用户名: 密码: 验证码:
纳米Au/HZSM-5沸石催化剂的制备与正丁烷转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米金催化剂的制备和应用是近年来催化界的研究热点。沸石具有巨大的比表面积和独特的孔道结构,是制备负载金催化剂的重要载体。但由于沸石等电点低,因而在沸石上制备高分散催化剂还面临挑战。另一方面,将沸石负载金催化剂用于低碳烷烃活化转化方面的研究工作至今鲜有报道。因此本文开展了纳米HZSM-5沸石负载金催化剂的制备研究和正丁烷芳构化、异构化反应研究,主要得到以下结果和结论:
     1.采用负压沉积沉淀法并结合氮气气氛或氮气等离子体气氛焙烧处理,制备出了金颗粒比较均匀,金颗粒尺寸主要在2-10nm范围内的纳米Au/HZSM-5沸石催化剂。研究发现,焙烧处理条件(温度和气氛)是影响金颗粒在纳米HZSM-5沸石载体上分散尺度和均匀性的决定性因素。在空气气氛中焙烧时,金颗粒在200℃左右形成,在大约500℃以上烧结长大速度加快。在相同的焙烧条件下,惰性气氛(如氮气和氩气)优于空气气氛和还原性氢气气氛。在氮气等离子体气氛中焙烧优于氮气气氛中焙烧。
     2.纳米Au/HZSM-5沸石催化剂是一种金属-酸双功能催化剂。研究发现,在纳米沸石载体上负载金时B酸减少,L酸相对增加;载少量金时总酸度变化不大,载金量较高时总酸度小幅下降。在低于200℃下干燥时金主要以Au+3和Au+1态存在,可被氢气还原。随着焙烧温度的提高,Au+3消失,Au+1减少,金主要以零价态存在。金的负载方法和负载量也影响金的价态。相对于巯基保护法而言,沉积沉淀法有利于生成一价金,且低负载量时一价金比例相对较高。一价金对正丁烷有很强的低温吸附活化作用。
     3.在脉冲微反条件下,正丁烷在纳米HZSM-5沸石载体上反应活性很低,但在纳米Au/HZSM-5沸石催化剂上的反应活性显著提高。结合钾离子改性和XPS表征发现,载金催化剂的高活性与一价金离子有关。在高温下(如550℃),正丁烷在载金催化剂上可以进行芳构化反应。在氮气等离子体中焙烧的载金量为1.88%Au/HZSM-5沸石催化剂的正丁烷转化率可达64%左右,芳烃产率远高于载体,达到了24%左右。在低温下(如300℃-400℃),正丁烷在载金催化剂上进行异构化反应,在空气中焙烧的载金量为1.88%催化剂的正丁烷转化率可达7.2%左右,异丁烷选择性远高于载体,达到了85%。正丁烷在纳米Au/HZSM-5沸石催化剂上的异构化具有金属-酸双功能催化特征。
     4.在纳米Au/HZSM-5沸石催化剂(0.3%Au)上引入第二金属锌能显著提高正丁烷的芳构化活性。与正丁烷相比,异丁烷在金-锌双组份改性催化剂上不但芳构化活性显著提高,而且芳构化反应选择性也有提高。
The application and preparation of nano-Au catalyst have been received extensive attention. Zeolite with high specific surface area and unique pore pathway was considered as an important support for Au, but the isoelectric point of zeolite is too low to obtain highly dispersed Au. So far, there were few publications about the activation of light-alkane molecules on Au catalyst. Here, systematic studies were carried out to investigate the preparation of HZSM-5supported Au catalyst and its application in aromatization and isomerization of n-butane.The results and conclusions are as following:
     1. Highly dispersed Au on HZSM-5was prepared by deposition precipitation method unver negative pressure, combined with plasmas treatment in N2or Ar atmosphere. And the size of Au is2-10nm. XRD, UV-vis and TEM results show that the condition (temperature and atmosphere) of calcination would influence the dispersion of Au on HZSM-5. In the condition of air atmosphere, the formation of Au crystal particles began at temperature about200℃, but the size of Au crystal particles aggregated quickly if temperature reached500℃. However, at the same condition, the calcination in N2or Ar atmosphere was better than that in air or H2atmosphere, and we also found that in the same N2atmosphere the plasma calcination was superior to the traditional calcination.
     2. Nano-Au/HZSM-5was bi-function catalyst. NH3-TPD, XPS, H2-TPR, FTIR with pyridine or n-butane and DFT calculations show that the acidic properties of HZSM-5with high Au loading was changed, the Br(?)nsted acid sites of HZSM-5were decreased, but the Lewis acid sites were increased. Au3+and Au+are two main species of Au in Au/HZSM-5with treatment lower200℃, which could be reduced in H2flow at128℃or585℃. But with calcination temperature increased, the state of Au was transformed from Au3+(disappearance) and Au+(decrease) into Au0, and Au+exhibits high n-butane conversion activity at relatively low temperature. In addition, the valence state of Au was influenced by the preparation method and Au loading, the deposition-precipitation method facilitates to the formation of Au+compared with the hydrosulfuryl protection method with low Au loading.
