用户名: 密码: 验证码:
基于介孔SiO_2的Ni基甲烷化催化剂的制备、表征及催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国能源格局的特点是“富煤缺油少气”,煤制天然气不仅可以实现煤炭资源的清洁利用,而且可以满足我国对天然气的快速增长的需求。合成气甲烷化是煤制天然气的关键过程,而甲烷化催化剂是该技术的关键。
     本文分别采用浸渍法与水热合成法制备了以镍为活性组分的甲烷化催化剂,并在连续流动固定床反应器中对其进行了催化活性,耐高温性能以及积碳性能测试,研究了助催化剂Mo对其结构与性能的影响,筛选出较优的甲烷化催化剂,最后对Ni-0.5%Mo-Si02催化剂的甲烷化动力学进行了研究。
     采用等体积浸渍法分别以MCM-41, A12O3和SiO2为载体制备了三种镍基甲烷化催化剂,采用XRD、BET、TG及H2-TPR等技术手段对催化剂进行了表征,Ni/MCM-41, Ni/Al2O3和Ni/SiO2的比表面积分别为750、126和252m2/g,孔径分别为2.7、11.6和2.7nm,Ni颗粒大小分别为15.5、24.9和29.6nm。结合催化活性评价结果可知影响催化剂催化活性的主要因素是Ni颗粒的大小,其中Ni/MCM-41催化剂具有更好的催化活性。考察了Ni负载量对Ni/MCM-41催化剂催化活性的影响,结果发现随着Ni负载量的增加,CO转化率和CH4收率逐步提高,且在Ni负载量高于10m01%时趋于稳定。当选择n(H2):n(CO)=3:1、压力1.5MPa、温度350℃及质量空速12000m1·h-1·g-1反应条件时,10%Ni/MCM-41的CO转化率接近100%,CH4选择性约95%。其100h寿命试验中表现出良好的催化活性稳定性,其催化活性无明显下降。
     以MCM-41为载体采用浸渍法制备了Mo摩尔含量为1%-7%的Ni-Mo/MCM-41催化剂,并研究了Mo对其催化合成气甲烷化反应催化活性的影响。实验发现Mo03的添加可以明显提高Ni/MCM-41催化剂的低温(250℃C)催化活性。在350℃、1.0MPa、12000ml/g/h和n(H2):n(CO)=3反应条件下,Mo含量达到3mol%时(Ni-3%Mo/MCM-41)CO转化率和CH4选择性可以分别达到100%和94%。与Ni/MCM-41催化剂相比,Ni-Mo/MCM-41表现出更好的抗烧结性能,其经过700℃高温煅烧2h后催化活性无明显下降。在100h的稳定性试验中,Ni-3%Mo/MCM-41的催化活性无明显下降,其CO转化率和CH4选择性分别保持在100%和89%。采用BET、CO化学吸附、TEM、SEM-EDS、 ICP、XRD、H2-TPR和XPS对催化剂进行了表征,结果表明由Mo03到金属镍的电子转移是Ni-Mo/MCM-41在低温(250℃)下催化活性提高的主要原因。Mo03的添加以Ni-Mo合金的形式来提高金属镍与载体间的相互作用力,从而抑制催化剂的烧结。
     采用水热合成法制备了Ni摩尔含量为1%-10%的Ni-MCM-41催化剂,采用FTIR, ICP,XRD,H2-TPR, TG-DTA和TEM等技术对催化剂进行了表征,结果表明当金属镍的摩尔含量达到10%时,其MCM-41的介孔结构仍保持良好。在350℃、1.0MPa、12000ml/g/h和n(H2):n(CO)=3反应条件下,Ni含量为10mol%时(10%Ni-MCM-41),甲烷化反应的CO转化率和CH4收率分别达到100%和96%。与采用浸渍法制备的10%Ni/MCM-41催化剂相比,10%Ni-MCM-41具有更好的抗烧结性能,其经过700℃高温煅烧2h后催化剂活性无明显下降。在100h的稳定性试验中,10%Ni-M表现出良好的催化活性稳定性,其CO转化率和CH4选择性分别保持在100%和82%。XRD,H2-TPR和TG-DTA的结果表明,在Ni-MCM-41催化剂中,镍物种与载体间存在着较强的相互作用力,其可以有效的抑制催化剂的烧结。
     采用水热合成法制备了Mo03摩尔含量为0.5%-5.0%的Ni-Mo-SiO2催化剂,发现由于在M003与金属镍之间存在着电子转移,M003的添加可以明显提高Ni-SiO2催化剂的催化活性。过量MoO3(>3.0mol%)的添加会导致活性金属镍的部分覆盖以及Ni-Mo合金的形成,从而导致催化剂催化活性的下降。在400℃、2.0MPa、12000ml/g/h和n(H2):n(CO)=3反应条件F,Ni-0.5%Mo-SiO2的CO转化率和CH4收率可以分别达到100%和99%。TG和TPR结果表明,M003可以有效抑制Ni-SiO2催化剂的积碳行为并且过量MoO3(>1.0mol%)会减弱会属镍与载体间的相互作用力。XRD,TPR和TG结果表明催化剂烧结是导致催化剂在稳定性试验和热稳定性实验中催化活性失活的主要原因。
     以Ni-0.5%Mo-SiO2为催化剂,采用加压微型反应器,在250-450℃温度范围内,分别测定了0.1~1.5MPa下测得甲烷化反应本征动力学实验数据,并经过实验数据检验证明实验结果是基本可靠的。采用双曲线函数型反应动力学模型,经过若干次模型拟合,得到了最佳的拟合模型。并用残差检验、统计检验和Arrhenius关系检验模型,结果表明,模型拟合情况良好,残差分布合理,能真实反映该催化剂的反应特征。其动力学表达式为:
Basic energy landscape of China is characterized by " rich in coal, poor in oil and natural gas". Coal to Synthetic Natural Gas can not only realize the clean use of coal resources, but also meet the constant demand for natural gas in China. Syngas methanation is one of the key processes and the development of methanation catalyst is the key of this technique.
     In this paper, the methanation catalyst with nickel as the active component were prepared by the impregnation method and hydrothermal synthesis method, respectively, and its catalytic activity, high temperature performance and carbon performance were tested in a fixed bed reactor. The effect of Mo on structures and properties of catalysts were also studied and the better methanation catalyst was selected. At last, methanation kinetics based on Ni-0.5%Mo-SiO2catalyst was studied.
