A,27,2858 (1983).
    [26]Brandt W, Berko S, Walker W W, Phys. Rev,120,1389 (1960).
    [27]Truba M and Trasatti S P, Eur. J. Inorg. Chem,2005,3393 (2005).
    [28]王幸宜,催化剂表征,华东理工大学出版社(2008).
    [29]Mills A P, Physical Review Letters,50,9,671-674 (1983).
    [30]Goworek T, Ciesielski K, Jasinska B, Chemical Physics,230,2,305 (1998).
    [31]Goworek T, Ciesielski K, Jasinska B, Chemical Physics Letters,272,1,91 (1997).
    [32]DeMaggio G B, Frieze W E, Gidley D W, Physical Review Letters,78,8,1524 (1997).
    [33]Gidley D W, Frieze W E, Dull T L, Applied Physics Letters,76,10,1282 (2000).
    [34]Petkov M P, Weber M H, Lynn K G, Applied Physics Letters,79,23,3884 (2001).
    [35]Varga K, Suzuki Y, Physical Review C,52,6,2885 (1995).
    [36]Wang C L, Hirade T, Maurer F H J, Journal of Chemical Physics,108,11,4654 (1998).
    [36]Kamimura Y, Hori F, Tsutsumi T, Kuramoto E, Advanced Materials 93, Part A, Pages 385-388 (1994).
    [37]Saarinen K, Hautojarvi P, Corbel C, Semiconductors and Semimetals, Volume 51, Part A, Pages 209-285 (1998).
    [38]Goworek T, Jasiska B, Wawryszczuk J, Ciesielski K, Goworek J, Studies in Surface Science and Catalysis, Volume 128, Pages 557-564 (2000).
    [39]Becvar F, Cizek J, Lestak L, Nucl. Instr. and Meth. A,443,557 (2000).
    [40]Djourelov N, Charvin N, Bas C, Viret J, Samoylenko V, Sillou D, Nucl. Instr. and Meth. B, 264,165(2000).
    [41]Nissila J, Karppinen M, Rytsola K, Oila J, Saarinen K, Hautojarvi P, Nucl. Instr. and Meth. A, 466,527(2001).
    [42]Sharshar T, Hussein M L, Nucl. Instr. and Meth. A 546,584 (2005).
    [43]Nissila J, Rytsola K, Saarinen K, Hautojarvi P, Nucl. Instr. and Meth. A,481,548 (2002).
    [44]Simoes P, Martins J, Correia C, IEEE Trans. Nucl. Sci.NS-43,3 (1996).
    [45]Nissila J, Rytsola K, Aavikko R, Laakso A, Saarinen K, Hautojarvi P, Nucl. Instr. and Meth. A,538,778 (2005).
    [46]Saito H, Nagashima Y, Kurihara T, Hyodo T, Nucl. Instr. and Meth. A,487,612 (2002).
    [47]Becvar F, Cizek J, Prochazka I, Appl Surf Sci.255,111 (2008).
    [48]Rytsola K, Nissila J, Kokkonen J, Laakso A, Aavikko R, Saarinen K, Appl Surf Sci,194,260 (2002).
    [49]Ritt S, Nucl. Instr. and Meth. A,494,520 (2002).
    [50]Hannes F, Giovanna D, Ueli H, Alexander H, Hanspeter M, David M, Stefan R, Niklaus S, IEEE-Trans. Nucl. Sci,4,58 (2011).
    [51]Li H, Shao Y, Zhou K, Pang J B, Wang Z, Nucl. Instr. and Meth. A,625,29 (2011).
    [52]Soderstrom P A, Nyberg J, Wolters R, Nucl. Instr. and Meth. A,594,79 (2008).
    [53]Kurahashi T, Takahashi H, Nakazawa M, Nucl. Instr. and Meth. A,422,385 (1999).
    [54]Krause-Rehberg R, Leipner H S, Positron Annihilation in Semiconductors, Springer, Heidelberg (1999).
    [55]Dupasquier A, Mills A P, Positron Spectro-scopy of Solids, IOS, Press, Amsterdam (1995).