     3. Experiments on mini-scale pulse reactor show that the n-butane conversion activity on Au/HZSM-5was obviously enhanced compared with that on pure HZSM-5. Compared Studies about catalyst modified by K+further demonstrated that the activity of Au/HZSM-5depends on Au+. In the condition of550℃, the aromatization of n-butane occurred over1.88 wt%Au/HZSM-5calcinated in N2plasma. The conversion of n-butane was64%and the yield of aromatics was higher than that on HZSM-5.However, at lower temperature (300-400℃), the isomerization of n-butane occurred over1.88%Au/HZSM-5calcinated in air. The conversion of n-butane was7.2%and the selectivity of i-butane was84%, which are both higher than that on HZSM-5. The Au/HZSM-5catalyst exhibits the feature of bi-function metal catalyst for the isomerization of n-butane。
     4. Au/HZSM-5modified with Zn (0.3%Au,6.0%Au, impregnation method) could greatly improve the activity of n-butane conversion, but the selectivity of aromatics was slightly decreased. In comparison with n-butane,i-butane exhibits higher activities and aromatics selectivity on Au-Zn/HZSM-5.
引文
[1]BOND G C, SERMON P A. Gold Catalysts for Olefin Hydrogenation [J].Gold Bulletin,1973,4(6):102-105.
    [2]CHA D Y, PARRAVANO G. Surface reactivity of Supported gold [J]. Journal of Catalysis,1970,18:200-221.
    [3]GALVANOS, PARRAVANO G, Chemical reactivity of supported gold [J]. Journal of Catalysis,1978,55:178-190.
    [4]BOND G C, ThOMSON D T, Catalysis by Gold [J]. Catalysis Reviews-Science and Engineering,1999,41(3-4):319-388.
    [5]HASHAMI A S K,HUNCHINGS G J, Gold Catalysis [J]. Angewandte Chemie-International Edition,2006,45(47):7896-7936.
    [6]HASHAMI A S K,Gold Catalysed Organic Reactions [J]. Chemical Reviews, 2007,107(7):3180-3211.
    [7]BOND G C, LOUIS C, ThOMPSON D T, Catalysis by Gold [J]. Catalytic Science Series, London:Imperial College Press.2006.
    [8]HUTCHINGS G T, HARUTA M, A golden age catalysis, A perspective [J]. Applied Catalysis A:General,2005,291:2-5.
    [9]HUTCHINGS G T, Vapor Phase hydrochlorination of acetglene [J]. Journal of Catalysis,1985,96:292-295.
    [10]HARUTA M,KOBAYASHI T, SANO H, et al.Novel gold catalysts for the oxidation of carbon monoxide at a temperature for below 0℃ [J]. Chemical Letters,1987,16: 405-408.
    [11]SAKURAI H,HARUTA M,Synergism in methanol synthesis from carbon dioxide gold catalysts supported on metal oxides [J]. Catalysis Today,1996,29:361-365
    [12]LOPEZ N, NORSKOV J K, JANSSENS T V W, et al. Hydrogenation of 1,3-butadiene and of crotonaldehyde over highly dispersed Au catalysts [J]. Catalysis Today,2002,74:265-296.
    [13]ANDREEVA D, TABAKOVA T, IDAKIEV V et al. Complete oxidation of benzene over Au-V2O5/TiO2 and Au-V2O5/ZrO2 catalysts [J]. Gold Bulletin,1998,31 (3):105-106.
    [14]SERMON P A, BOND G C and P B WELLS, Hydrogenation of alkenes over supported gold [J]. Journal of Chemical. Soc.Faraday Trans. I.1979,75:385
    [15]HARUTA M, H KAGEYAMA,N KAMIJO, T KOBAYASHI. Fine structure of novel gold catalysts prepared by coprecipitation [J]. Studies in Surface Science and Catalysis.1988,44:33
    [16]HARUTA M, T KOBAYASHI, H SANO. gold nanoparticles deposited on metal oxide [J]. Cattech,1987,2:405
    [17]HARUTA M,N YAMADA, T KOBAYASHI. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide [J]. Journal of Catalysis,1989,115:301
    [18]PRONE W A, ANDREW G W. Supported gold nanoparticles [J]. Proceedings of the Poyal Society (London),1925,109A:459
    [19]鲁继青,罗孟飞,辛勤.纳米金催化剂在C0低温氧化和选择性氧化中的研究进展.化工进展,2007,26(3):306-309.
    [20]WOLF A and F. SCHUTH, A systematic study of the synthesis conditions for the preparation of highly active gold catalysts [J]. Applied Catalysis A:General, 2002,226:1
    [21]HARUTA M, Catalysis of gold nanoparticles deposited on meta10xide [J].Cattech, 2002,6:102.
    [22]ZANELLA R L, DELANNOY and C LOUIS, Mechanism of deposition of gold precursors onto Ti02during the preparation by cation adsorption and deposition-precipitation with NaOH and urea [J]. Applied Catalysis A:General,2005,291:62
    [23]ZANELLA R,GIORGIO S, HENRY C R, et al. Alternative methods for the preparation of gold nanoparticles supported on TiO2 [J]. Journal of Physical Chemistry B,2002, 106(31):7634-7642.