     The nickel based catalysts with different nickel content were prepared by the impregnation method with MCM-41, Al2O3and SiO2as the supports. The catalysts were characterized using XRD, BET, TG and H2-TPR and the results showed that the Ni particle size could obviously affect the catalytic performances of the catalysts and Ni/MCM-41showed better catalytic performance. The effect of Ni content on the catalytic performance of Ni/MCM-41was investigated and it was found that the catalytic activity of Ni/MCM-41increased with Ni loading increasing and kept stable with the Ni loading of above10mol%.10%Ni/MCM-41showed a high CO conversion of100%and a CH4yield of95%at350℃under1.5MPa and12000ml·h-1·g-1with a3:1molar ratio of H2to CO and it also exhibited excellent catalytic activity and stability in the catalytic stability test.
     Several Ni-Mo based catalysts with Mo content from1mol%to7mol%were prepared by the impregnation method with MCM-41as the support and the effect of Mo content on the catalyst activity was investigated. The addition of MoO3could obviously improve the activity of Ni/MCM-41at250℃. Ni-3%Mo/MCM-41showed the best activity with a CO conversion of100%and a CH4selectivity of94%at350℃under1.0MPa and12000ml/g/h with a3:1molar ratio of H2to CO. Compared with Ni/MCM-41, Ni-Mo/MCM-41showed higher resistance to sintering and no decrease in the catalytic activity after calcination at700℃for2h. In the100h stability test, CO conversion and CH4selectivity obtained on Ni-3%Mo/MCM-41maintained at about100%and89%, respectively, suggesting an excellent catalytic stability of this catalyst. The catalysts were characterized by different technologies, and the results showed that electron transfer from MoO3to metal nickel was the main cause of activity improvement of Ni-Mo/MCM-41at250℃. The addition of MoO3could enhance the interaction between metal nickel and the support in the way of Ni-Mo alloy, which inhibited the catalyst sintering.
     Several nickel incorporated MCM-41catalysts with a nickel molar content from1%to10%were prepared by a hydrothermal synthesis method, and characterized by FTIR, ICP, XRD, H2-TPR, TG-DTA and TEM. The results showed that mesoporous structure of MCM-41still maintained well when Ni molar content was up to10%.10%Ni-MCM-41showed the best catalytic activity with a high CO conversion of almost100%, and a CH4yield of96%at350℃with3:1molar ratio of H2to CO under1.0Mpa and12000ml/h/g. Compared with10%Ni/MCM-41,10%Ni-MCM-41showed a higher resistance to sintering and no decrease in catalytic activity after calcination at700℃for2h. In the100h stability test, CO conversion and CH4yield obtained on10%Ni-MCM-41maintained at about100%and82%, respectively, suggesting an excellent catalytic stability. The results of XRD, H2-TPR and TG-DTA showed that there was a strong interaction between the Ni species and the support, which inhibited the catalyst sintering.