    [56]Eldrup M, Lightbody D, Sherwood JN,Chem phys,63,1,51 (1981).
    [57]Kansy J, Nucl Instrum Meth A,374,2,235 (1996).
    [58]Shukla A, Peter M, Hoffmann L, Nucl Instrum Meth A,335,1,310 (1993).
    [59]Gregory R B, ZHU Y K, Nucl Instrum Meth A,290,1,172 (1990)
    [60]Olsen J V, Kirkegaard P, Pedersen N J,14th International Conference on Positron Annihilation (ICPA 14), McMaster Univ, Hamilton, CANADA (2006)
    [61]Pascual I C, Dong A W, Pas, Steven J, Nucl Instrum Meth A,603,3,456 (2009).
    [62]Watts D J, Strogatz S H, Nature,393,6684,440 (1998).
    [63]Hagan, Martin. Neural Network Design. PWS Publishing Company.1996. ISBN 7-111-10841-8.
    [64]Stent G S. P Natl Acad Sci USA,70,4,997 (1973).
    [65]KOHONEN T,PROCEEDINGS OF THE IEEE,78,9,1464-1480 (1990).
    [66]Bi G Q, Poo M M, ANNUAL REVIEW OF NEUROSCIENCE,24,139-166 (2001).
    [67]GEMAN S, BIENENSTOCK E, DOURSAT R, NEURAL COMPUTATION,4,1,1-58 (1992).
    [68]FUNAHASHI K, NEURAL NETWORKS,2,3,183-192 (1989).
    [69]SPECHT DF, NEURAL NETWORKS,3,1,109-118 (1990).
    [70]He Bing, Liu Gang, Wang Yuan Yuan,2010 6th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM),3 (2010).
    [71]SHUKLA A, PETER M, HOFFMANN L, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A,335,1-2,310-317 (1993).
    [72]KIRKEGAA P, ELDRUP M, COMPUTER PHYSICS COMMUNICATIONS,7,7,401-409 (1974).
    [73]陈祥磊,基于中性原子叠加模型的正电子计算(2009).
    [74]Gonze X, Amadon B, Anglade P, COMPUTER PHYSICS COMMUNICATIONS,180,12, 2582-2615 (2009).
    [75]BROTHERTON S D, BRADLEY P, JOURNAL OF APPLIED PHYSICS,53,8,5720-5732 (1982).
    [76]Chichibu, Shigefusa F.; Uedono, Akira; Onuma, Takeyoshi, NATURE MATERIALS,5,10, 810-816(2006).
    [77]MANNINEN M, NIEMINEN R, HAUTOJARVI P, PHYSICAL REVIEW B,12,10, 4012-4022(1975).
    [78]Chunqing He, Makoto Muramatsu, Nagayasu Oshima, Toshiyuki Ohdaira, Atsushi Kinomura, Ryoichi Suzuki, Physics Letters A,355,73-76 (2006).
    [79]T.S. Stein, W.E. Kauppila, E.G. Miller, E. Surdutovich, Nuclear Instruments and Methods in Physics Research B,221,134-139 (2004).
    [80]Zs. Kajcsos, L. Liszkay, G. Duplatre, K.Lazar, L. Lohonyai etc, Radiation Physics and Chemistry,76,231-236 (2007).
    [81]W. E. Kauppila, E. G. Miller, H. F. M. Mohamed, K. Pipinos, T. S. Stein, and E. Surdutovich, PHYSICAL REVIEW LETTERS,93,11 (2004).
    [82]Paolo Crivelli, Ulisse Gendotti, Andre Rubbia, Laszlo Liszkay, Patrice Perez and Catherine Corbel, PHYSICAL REVIEW A 81,052703 (2010).
    [83]R Suzuki,, T Ohdaira, Y Kobayashi, K Ito, Y Shioya, T Ishimaru, Radiation Physics and Chemistry,68,339-343 (2003).
    [84]Yousuke Kataoka, Precision Measurement of Orthopositronium Decay Rate (2007).
    [85]Stang P P, Conolly S M, Santos J M, Pauly J M, Scott G C, IEEE TRANSACTIONS ON MEDICAL IMAGING,31,2,370-379 (2012).