    [24]LIN S D, BOLLINGER M, VANNICE M A. Low temperature CO oxidation over Au/ TiO2 and Au/SiO2 catalysts [J]. Catalysis Letters,1993,17:245-262.
    [25]DEKKERS M A P, LIPPITS M J, NIEWENHUYS B E. CO adsorption and oxidation on Au /TiO2 [J]. Catalysis Letters,1998,56:195-197.
    [26]ZANELLA R, GIORGIO S, SHIN C H, et al. Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2prepareddeposition-precipitation with NaOH and urea [J]. Journal of Catalysis.2004,222:357-367.
    [27]ZANELLA R, LOUIS C. Influence of the conditions of thermal treatments and of storage on the size of the gold particles in Au/TiO2 samples [J]. Catalysis Today, 2005,107-108:268-277.
    [28]HULEAV, FAJULA F, BOUSQUET J. Mild oxidation with H2O2 over Ti- containing Molecular sieves-A very Efficient Method for Removing Aromatic sulfur compounds form Fuele [J].Journal of Catalysis,2001,198(2):179.
    [29]HSIAO C Y, KANG Y M, WAN B Z. Pretreatment effect of gold/iron/zeolite-y on carbon monoxide oxidation [J]. Catalysis Today,1995,26(1):59-69.
    [30]Y M KANG, B Z WAN. Gold and iron supported on Y-type zeolite for carbon monoxide oxidation [J]. Catalysis Today,1997,35(4) 379.
    [31]IVANOVA S, PETIT G,PITCHON V. A new preparation method for the formation of gold nanoparticles onan oxide support [J]. Applied Catalysis A:General,2004,267: 191-201.
    [32]IVANOVA S,PITCHON V,PETIT G, Preparation of Alumina supported gold catalysts: Gold complexe genesis. identification and speciation by mass spectrometry [J]. Applied Catalysis A:General,2006,298:203-216.
    [33]HERNNANN J.DISDIER H,PICHAT P M.Elsevier Science BV,1987,285-293.
    [34]OKUMURA M, TANAKA K, et al. The reactivities of dimethylgold(Ⅲ) β-diketone on the surface of Ti02:A novel preparation method for Au catalysts [J]. Solid Sate Iionics,1992,95:143-149.
    [35]KOZLOVA A P,KOZLOV A Z, SUGIYAMA S, et al. Study of gold species in iron-oxide supported gold catalysts derived from gold-phosphine complex Au(PPh3) (NO3) and as-precipitated wet Fe(OH)3 [J]. Journal of Catalysis,1999,181:37-48.
    [36]ANDO M, KOBAYASHI T, HARUTA M. Optical CO detection by use of CuO/Au composite films [J].Sensors and Actuators B,1995,24-25:851-853
    [37]HARUTA M,DATE M.Advances in the catalysis of Au nanoparticles [J]. Applied Catalysis A:General,2001,222(1-2):427-437.
    [38]SANCHEZ A, ABBET S,HEIZ U, et al. When Au is not noble:Nanoscale Au catalysts [J]. Journal of Physical Chemistry A,1999,103(48):9573-9578
    [39]WAHLSTROM E, LOPEZ N, SCHAUB R, et al. Bonding of Au nanoparticles to oxygen vacancies on rutile TiO2(110) [J]. Physical Reviews Letter,2003,90(2):026-101
    [40]LOPEZ N, NORSKOV J K, JANSSENS T V W, CARLSSON A, et al. The adhesion and shape of nanosized Au particles in a Au/TiO2catalyst [J]. Journal of Catalysis,2004, 225(1):86-94
    [41]PIETRON J J, STROUD R M, ROLISON D R. Using three dimensions in catalytic mesoporous nanoarchitectures [J]. Nano Letters,2002,2(5):545-549
    [42]张鑫,徐柏庆Au/ZrO2催化CO氧化反应中ZrO2纳米粒子的尺寸效应[J].化学学报,2005,63:86-90.
    [43]YANG J H,C K COSTELLO,Y M WANG, Selective catalytic oxidation of CO:Effect of chloride on supported Au catalysts [J]. Journal of Catalysis,2002,210:375.
    [44]YANMAMURA M. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization[J]. Zeolites,1994,14(8):643-649.
    [45]MIKHAIL Khoudiakov, GUPTA M C, SAROJINI DEEVI. Au/Fe2O3nanocatalysts for CO oxidation:A comparative studyof deposition-precipitation and coprecipitation techniques [J]. Applied Catalysis A:General,2005,291, (1-2):151-161.
    [46]YONG J Ch, CHUIN T Y. Deposition of Highly Dispersed Gold on Alumina Support [J]. Journal of Catalysis,2001,200:59-68.
    [47]JI F J,KENTA HARAKI,JUNKO N. K.Selective Hydrogenation of Acetylene over Au/Al2O3Catalyst [J]. Journal Physical Chemistry B,2000,104:11153-11156.