     Several Ni incorporated SiO2catalysts with MoO3molar content in range of0.5%to5.0%were prepared by the hydrothermal synthesis method. MoO3can significantly improve the activity of Ni-SiO2due to electron transfer from MoO3to Ni species, while excessive MoO3(>3.0mol%) will reduce the catalyst activity due to partial coverage of active metal by MoO3and formation of Ni-Mo alloy. Ni-0.5%Mo-SiO2achieves the best activity with100%CO conversion and about99%CH4yield at400℃,2.0MPa and12000mL/g/h. The results of TG and TPR show that MoO3can inhibit carbon deposition of Ni-SiO2and excessive MoO3(>1.0mol%) will weaken the interaction between metal Ni and the support. The results of XRD, TPR and TG show that catalyst sintering rather than carbon deposition leads to catalyst deactivation in catalytic stability and thermal stability tests.
     Based on the Ni-0.5%Mo-SiO2catalyst, the intrinsic kinetics of CO methanation reaction were measured in a differential reactor at250~450℃and0.1~1.5MPa.The measured kinetics experimental data of methanation reaction is proved reliable. Hyperbolic functional was adopted as the reaction kinetics model and the best fitting model was obtained after several model fitting. The results of residual test, statistical testing and Arrhenius relationship test model showed that the kinetics model fits well and the residual distribution is reasonable. It can truly reflect the response characteristics of the catalyst. The dynamic expression is:
引文
[1]张海滨.浅析我国发展煤制天然气的必要性及其风险[J].中国高新技术企业.2009,6:92-93
    [2]刘志光,龚华俊,余黎明.我国煤制天然气发展的探讨[J].煤化工.2009,2:1-2
    [3]李志强.加快煤制天然气产业,维护天然气供应安全[J].化学工业.2009,12(27):17-19
    [4]潘连生,张瑞和,朱曾惠.对我国煤基能源化工品发展的思考[J].西部煤化工2008,15:32-35
    [5]张洪志.探讨中国发展煤制天然气的必要性及其风险[J].中国高新技术企业.2010,07:96-99
    [6]李大尚.煤制天然气竞争力分析[J].煤化工.2007,35(6):1-4
    [7]孙艳莉.煤制天然气颠覆煤制油宿命[J].中国石油石化.2008,12(5):46-48
    [8]路霞,陈世恒,王万丽等.CO甲烷化Ni基催化剂的研究进展[J].石油化工.2010,3(39): 340-348
    [9]J.法尔贝主编,王杰等译.一氧化碳化学[M].北京:化学工业出版.1985,374-389
    [10]Zhao A M, Ying W Y, Zhang H T. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catalysis Communications.2012,17:34-38
    [11]洪琦.Ru、Ni催化剂上CO甲烷化反应的研究[D].厦门:厦门大学,1999
    [12]张文胜,戴伟,王秀玲,王红亚.新型甲烷化催化剂的研究[J].化工学报.2007,34(增刊):117-119
    [13][西德]W.凯姆主编.C1化学中的催化[M].北京:化学工业出版社,1989,1-34
    [14]Sanchez-Escribano V, Larrubia Vargas M A, Finocchio E, Busca G. On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts: An IR study[J]. Applied Catalysis A:General,2007,316 (1):68-74
    [15]韩维屏.催化化学导论[M].北京:科学出版社,2003,160-161
    [16]高建悦.催化富气工艺装置改产代用天然气[J].上海煤气.2001,3:1-4
    [17]陶鹏万,王晓东.一种利用焦炉气制备合成天然气的方法[P].CN1919985,2007
    [18]张文慧,周红军.一种利用焦炉气生产合成天然气的方法及其装置[P].CN101100622,2008
    [19]吴且毅,卿涛,颜智.一种利用焦炉气合成甲烷的方法[P].CN101391935,2009
    [20]黄传荣,甘世凡.城市煤气甲烷化工艺研究开发进展[J].广州化工.1993,21(4):17-20
    [21]Len Seglin E. Methanation of Synthesis Gas[M]. washington,D.C.:American chemical society,1975.11-28
    [22]Takenaka S, Shimizu T. Complete removal of carbon monoxide in hydrogen-rich gas stream through mathanation over supported metal catalysts [J]. International Journal of Hydrogen Energy.2004,29:1065-1073
    [23]张成.CO与C02甲烷化反应研究进展[J].化工进展.2007,9(26):1269-1275
    [24]张文胜,戴伟,.高性能甲烷化催化剂的研究[J].石油化工.2007,34(增刊):95-98
    [25]王敏炜,罗来涛等.镍钼镧甲烷化催化剂催化性能的研究[J].南昌大学学报:工科版.1993,15(3):63-69
    [26]张文胜,戴伟,王秀玲,王红亚.新型甲烷化催化剂的研究[J].石油化工,2005,34(增刊):115-116
