用户名: 密码: 验证码:
Ag/CeO_2催化剂体系Ag-CeO_2相互作用及结构—性能关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
理解催化剂的结构-性能关系对设计和开发高效催化剂具有指导意义,以结构均一规整材料为模型催化剂开展催化表面化学研究是实现上述目标的主要途径,但传统的单晶模型催化剂表面化学研究与真实催化体系之间存在着所谓的“材料鸿沟”和“压力鸿沟”。纳米材料合成技术的快速发展使结构均一的金属和氧化物纳米晶材料的可控制备成为现实。结构均一纳米晶材料的出现为克服“材料鸿沟”和“压力鸿沟”的催化表面化学研究提供了合适的模型催化剂;同时结构均一纳米晶材料也是高活性和高选择性催化剂的理想材料。
     本篇博士论文以Ag/CeO2催化剂为研究体系,基于结构均一的CeO2纳米晶和Ag纳米晶分别构筑Ag/CeO2模型催化剂和CeO2/Ag模型催化剂,系统研究了Ag/CeO2催化剂体系Ag-CeO2相互作用及结构-性能关系,取得如下创新研究结果:
     1.以CeO2粉末为载体,利用沉淀沉积法制备不同担载量的Ag/CeO2催化剂,发现焙烧温度对Ag-CeO2相互作用、催化剂结构和催化反应性能有显著影响。200度空气焙烧的Ag/CeO2催化剂中存在溶入Ce02晶格的Ag+离子;500度空气焙烧后该Ag+离子溶出,并导致负载在Ce02表面的Ag纳米粒子的结构重构。非常有意思,该结构重构依赖于Ag的担载量(负载在Ce02表面的Ag纳米粒子)。低担载量Ag/CeO2催化剂中Ag+离子的溶出导致负载在Ce02表面Ag纳米粒子更好的分散,而高担载量Ag/CeO2催化剂中Ag+离子的溶出导致负载在Ce02表面Ag纳米粒子的聚集长大。Ag/CeO2催化剂催化CO氧化反应活性与Ag纳米粒子的分散度成正比,Ag纳米粒子-CeO2界面为Ag/CeO2催化剂催化CO氧化反应的活性结构。
     2.以暴露特定晶面的Ce02纳米晶为载体,包括形貌均一的暴露{100}面的Ce02立方体和暴露{100}面和{110}面的Ce02纳米棒,利用等体积浸渍法制备Ag/CeO2催化剂,发现晶面依赖的Ce02氧缺陷浓度/类型和Ag-CeO2相互作用及其对Ag/CeO2催化剂结构和催化CO氧化反应性能的影响。具有较高氧缺陷浓度和小尺寸/大尺寸氧缺陷结构的Ce02纳米棒能够稳定带部分正电荷的Agn+团簇,而相同条件下具有较低氧缺陷浓度和大尺寸氧缺陷结构的Ce02纳米立方体只能稳定Ag纳米粒子;Ag纳米粒子比Agn+团簇具有更强的活化Ce02晶格氧的能力和促进Ce02还原的能力。Ag纳米粒子-具有合适氧缺陷浓度和结构的Ce02界面表现出最高的催化CO氧化反应活性。Ce02立方体是制备低Ag担载量但高CO氧化催化活性的Ag/CeO2催化剂的合适载体。
     3.合成出暴露特定晶面的Ag纳米晶,包括暴露{100}面的Ag纳米立方体,暴露{111}面的Ag纳米片,暴露{100}面和{110}面的Ag纳米棒及暴露多种晶面的Ag纳米多面体,并理解了PVP和HC1存在下乙二醇还原AgNO3方法中Ag纳米立方体和Ag纳米棒的生长机理,进一步探索并发展了氧气气氛下水热合成方法成功地在Ag纳米晶表面生长CeO2纳米粒子,制备基于Ag纳米晶的CeO2/Ag倒载催化剂。观察到Ce02纳米粒子的存在能够增强Ag纳米粒子的表面增强拉曼效应;同时CeO2/Ag倒载催化剂也表现出较好的催化CO氧化反应性能,表明Ag-CeO2界面是该催化反应的活性结构。
     上述研究结果对于基于纳米晶的金属/氧化物模型催化剂的构筑及其金属-氧化物载体相互作用和结构-性能关系研究具有积极的指导意义。
The fundamental understanding of structure-catalytic performance relation of catalysts is of great importance in the design and exploring of novel efficient catalysts. The employed main approach is to study the catalytic surface chemistry of model catalysts with well-defined surface structures. However, there exist the so-called "materials gap" and "pressure gap" between the catalytic surface chemistry study of traditional model catalysts based on single crystals and the real catalytic systems. The rapid development of the synthesis of nanomaterials realizes the controllable preparation of metal and metal oxides nanocrystals with uniform and well-defined structures. Nanocrystals with uniform and well-defined structures consist of novel model catalysts for the catalytic surface chemistry study without the "material gap" and the "pressure gap", meanwhile, they also are nice candidates for active and selective catalysts.