    [48]HARUTA M, S TSUBOTA, T KOBAYASHI. Low-Temperature Oxidation of CO over Gold Supported on TiO2),α-Fe2O3, and Co304 [J]. Journal of Catalysis,1993,144:175-192.
    [49]SARKANY A., CHAYZ S, FREY K. Some features of acetylene hydrogenation on Au-iron oxide catalyst [J]. Applied Catalysis A:General,2010,380:133-141
    [50]TOSHIO HAYASHI,KOJI TANAKA, MASATAKE HARUTA. Selective Vapor-Phase Epoxidation of Propylene over Au/TiO2 Catalysts in the Presence of Oxygen and Hydrogen [J]. Journal of Catalysis,1998,178:566-575.
    [51]CTMNINGHAM D A H, TANAKA K, HARUTA M. Structural analysis of Au/Mg(OH)2during deactivation by Debye function analysis [J]. Catalysis Letters,1996,40:175-181.
    [52]MEHMET ZAHMAKRAN, SAIM OZKAR. The preparation and characterization of gold(O) nanoclusters stabilized by zeolite framework:Highly active, selective and reusable catalyst in aerobic oxidation of benzyl alcohol [J]. Materials Chemistry and Physics,2010,121:359-363.
    [53]BOGDANCHIKOVA N, SIMAKOV A, SMOLENTSEVA E, et al. Stabilization of catalytically active gold species in Fe-modified zeolites [J]. Applied Surface Science,2008, 254:4075-4083.
    [54]JI Q LU, NA LI, XIAO RONG PAN, et al. Direct propylene epoxidation with H2 and O2 over In modified Au/TS-1 catalysts [J]. CatalysisCommunications,2012,28:179-182
    [55]CHAO SUN, YISU YANG, JUNMING DU, et al. Dehydrogenation inhibition on nano-Au/ZSM-5 catalyst:a novel route for anti-coking in methanol to propylene reaction [J]. Chemical. Communucation,2012,48:5787-5789.
    [56]XIN KUI WANG, Al QIN WANG, XIAO DONG WANG, et al. Gold supported on surface acidity modified ZSM-5 for SCR of NO with propene. React. Kinet [J]. Catalysis Letters, 2007,92:33-39.
    [57]LAURA PRATI, FRANCESCA PORTA. Oxidation of alcohols and sugars using Au/C catalysts:Part 1. Alcohols [J]. Applied Catalysis A:General,2005,291:199-203.
    [58]CATTIN L, TOUGAARD S, STEPHANT N, et al. On the ultrathin gold film used as buffer layer at the transparentconductive anode/organic electron donor interface [J]. Gold Bulletin,2011,44:199-205.
    [59]HARUTA M, Size and support-dependency in the catalysis of gold [J]. Catalysis Today,1997,36:153.
    [60]CAAUSP, BRINKNER A, MOHRC, et al. Supported gold nanoparticles from quantum dot to mesoscopic size scale:Effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups [J]. Journal of the American Chemical Society,2000,122:11430-11439.
    [61]BIANCHI C,PORTA F, PRATI L, et al. Selective liquid phase oxidation using gold catalysts [J].Topics in catal 2000,13:231-236.
    [62]TANAKA K, HAYASHI T, HARUTA M [J] The Japan Institute of Metals,1996,60:547-550.
    [63]CHOUDHARY T V, SIVADINARAYANA C, DATYE A K. Acetylene Hydrogenation on Au-Based Catalysts [J]. Catalysis Letters,2003,86:1-8.
    [64]ANTAL SARKONY. Acetylene hydrogenation on SiO2 supported gold nanoparticles [J].React Kinet,Catalysis Letters 2009,96:43-54.
    [65]TAYLOR B, LAUTERBACH J, W N DELGASS. Gas-phase epoxidation of propylene over small gold ensembles on TS-1 [J]. Applied Catalysis A:General,2005,291:188-198.
    [66]BOND GEOFFREY C, LOUIS C,(徐柏庆译),黄金的催化作用[M].北京:科学出版社,2008.
    [67]PECK J A and BROWN G E. Speciation of aqueous gold (Ⅲ) chlorides from ultraviolet/visible absorption and Raman/resonance Raman spectroscopies[J]. Geochim. Cosmochim. Acta,1991,55:671
    [68]FARGES F, SHARPS J A and BROWN G E, Local environment around gold (Ⅲ) in aqueous chloride solutions:An EXAFS spectroscopy study [J]. Geochim Cosmoshim Acta 1993,57: 1243.
    [69]MURPHY P J and GRANGE M S L. Raman spectroscopy of gold chloro-hydroxy speciation in fluids at ambient temperature and pressure:are-evaluation of the effects of pH and chloride concentration [J].Geochim Cosmochim Acta,1998,62:3515
    [70]HODGE N A, KIELY C J. WHYMAN R, et al. Microstructural comparison of calcined and uncalcined gold iron-oxide catalysts for low temperature CO oxidation [J]. Catalysis Today,2002,72:133-144.