    [27]刘新华,邵振奇.镍基耐硫的煤气甲烷化催化剂研究[J].天然气化工:C1化学与化工.1991,16(3):22-26
    [28]陶鹏万,王晓东.焦炉气生产压缩天然气技术经济分析[J].煤化工.2007,35(3):11-14
    [29]Rostrup-Nielsen J R, Pedersen K, Sehested J. High temperature methanation:Sintering and structure sensitivity [J]. Applied Catalysis A:General.2007,330:134-138
    [30]康慧敏,蒋福宏.城市煤气甲烷化低镍催化剂的研究[J].化学工业与工程.1993,10(3):8-13
    [31]朱洪法.催化剂载体制备及应用技术[M].北京:石油化工出版社,2002,387-457.
    [32]李翠平,赵瑞红,郭备,陈建峰.不同负载方法制备镍金属有序介孔氧化铝催化剂的结构及性能[J].北京化工大学学报:自然科学版.2007,34(4):358-362.
    [33]赵瑞红,郭奋,李翠平,陈建峰,赵焕祺.非离子模板剂制备有序介孔氧化铝及表征[J].化工进展.2007,26(5):710-714
    [34]Perkas N, Amirian G, Zhong Z Y, Teo J. Gofer Y, Gedanken A. Methanation of Carbon Dioxide on Ni Catalysts on Mesoporous ZrO2 Doped with Rare Earth Oxides[J]. Catalysis Letters.2009,130 (3-4):455-462
    [35]Du G A, Lim S, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts:The influence of catalyst pretreatment and study of steady-state reaction[J]. Journal of Catalysis.2007,249 (2):370-379
    [36]Liu D P, Quek X Y. MCM-41 supported nikel-based bimetallic catalysts with superior stability during carbon dioxide reforming of mathane:Effect of strong metal-support interaction[J]. Journal of catalysis.2009,266:380-390
    [37]孙锦宜,万天宝.国外城市煤气耐硫甲烷化催化剂研究综述[J].煤炭加工与综合利用.1989,1:53-55.
    [38]Len Seglin E. Methanation of Synthesis Gas[M]. washington,D.C.:American chemical society.1975.35-47.
    [39]Kopyscinski J, Schildhauer T J, Biollaz S M A. Production of synthetic natural gas(SNG) from coal and dry biomass-a technology review from 1950 to 2009. Fuel.2010,89: 1763-1783
    [40]Pan Z, Dong M, Meng X, Zhang X, Mu X, Zong B. Integration of magnetically stabilized bed and amorphous nickel alloy catalyst for CO methanation[J]. Chemical Engineering Science.2007,62:2712-2717
    [41]Hwang S, Lee J, Hong U G, Seo J G, Jung J C, Koh D G, Lim H, Byun C, Song I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst:Effect of nickel content[J]. Journal of Industrial and Engineering Chemistry 2011,17:154-157
    [42]Xavier K O, Sreekala R, Rashid K K A, Yusuff K K M, Sen B. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Catalysis Today 1999,49:17-21
    [43]Derekaya F B, Yasar G. The CO methanation over NaY-zeolite supported Ni/Co3O4, Ni/ZrO2, Co3O4/ZrO2 and Ni/Co3O4/ZrO2 catalysts[J]. Catalysis Communicaions.2011, 13:73-77
    [44]Ocampo F, Louis B, Roger A C. Methanation of carbon dioxide over nickel-based Ce0.72Zr0.28O2 mixed oxide catalysts prepared by sol-gel method[J]. Applied Catalysis A: General.2009,369:90-96
    [45]Kramer M, Stowe K, Duisberg M, Muller F, Reiser M, Sticher S, Maier W F. The impact of dopants on the activity and selectivity of a Ni-based metanation catalyst[J]. Applied Catalysis A:General.2009,369:42-52
    [46]Yamasaki M, Habazaki H, Asami K, Izumiya K, Hashimoto K. Effect of tetragonal Z1O2 on the catalytic activity of Ni/ZrO2 catalyst prepared from amorphous Ni-Zr alloys[J]. Catalysis Communications.2006,7:24-28
    [47]Sabatier P, Senderens J B. New synthesis of methane[J]. Academie des Sciences.1902, 134:514-516
    [48]Duan X Z, Qian G, Zhou X G, Sui Z J,.Chen D, Yuan W K. Tuning the size and shape of Fe nanoparticles on carbon nanofibers for catalytic ammonia decomposition[J]. Applied Catalysis B:Environmental.2011,101:189-196