    [86]Zhang Xiufeng, Du Haiying, Sun Jinsheng, High Power Laser and Particle Beams,23,12, 3417-20(2011).
    [87]Chun Joo Park, Hyoung Koo Lee, Song, W Y, Nuclear Instruments & Methods in Physics Research, Section A,634,1,101-5 (2011).
    [88]van Loef EVD, Dorenbos P, van Eijk CWE, APPLIED PHYSICS LETTERS,79,10, 1573-1575(2001).
    [89]Shah K S, Glodo J, Klugerman M, IEEE TRANSACTIONS ON MEDICAL IMAGING,31, 2,370-379 (2012).
    [90]Agostinelli S, Allison J, Amako K, NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A,506,3,250-303 (2003).
    [91]Bordulev Y, Laptev R, Lider A,2012 7th International Forum on Strategic Technology (IFOST),4(2013).
    [92]周荣,马天予,刘亚强,吴朝霞,王石,金永杰,清华大学学报(自然科学版),S1(2007).
    [93]Zhang B P, Segawa Y, Wakatsuki, K, APPLIED PHYSICS LETTERS,79,24,3953-3955 (2001).
    [94]蔡卫权,余小锋,化学进展,9(2007).
    [95]Yang Ruiqin, Yu Xiaocai, Zhang, Yi, FUEL,87,4-5,443-450 (2008).
    [96]HAN W, LIU G, XU Y, CN101274173-A, CN100536982-C (2008).
    [97]NISSHIN STEEL CO LTD, JP63270548-A, JP2525175-B2 (1988).
    [98]Landau M V, Shter G E, Titelman L, INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH,45,22,7462-7469 (2006).
    [99]Zhang H J, Chen Z Q, Wang, S J, The Journal of chemical physics,136,3,034701 (2012).
    [100]Mohamed, Hamdy F M, JOURNAL OF APPLIED POLYMER SCIENCE,108,2, 1307-1313 (2008).
    [101]SCHAEFER H E, WURSCHUM R, BIRRINGER R, PHYSICAL REVIEW B,38,14, 9545-9554 (1988).
    [102]Treacy M M J, Ebbesen T W, Gibson J M, NATURE,381,6584,678-680, (1996).
    [103]Helveg S, Lopez-Cartes C, Sehested J, NATURE,427,6973,426-429 (2004).
    [104]Otwinowski Z, Minor W, METHODS IN ENZYMOLOGY,276,307-326 (1997).
    [105]FAGANP J.CALABRESE J C,MALONE B, SCIENCE,252,5009,1160-1161 (1991).
    [106]MCBRIDE J R, HASS K C, POINDEXTER B D, JOURNAL OF APPLIED PHYSICS,76, 4,2435-2441 (1994).
    [107]Liu Y C, Qiu X P, Huang Y Q, CARBON,40,13,2375-2380 (2002).
    [108]Dabbousi B O, RodriguezViejo J, Mikulec F V, JOURNAL OF PHYSICAL CHEMISTRY B,101,46,9463-9475(1997).
    [109]FOX M A, DULAY M T, CHEMICAL REVIEWS,93,1,341-357 (1993).
    [110]Huang S H, Chen Z Q, Zhang H J, RADIATION PHYSICS AND CHEMISTRY,81,7, 791-795(2012).
    [111]Li C Y, Zhang H J, Chen Z Q, APPLIED SURFACE SCIENCE,266,17-21 (2013).
    [112]STOLL H, KOCH M, LAUFF U, APPLIED SURFACE SCIENCE,85,1-4,17-21 (1995).
    [113]DAUWE C, MBUNGUTSUMBU, PHYSICAL REVIEW B,45,1,9-19 (1992).
    [114]Van Petegem S, Dauwe C, Van Hoecke T, PHYSICAL REVIEW B,70,11 (2004).
    [115]JUDD D J, LEE Y K, MADANSKY L, PHYSICAL REVIEW LETTERS,30,6,202-204 (1973).
    [116]Shek C H, Gu T S, Lin G M, APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING,66,4,413-418 (1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700