    [71]郝郑平,安立敦,王弘立.负载型催化剂催化C0氧化的性能(Ⅱ)[J].分子催化,1998,12(1):63-66.
    [72]TSUBOTA S, CUNNINGHAM D A H, BANDO Y, et al. Preparation of nanometer gold strongly interacted with Ti02 and the structure sensitivity in low-temperature oxidation of CO [J]. Studies in Surface Science and Catalysis,1995,91:227-239.
    [73]TAKASHI SANADA, KAZU OKUMURA, CHIKA MURAKAMI, Spontaneous Dispersion of Gold Nanoparticles Loaded on USY Zeolites as Analyzed by XAFS, XRD, and TEM [J]. Chemical Letter,2012,41,337-339.
    [74]CHOUDHARY T V, SIVADINARAYANA C, CHUSUEI C C. CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6] (BF4)2 Complex [J]. Journal of Catalysis, 2002,207,247-255.
    [75]XIAO YAN LIU, CHUNG YUAN MOU, Szetsen Lee. Room temperature O2 plasma treatment of SiO2 supported Au catalysts for selective hydrogenation of acetylene in the presence of large excess of ethylene [J]. Journal of Catalysis,2012,285:152-159.
    [76]RODOLFO ZANELLA, CATHERINE LOUIS, SUZANNE GIORGIO. Crotonaldehyde hydrogenation by gold supported on TiO2:structure sensitivity and mechanism [J]. Journal of Catalysis,2004,223:328-339.
    [77]HARUTA M, The abilities and potential of gold as a catalyst, Report of the Osaka National Research Institute,No.1999,393:pp.1-93
    [78]徐新,罗国华,赵如松.高活性负载型纳米金催化剂的制备及应用进展.石油化工,2005,34(9):898-902.
    [79]王东辉,程代云,郝郑平等.纳米金催化剂及其应用[M].北京:国防工业出版社,2006:205-206.
    [80]IZABELA SOBCZAK, HUBERT PAWLOWSKI, JAROSLAW CHMIELEWSKI, MARIA ZIOLEK. Gold and gold-iron modified zeolites-Towards the adsorptive deodourisation [J]. Journal of Hazardous Materials,2010,179:444-452.
    [81]TUZOVSKAYA I, BOGDANCHIKOVA N, SIMAKOV A. Structure and electronic states of gold species in mordenites [J]. Chemical Physics,2007,338:23-32.
    [82]KONOVA P, NAYDENOV A, VENKOV C V. Activity and deactivation of Au/TiO2 catalyst in CO oxidation [J]. Journal of Molecular Catalysis A:Chemical,2004,213:235-240.
    [83]WANG AI QIN, JUN HONG LIU, S.D.Lin. A novel efficient Au-Ag alloy catalyst system: preparation, activity, and characterization [J]. Journal of Catalysis,2005,233: 186-197.
    [84]ARRII S, MORFIN F, RENOUPREZ A J. Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization:Direct Evidence of Support Contribution [J]. Journal of the American Chemical Society,2004,126:1199-1205.
    [85]RADNIK J, MOHR C, CLAUS P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and material synthesis [J]. Physics Chemistry,2003,5:172-177.
    [86]SMOLENTSEVA E, BOGDANCHIKOVA N, SIMAKOV A. Gurin, Influence of copper modifying additive on state of gold in zeolites [J]. Surface. Science,2006,600:4256-4259.
    [87]MOHAMED M MOHAMED, TAREK M SALAMA, RYUICHIROO, MASARU ICHIKAWA. Characterization of Gold(Ⅰ) in Dealuminated H-Mordenite Zeolite [J]. Langmuir,2001,17:5678-5684.
    [88]JUN NAN LIN, BEN ZU WAN. Effects of preparation conditions on gold/Y-type zeolite for CO oxidation [J].Applied Catalysis B:Environmental,2003,41:83-95.
    [89]SINHA A K, SEELAN S, AKITA T, TSUBOTA S, HARUTA M. Vapor phase propylene epoxidation over Au/Ti-MCM-41 catalysts prepared by different Ti incorporation modes [J]. Applied Catalysis A:General,2003,240:243-252.
    [90]高滋主编.沸石催化与分离技术.[M].北京:中国石化出版社,1999,3-8.
    [91]WEITKAMP J. Zeolites and catalysis [J]. Solid State Ionics,2000,131(1):175-188.
    [92]YANMAMURA M. Synthesis of ZSM-5 zeolite with small crystal size and its catalytic performance for ethylene oligomerization [J]. Zeolites,1994,14(8):643-649.
    [93]SERRANO D P, AGUADO J, ESCOLA J M, et al. Influence of nanocrystalline HZSM-5 external surface on the catalytic cracking of polyolefins [J]. Journal of Analytical and Applied Pyrolysis,2005,74:353-360.
    [94]ZHANG W, BAO X, GUO X, et al. A high-resolution solid-state NMR study on nano-structured HZSM-5 zeolite [J]. Catalysis Letter,1999,69(1-2):89-94.