    [49]Ballarini A D, De Miguel S R, Jablonsiki E L, Scelza O A, Castro A A. Reforming of CH4 with CO2 on Pt-supported catalysts effect of the support on the catalytic behavior[J].Catalysis Today.2005,107-108:481-486
    [50]Cheng Z X, Zhao X G, Li J L, Zhu Q M. Role of support in CO2 reforming of CH4 over a Ni/γ-Al2O3 catalyst[J]. Applied Catalysis A:General.2001,205:31-33
    [51]Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Bech J S. Ordered mesoporous molecular sieve synthesisezd by a liquid-crystal template mechanism[J]. Nature.1992, 359:710-712
    [52]Klimova T, Calderon M, and Ramirez J.13th International Zeolite Conference. Montpelier, France, July 2001,26(12):8-13
    [53]Luan Z, He H, Zhou W, Cheng C. F, Klinovski J. Effect of Stru-tural Aluminium on the Mesoporous Structure of MCM-41[J]. Journal of the Chemical Society, Faraday Transactions.1995,91:2955-2959
    [54]Choudhary V R. Sanare S D. Doping effects of cerium oxide on Ni/Al2O3 catalysts for methanation[J]. Proc ind Acad Sci(Chem Sci).1997,109:229-235
    [55]Park S J, Lee S Y. A study on hydrogen-storage behaviors of nickel-loaded mesoporous MCM-41[J]. Journal of Colloid and Interface Science.2010,346:194-198
    [56]Liu D, Lau R, Borgna A, Yang Y, Carbon dioxide reforming of methane to synthesis gas over Ni-MCM-41 catalysts[J]. Applied Catalysis A:General.2009,358:110-118
    [57]Lensveld D J, Mesu J G, Dillen A J, Jong K P. Synthesis and characterisation of MCM-41 supported nickel oxide catalysts[J]. Microporous and Mesoporous Materials.2001,44-45: 401-407
    [58]Jaroniec M, Kruk M, Shin H J, Ryoo R, Sakamoto Y, Terasaki O. Comprehensive characterization of highly ordered MCM-41 silicas using nitrogen adsorption, thermogravimetry, X-ray diffraction and transmission electron microscopy. Microporous and Mesporous Materials,2001,48:127-134
    [59]Chen X, Huang L, Li Q. Hydrothermal Transformation and Characterization of Porous Silica Templated by Surfacetants[J]. Journal of Physical Chemistry B.1997, 101:8460-8467
    [60]辛忠,张加赢.一种负载型催化剂及其制备方法和用途[P].CN201210126248.3,2012
    [61]Li X K, Ji W J, Au C T. Ammonia decomposition over Ru and Ni catalysts supported on fumed SiO2, MCM-41, and SBA-15[J]. Journal of Catalysis.2005,236:181-189
    [62]Arbag H, Yasyerli S, Yasyerli N, Dogu G. Activity and stability enhancement of Ni-MCM-41 catalysts by Rh incorporation for hydrogen from dry feforming of methane[J]. International Journal of Hydrogen Energy.2010,35:2296-2304
    [63]Biz S, Occelli M L. Synthesis and Characterization of Mesostructured Materials[J]. Catalysis Reviews-science and Engineering.1998,40:329-407
    [64]Yu Y, Jin G Q, Wang Y Y, Guo X Y. Synthetic natural gas from CO hydrogenation over silicon carbide supported nickel catalysts[J]. Fuel Processing Technology.2011,92: 2293-2298
    [65]Gao J J, Jia C M, Li J, Gu F N, Xu G W, Zhong Z Y, Su F B. Nickel Catalysts Supported on Barium Hexaaluminate for Enhanced CO Methanation[J]. Industrial & Engineering Chemistry Research.2012,51:10345-10353
    [66]马胜利,谭猗生,张清德,韩怡卓.CO methanation over Ni/y-Al2O3 catalysts with different morphologies[J].燃料化学学报.2011,39:224-228
    [67]Lensveld D J, Mesu J G, Dillen A J, Jong K P. Synthesis and characterisation of MCM-41 supported nickel oxide catalysts[J]. Microporous and Mesoporous Materials.2001,44-45: 401-407
    [68]Wojcieszak R, Monteverdi S, Mercy M, Nowak I, Ziolek M, Bettahar M M. Nickel containing MCM-41 and AlMCM-41 mesoporous molecular sieves characteristics and activity in the hydrogenation of benzene. Applied Catalysis A:General.2004,268: 241-253
    [69]王宁,孙自瑾,王永钊,高晓庆,赵永祥.Ni-Fe/γ-Al2O3双金属催化剂的制备及其CO甲烷化性能研究[J].燃料化学学报.2011,39(3):219-223
    [70]Yu Z B, Qiao M H, Li H X, Deng J F. Preparation of amorphous Ni-Co-B alloys and the effect of cobalt on their hydrogenation activity[J]. Applied Catalysis A:General.1997, 163:1-13
    [71]Aksoylu A E, Zulal M(?)s(?)rl(?), Ilsen Onsan Z. Interaction between nickel and molybdenum in Ni-Mo/A12O3 catalysts:I CO2 methanation and SEM-TEM studies[J]. Applied Catalysis A:General.1998,168:385-397
    [72]Shunsuke Y, Akira K, Kuniaki M, Yasuhiro A. Ni-Mo alloying of nickel surface by alternating pulsed electrolysis using molybdenum(VI) baths[J]. Electrochim Acta 2007,52: 6041-6051
    [73]Wang B W, Ding G Z, Shang Y G,Lv J, Wang H Y, Wang E D. Effects of MoO3 loading and calcinations temperature on the activity of the sulphur-resistant methantion catalyst MoO3/Al2O3[J]. Applied Catalysis A:General.2012,431-432:144-150
    [74]Aksoylu A E, Ilsen Onsan Z. Interaction between nickel and molybdenum in Ni-Mo/ Al2O3 catalysts:Ⅱ CO hydrogenation[J]. Applied Catalysis A:General.1998,168: 399-407
    [75]Te M, Lowenthal E E, Foley H C. Comparative study of Rh/Al2O3 and Rh-Mo/Al2O3 catalysts[J]. Chemical Engineering Science.1994,49:4851-4859
    [76]Lowenthal E E, Schwarz S, Foley H C. Surface Chemistry of Rh-Mo/y-Al2O3:An analysis of surface acidity[J]. Journal of Catalysis.1995,156:96-105
    [77]Scott C E, Romero T, Lepore E, Arruebarrena M, Betancourt P, Bolivar C. Interaction between ruthenium and molybdenum in RuMo/Al2O3 catalysts[J]. Applied Catalysis A: General.1995,125:71-79
    [78]Aksoylu A E, Nilgun Akin A, Ilsen Onsan Z, Trimm D L. Structure/activity relationships in coprecipitated nickel-alumina catalysts using CO2 adsorption and methanation[J]. Applied Catalysis A:General.1996,145:185-193
    [79]Biz S, Occelli M L. Synthesis and Characterization of Mesostructured Materials[J]. Catalysis Reviews:Science and Engineering.1998,40:329-407
    [80]Huseyin A, Sena Y, Nail Y, Gulsen D. Activity and stability enhancement of Ni-MCM-41 catalyst by Rh incorporation for hydrogen from dry reforming of methane[J]. International Journal of Hydrogen Energy.2010,35:2296-2304
    [81]王敏炜,罗来涛,李凤仪,王继军.MoO3对Ni-La/y-Al2O3催化剂上CO和CO2甲烷化性能的影响[J].南昌大学学报(工科版).1999,21(1):74-77
    [82]Tian D Y, Liu Z H, Li D D, Shi H L, Pan W X, Cheng Y. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure[J]. Fuel.2013,104:224-229
    [83]Wang B W, Ding G Z, Shang Y G, Lv J, Wang H Y, Wang E D. Effects of MoO3 loading and calcinations temperature on the activity of the sulphur-resistant methanation catalyst MoO3/γ-Al2O3[J]. Applied Catalysis A:General.2012,431-432:144-150
    [84]Yu Y, Jin G Q, Wang Y Y, Guo X Y. Synthesis of natural gas from CO methantion over SiC supported Ni-Co bimetallic catalysts[J]. Catalysis Communicaitions.2013,31:5-10
    [85]罗来涛,王敏炜,李凤仪,王继军.La2O3对Ni-Mo/y-Al2O3催化剂的CO和CO2甲烷化的影响[J].中国稀土学报.1999,17(2):120-124
    [86]王承学,龚杰.二氧化碳加氢甲烷化镍锰基催化剂的研究[J].天然气化工:C1化学 与化工.2011,36(1):4-6
    [87]Mecarty J G, Wise H. Hydrogenation of surface carbon an alumina-supported nickel[J]. Journal of Catalysis.1979,57:406-410