    [95]王学勤,王祥生.苯乙烯烷基化HZSM-5沸石催化剂积炭失活的研究Ⅰ.不同晶粒大小沸石的合成及HZSM-5沸石的积炭过程[J].石油学报(石油加工),1994,10(2):38-43.
    [96]孙慧勇,王建国,胡津仙等.正十六烷在小晶粒FeZSM-5上的裂化[J].石油炼制与化工,2001,32(5):55-59.
    [97]PU S B, INUI T. Influence of crystallite size on catalytic performance of HZSM-5 prepared by different methods in 2,7-dimethylphthalene isomerization [J]. Zeolites,1996,17(4):334-339.
    [98]张贺,李钢,王祥生等.不同晶粒大小HZSM-5载体对甲烷无氧芳构化反应的影响[J].分子催化,2003,17(1):70-74.
    [99]张建祥,关乃佳,李伟等Zn/ZSM-5分子筛晶粒大小和预处理条件对丙烷芳构化性能的影响[J].石油化工,2000,1:11-15.
    [100]SUGIMOTO M, KATSUNO H, TAKATSU K, et al. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites [J]. Zeolites,1987,7(6):503-507.
    [101]王基铭,袁晴棠主编.石油化工技术进展.[M].北京:中国石化出版社,2002.
    [102]王岳,李凤艳,赵天波等.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能[J].石油化工高等学校学报,2005,18(4):20-23.
    [103]滕加伟,赵国良,谢在库等.ZSM-5分子筛晶粒尺寸对C4烯烃催化裂解制丙烯的影响[J].催化学报,2004,25(8):602-606.
    [104]郭洪臣.[D].大连:大连理工大学博士论文,1998.
    [105]何奕工.绿色石化技术的科学与工程基础.[M].北京:中国石油化工出版社,2001.
    [106]山红红,李春义,赵博艺等.FCC汽油中硫分布和催化脱硫研究[J].石油大学学报(自然科学版),2001,25(6):78-80.
    [107]张刘军,高金森,徐春明,碳四烃的综合利用[J].天然气与石油,2005,23(3):48-51
    [108]彭国锋,赵田红,天然气制乙烯的研究进展[J].天然气制乙烯技术进展,2006,209(1):70-72.
    [109]白颐.我国C4烃和芳烃及其下游产品发展机会分析[J].化学工业,2009,27(1):1-7
    [110]陆江银,赵震,徐春明,碳四烷烃催化裂解制低碳烯烃的研究进展[J].现代化工.2004,24(8):15-18.
    [111]JIANG YIN LU, ZHEN ZHAO, CHUN MING XU, et al. FeHZSM-5 molecular sieves-Highly active catalysts for catalytic cracking of isobutane to produce ethylene and propylene [J]. Catalysis Communications,2006.7:199-203.
    [112]XIANG XUE ZHU, SHENG LIN LIU, YUE QIN SONG et al. Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite [J]. Applied. Catalysis,2005,290:191-199.
    [113]XIANG XUE ZHU, SHENG LIN LIU, YUE QIN SONG, et al. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts [J]. Catalysis Letters,2005,103(4):201-210.
    [114]宋月芹,徐龙伢,谢素娟等.液化气低温芳构化制取高辛烷值汽油ZSM-5催化剂的研究[J].催化学报,2004,25(3):199-204.
    [115]朱向学,张士博,钱新华等.水蒸汽处理对ZSM-5酸性及其催化性能丁烯裂解性能的影响[J].催化学报,2004,25(7):574-576.
    [116]钱伯章.轻烃烷烃活化技术的进展[J].石油与天然气化工,2005,349(6):465-469
    [117]王海彦.异丁烯生产技术进展[J].石油化工,1995,24:511.
    [118]LUBANGO L M, SCURRELL M S. Light alkanes aromatization to BTX over Zn-ZSM-5 catalysts:Enhancements in BTX selectivity by means of a second transition metal ion [J]. Applied Catalysis A:General,2002,235:265-272.
    [119]TRAVERS C,ESSAYEM N, DELAGE M. Heteropolyanions based catalysts for paraffins Isomerization [J]. Catalysis Today,2001,65(2-4):355-361.
    [120]缪长喜,谢在库,陈庆龄.固体超强酸催化剂的新进展[J].石油炼制与化工,1998,29:29-32.
    [121]MAXWELL I E, STORK W H J, Hydrocarbon processing with zeolites [J]. Studies in Surface Science and Catalysis,1991,58:571-630.
    [122]KOLUMDUS A J, TELFORD C D, YOUNG D [P]:EP42252(1981).
    [123]SIKKENGA D L, NEVITT TH D, JEROME N F.Process to convert linear alkanes [P].US4433190(1984).
    [124]YOUNG C L 0', BROWNE J E, MATTEO J F, SAWICKI R A, HAZEN J, Skeletal isomerization of n-butylenes to isobutylene on zeolites [P].USP5198597(1993).
    [125]GNEP N S, DOYEMET J Y, SECO A M, et al. Conversion of light alkanes into aromatic hydrocarbons:dehydrocyclodimerization of propane on PtHZSM-5 catalysts [J]. Applied Catalysis A:General,1987,35:93-108.