    [88]Zagh A E, Faleoner J L, Keenan C A. Methanation on supported nickel catalysts using temperature programmed heating[J]. Journal of Catalysis.1979,56:453-459
    [89]Xiao T C, Suhartanto T, York A P E, Sloan J, Green M L H. Effect of molybdenum additives on the performance of supported nickel catalysts for methane dry reforming[J]. Applied Catalysis A:General.2003,253:225-235
    [90]Yang Y H, Lim S Y, Du G A, Chen Y, Ciuparu D, Haller G L. Synthesis and Characterization of Highly Ordered Ni-MCM-41 Mesoporous Molecular Sieves[J]. Journal of Physical Chemistry B.2005,109:13237-13246
    [91]Lim S Y, Wang C, Yang Y H, Ciuparu D, Pfefferle L, Haller G L. Evidence for anchoring and partial occlusion of metallic clusters on the pore walls of MCM-41 and effect on the stability of the metallic clusters[J]. Catalysis Today.2007,123:122-32
    [92]Du G A, Lim S Y, Yang Y H, Wang C, Pfefferle L, Haller G L. Methanation of carbon dioxide on Ni-incorporated MCM-41 catalysts:The influence of catalyst pretreatment and study of steady-state reaction. Journal of Catalysis.2007,249:370-379
    [93]辛忠,张加赢.原位参杂金属的介孔分子筛及其用途[P].CN201210457434.5,2012
    [94]Jiang T S, Tang Y J, Zhao Q, Yin H B. Effect of Ni-doping on the pore structure of pure silica MCM-41 mesporous molecular sieve under microwave irradiation[J], Colloids and Surfaces A:Physicochem. Eng. Aspects.2008,315:299-303
    [95]Zheng Y, Li Z H, Zheng Y, Shen X N, Lin L X. Synthesis and characterization of Fe-Ce-MCM-41[J]. Materials Letters.2006,60:3221
    [96]Kamal M S K. Cerium modified MCM-41 nanocomposite materials via a nonhydrothermal direct method at room temperature[J]. Journal of Colloid and Interface Science.2007,315:562-568
    [97]Laha S C, Mukherjee P, Sainkar S R, Kumar R. Cerium containing MCM-41-type mesoporous materials and their acidic and redox catalytic properties[J]. Journal of Catalysis.2002,207:213-223
    [98]Yao W H, Chen Y J, Min L, Fang H, Yan Z Y, Wang H L, Wang J Q. Liquid oxidation of cyclohexane to cyclohexanol over cerium-doped MCM-41 [J]. Journal of Molecular Catalysis A:Chemical.2006,246:162-166
    [99]Yang Y H, Lim S, Du G A, Wang C, Ciuparu D, Chen Y. Controlling of Physicochemical Properties of Nickel-Substituted MCM-41 by Adjustment of the Synthesis Solution PH and Tetramethylammonium Silicate Concentration[J]. Journal of Physical Chemistry B. 2006,110:5927-35
    [100]Jiang T S, Zhao Q, Yin H B, Li M. The effects of hydrothermal and thermal treatment on structure of Ni (or Co)-mesoporous molecular sieves[J]. Journal of Porous Materials. 2007,14:457-463
    [101]Jiang T S, Tang Y J, Zhao Q, Yin H B. Effect of Ni-doping on the pore structure of pure silica MCM-41 mesporous molecular sieve under microwave irradiaton[J]. Colloid Surface A.2008,315:299-303
    [102]Andersson M P, Bligaard T, Kustov A L, Larsen K E, Greeley J, Johannessen T, Christensen C H, Norskov J K. Toward computational screening in heterogeneous catalysis:Pareto-optimal methanation catalysts[J]. Journal of Catalysis.2006,239: 501-506
    [103]Kustov A L, Frey A M, Larsen K E, Johannessen J, Norskov J K, Christensen C H. CO methanation over supported bimetallic Ni-Fe catalysts:from computational studies towards catalyst optimization[J]. Applied Catalysis A:General.2007,320:98-104.