    [126]NAKAMURA I, FUJIMOTO K. On the role of gallium for the aromatization of lower paraffins with Ga-promoted ZSM-5 catalysts [J]. Catalysis Today,1996,31:335-344.
    [127]MILLS G A, HEINEMANN H, MILIKAN T H and OBLAD A G [J]. Industrial & Engineering Chemistry Research,1953,45:134.
    [128]RIBEIRO F, MARCILLY C and GUISNET M, Hydroisomerization of n-hexane on platinum zeolites:Ⅱ.Comparison between the reaction mechanisms on platinum/Y-zeolite and on platinum/mordenite [J]. Journal of Catalysis,1982,78:275.
    [129]SACHTLER W M H, Catalytic isomerization over metal, acid and hybridsites [J]. Studies in Surface Science and Catalysis,1998,113:41.
    [130]TABORA J E, DAVIS R J, The role of transition metal promoters on sulfated zirconia catalysts for low-temperature butane isomerization [J]. Journal of Catalysis. 1996,162:125.
    [131]ALMANZA L 0, NARBESHUBER T, ARAUJO P D. On the influence of the mordenite acidity in the hydroconversion of linear alkanes over Pt-mordenite catalysts [J]. Applied Catalysis A:General.1999,178:39.
    [132]BABURKEK E, NOVAKOVA J, Effect of platinum in bifunctional isomerization of n-butane over acid zeolites [J]. Applied Catalysis A:General.2000,190:241.
    [133]王文寿,郭洪臣,刘海鸥,王祥生.NiO或NiSO4改性纳米HZSM-5催化剂的加氢脱硫活性[J].催化学报,2008,29(8):705-709.
    [134]WENSHOU WANG, HONG CHEN GUO, HAI OU LIU, XIANG SHENG WANG. Promoting Effect of SO42- on Desulfurization Activity on Ni/Supports for Fluidized Catalytic Cracking (FCC) [J].Gasoline. Energy & Fuels,2008,22(5):2902-2908.
    [135]肖锦堂,烷烃催化脱氢生产C3-C4烯烃工艺(之三)[J].天然气工业,1994,14(4)72.
    [136]马书启,李钢,王祥生.钛硅分子筛催化1-丁烯环氧化反应溶剂效应和酸碱效应研究[J].分子催化,2005,19(1):7-1i
    [137]MARTINDALE D C, KUCHAR P J, OLSON R K, paper presented at 1988 AIChE summer national meeting [C]. Colorado, August 21-24,1988.
    [138]BLASCO T, CORMA A, NAVARRO M T, et al. Synthesis, characterization and catalytic activity of Ti-MCM-41 structures [J]. Journal of catalysis,1995,156(1):65-74.
    [139]闫海生,刘靖,王祥生.环氧丙烷的溶剂分解反应研究[J].催化学报,2001,22(3):250-254.
    [140]SAITO S, HIRABAYASHI K, SHIBATA S, T KONDO, K ADACHI. Paper presented at 1992 NPRA annual meeting [M].New Orleans, March 22-24,1992, AM-92-38.
    [141]FUKASE S, IGARASHI N, KATO K, NOMURA T, ISHIBASHI Y, catalysts in Petroleum Refining and Petrochemical Industries 1995, Proceedings of the 2nd International Conference on Catalysts in Petroleum refining and Petrochemical Industries [J]. Studies in Surface Science and Catalysis,1995,100:455.
    [142]NAGAMORI Y, KAWASE M, Converting light hydrocarbons containing olefins to aromatics(Alpha Process) [J]. Microproous and Mesoporous Materials,1998, 21:439-445.
    [143]吕宁.烃类的芳构化(Ⅰ)[J].石油化工,1987,16(8):541.
    [144]徐佩若,班卡拉,吴指南等.碳四烃在改性HZSM-5分子筛上芳构化研究[J].燃料化学学报,1993,21(2):127.
    [145]新康.裂解轻油芳构化制取BTEX的工业试验[J],石油炼制与化工,1994,25(1):26.
    [146]程漠杰,王江迈,杨亚书等. ZnHZSM-5上丙烷芳构化的研究:丙烷的活化[J].物理化学学报,1995,11(8):724.
    [147]林胜,徐奕德,陶龙骧等.轻烃在改性ZSM-5催化剂上转化成芳烃与低碳烯烃的选择性控[J].催化学报,1996,17(6):526.
    [148]李福芬,贾文浩,等.丁烯在纳米H-ZSM-5催化剂上的催化裂解反应[J].催化学报,2007,28(6):567-571.
    [149]贾文浩,徐瑞芳,李福芬等.纳米HZSM-5沸石酸度的调节及对液化气裂解反应的影响[J].分子催化.2009,23(1):11-16.
    [150]郝代军,朱建华,王国良等.液化石油气制芳烃技术开发及工业应用[J].现代化工,2006,26(10):55.
    [151]王滨,高强,索继栓等.C4、C5烯烃制乙烯丙烯催化技术进展[J].分子催化,2006,20(2):188-192.
    [152]CHOUDHARY V R, KINAGE A K, SIVADINARAYANA C, et al. Pulse Reaction Studies on Variations of Initial Activity/Selectivity of O2and H2Pretreated Ga-Modified ZSM-5 Type Zeolite Catalysts in Propane Aromatization. [J]. Journal of Catalysis,1996, 158(1):23-33.
    [153]贾立明,方向晨,刘全杰,徐会青.Zn-Pt-Re/ZSM-5芳构化催化剂的研究[J].石油炼制与化工,2012,7:16-21.
    [154]王恒强,张成华,吴宝山Ga、Zn改性方法对HZSM-5催化剂丙烯芳构化性能的影响[J].燃料化学,2010,5:576-581.
    [155]王子健,于中伟,刘洪全,马爱增.异丁烷芳构化技术的研究[J].石油炼制与化工,2012.7:25-28.
    [156]INUI T, OKAZUMI F. Propane conversion to aromatic hydrocarbons on Pt/HZSM-5 catalysts [J]. Journal of Catalysis,1984,90:366-367.
    [157]UPHADE B S, OKUMURA M, TSUBOTA S, et al. Effect of physical mixing of CsCl with Au/Ti-MCM-14 on the gas-phase epoxidation of propene using H2consumption. [J]. Applied Catalysis A:General.2000,190:43-50.
    [158]YANG J H, COSTELLO C K, et al. Selective catalytic oxidation of CO:Effect of chloride on supported Au catalysts [J]. Journal of Catalysis,2002,210:375-386.
    [159]CLAUS P, BRUCKNER A, MOHR C, et al. Supported gold nanoparticles from quantum dot to mesoscopic size scale:effect of electronic and structural properties on catalytic hydrogenation of conjugated functional groups [J]. Journal of the American Chemical Society,2000,122(46):11430-11439.
    [160]GLUHOI A C, TANG X, MARGINEAM P, et al. Characterization and catalytic activity of unpromoted and alkali (earth)-promoted Au/Al2O3catalysts for low-temperature CO oxidation [J]. Topics in Catalysis,2006,39(1-2):101-110.
    [161]MARGITFALVI J L, FASI A, HEGEDUS M, et al. Au/MgO catalysts modified with ascorbic acid for low temperature CO oxidation [J]. Catalysis Today,2002,72(1-2): 157-169.
    [162]PESTRYAKOV A, TUZOVSKAYA I, SMOLENTSEVA E, et al. Formation of gold nanoparticles in zeolites [J]. International Journal of Modern Physics B,2005, 19(15-17):2321-2326.
    [163]CHAO SUN, YISU YANG, JUN MING DU, FENG QIN, YI TANG, Dehydrogenation inhibition on nano-Au/ZSM-5 catalyst:a novel route for anti-coking in methanol to propylene reaction [J]. Chemical Communication,2012,48:5787-5789.
    [164]EVGENY A. PIDKO and RUTGER A. VAN SANTEN, Activation of Light Alkanes over Zinc Species Stabilized in ZSM-5 Zeolite:A Comprehensive DFT Study [J]. Journal of Physical Chemistry. C,2007,111:2643-2655.
    [165]ZECCHINA A, BORDIGA S. et al. Silicalite characterization.2. IR spectroscopy of the interaction of CO with internal and external hydroxyl groups [J]. Journal of Physical Chemistry,1992,96:4991-4997.
    [166]JIN F, LI Y D. A FTIR and TPD examination of the distributive properties of acid sites on ZSM-5 zeolite with pyridine as a probe molecule [J]. Catalysis. Today,2008,doi:10.1016/j.cattod.2008.06.07.
    [167]孙琳,C4液化气中丁烯在纳米ZSM-5沸石上芳构化,[D].大连:大连理工大学博士论文,2010.12.
    [168]FU Q, SALTSBURG H, FLYTZANI STEPHANOPOULOS M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts [J].Science,2003,301(5635): 935-938.
    [169]马书启,Au/TS-1催化氢氧直接合成过氧化氢及与氧化反应的集成研究[D].大连:大连理工大学博士论文,2008.9.
    [170]LIU JIA XU, AISHA. NULAHONG, HE NING, GUO H C et al. The crucial role of reaction pressure in the reaction paths for i-butane conversion over Zn/HZSM-5 [J]. Journal of Chemical Engineering,2013,218:1.
    [171]艾沙·努拉洪,刘家旭,赵文平,王桂茹,郭洪臣,正丁烷和异丁烷在改性纳米HZSM-5上的芳构化反应[J].分子催化,2012,26(3):25.
    [172]叶娜.纳米ZSM-5沸石上C4液化气低温芳构化反应研究[D].(硕士学位论文)大连:大连理工大学,2006.
    [173]田部浩三.郑禄彬译,新固体酸和碱及其催化作用.[M].北京:化学工业出版社.(T anBu Hao San M. New solid acids and bases their catalytic properties. Lu Bin Zheng transl. Beijing:Chem Ind Press),1992,399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700