    [104]辛忠,张加赢.原位参杂金属和/或其氧化物的二氧化硅复合物及其用途[P].CN201310130499.3,2013
    [105]Barton T J, Bull L M, Klemperer W G, Loy D A, Mcenaney B, Misono M, Monson P A, Pez G, Scherer G W, Vartuli J C. Yaghi O M. Tailored Porous Materials [J]. Chemistry of Materials.1999,11:2633-2656
    [106]Sun L B, Gu F N, Chun Y, Yang J, Wang Y, Zhu J H. Attempt to Generate Strong Basicity on Silica and Titania[J]. Journal of Physical Chemistry C 2008,112:4978-4985
    [107]Zhang J, Xu H Y, Jin X L, Ge Q J, Li W Z. Characterizations and activities of the nano-sized Ni/Al2O3 and Ni/La-Al2O3 catalysts for NH3 decomposition[J]. Applied Catalysis A:General.2005,290:87-96.
    [108]Mondal P, Dang G S, Garg M O. Syngas production through gasification and cleanup for downstream applications-Recent developments[J]. Fuel Processing Technology 2011,92: 1395-1410
    [109]Gao J, Wang Y, Ping Y, Hu D, Xu G, Gu F, Su F. A thermodynamic analysis of methnation reactions of carbon oxides for the production of synthetic natural gas[J]. RSC Advances.2012,2:2358-2368
    [110]Zhang Z L, Verykios X E. Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts[J]. Catalysis Today.1994,21:589-595
    [111]Choudhary T V, Choudhary V R. Energy-Efficient Syngas Production through Catalytic Oxy-Methane Reforming Reactions[J]. Angewandte Chemie International Edition.2008, 47:1828-1847
    [112]Bartholomew C. Carbon Deposition in Steam Reforming and Methanation[J]. Catalysis. Reviews. Science. Engineering.1982,24:67-112
    [113]于建国,于遵宏,沈才大,龚欣,肖克俭.半水煤气甲烷化耐硫催化剂的研制及其本征动力学的测试[J].化工学报.1991,01:96-102
    [114]于建国,雷浩,王辅臣,潘慧琴,孙杏元.SDM-1型耐硫催化剂甲烷化反应动力学Ⅰ.本征动力学模型[J].燃料化学学报.1994,22:225-231
    [115]Loc L C, Huan N M, Gaidai N A, Thoang H S, Agafonov Y A, Nekrasov N V, Lapidus A L. Kinetics of Carbon Monoxide Methanation on Nickel Catalysts[J]. Kinetics and Catalysis.2012,53:384-394
    [116]Otarod M, Happel J, Walter E. Transient isotopic tracing of methanation kinetics with parallel paths[J]. Applied Catalysis A:General.1997,160:3-11
    [117]Sanchez-Escribano V, Larrubia Vargas M A, Finocchio E, Busca G. On the mechanisms and the selectivity determining steps in syngas conversion over supported metal catalysts:An IR study[J]. Applied Catalysis A:General.2007,316:68-74
    [118]Govebder N S, Gideon Botes F, Mart H J M, Schouten J C. Mechanistic pathway for methane formation over an iron-based catalyst[J]. Journal of Catalysis.2008,260:254-261
    [119]Hu C W, Chen Y Q, Li P, Min H, Chen Y, Tian A M. Temperature-programmed FT-IR study of the adsorption of CO and co-adsorption of CO and H2 on Ni/Al2O3[J]. Journal of Molecular Catalysis A:Chemical.1996,110:163-169
    [120]Hu C W, Chen Y Q, Li P, Min H, Chen Y, Tian A M. On the Interaction of CO and H2 with Ni-based Catalyst[J]. Journal of Molecular Catalysis.1995,9:435-444
    [121]于建国.化工过程开发.上海:华东理工大学出版社,1996
    [122]张中琦,戴建春.化工数据处理与实验设计.北京:烃加工出版社,1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700