     In this dissertation, Ag/CeO2catalyst was chosen as the target system, Ag/CeO2model catalysts based on CeO2and Ag nanocrystals have been fabricated and systematically investigated. The Ag-CeO2interaction and the structure-activity relation of Ag/CeO2catalyst were derived, including::
     1. Ag/CeO2catalysts with various Ag loadings were synthesized via traditional deposition-precipitation method using CeO2powder as support. It was found that the calcination temperature significantly affects the Ag-CeO2interaction structure and catalytic performance of Ag/CeO2catalysts. Ag/CeO2catalysts calcined at200℃contain Ag+dissolved in the CeO2lattice; calcinations at500℃result in the segregation of these dissolved Ag+from the CeO2lattice. Interestingly the segregation of dissolved Ag+from the CeO2lattice leads to the restructuring of Ag nanoparticles supported on CeO2and such a restructuring process depends on the size (Ag loading) of these Ag nanoparticles. The segregation of dissolved Ag+from the CeO2lattice results in the redispersion of supported Ag nanoparticles for Ag/CeO2with low Ag loadings and fine supported Ag nanoparticles but the aggregation of supported Ag nanoparticles for Ag/CeO2with high Ag loadings and large supported Ag nanoparticles. The catalytic activity of Ag/CeO2catalysts correlates positively with the dispersion of supported Ag nanoparticles and the Ag NPs-CeO2interface of Ag/CeO2catalysts is the active structure to catalyze CO oxidation.
     2. Uniform CeO2nanocrystals with different morphologies including cubic nanocrystals exposing{100} crystal planes, rod-like CeO2nanocrystals exposing{100} and{110} crystal planes were synthesized and employed as the supports to prepare Ag/CeO2catalysts by impregnation method. The shape-dependent interplay between oxygen vacancies concentration/type and Ag-CeO2interaction in Ag/CeO2catalysts and their influence on the catalytic activity of CO oxidation have been successfully elucidated. CeO2nanorods with a high oxygen vacancy concentration and small-sized/large-sized oxygen vacancies can stabilize the partially positively-charged Agn+clusters whereas under the same condition CeO2nanocubes with a low oxygen vacancy concentration and only largely-sized oxygen vacancies can only stabilize Ag nanoparticles; Ag nanoparticles exhibit stronger abilities to activate the lattice oxygen of CeO2and to promote the reducibility of CeO2than Agn+clusters. Ag nanoparticles--CeO2interface with suitable concentration and structure of oxygen vacancies are most active to catalyze CO oxidation. CeO2nanocubes are the suitable support for the preparation of Ag/CeO2with a low Ag loading but active in CO oxidation.
     3. Uniform Ag nanocrystals with different morphologies including cubic Ag nanocrystals exposing{100} crystal planes, plate-like Ag nanocrystals exposing{111} crystal planes, rod-like Ag nanocrystals exposing{100} and{110} crystal planes and Ag polyhedron exposing a variety of crystal faces were successfully synthesized. The growth mechanisms of Ag nanocubes and nanorods via the EG reduction of AgNO3in the presence of PVP and HCl have been elucidated. A novel hydrothermal method (oxygen-assisted hydrothermal method) was successfully developed for the growth of CeO2nanoparticles on Ag nanocrystals, i.e., the inverse CeO2/Ag model catalysts based on Ag nanocrystals. It was observed that the surface enhanced Raman effects of Ag nanoparticles can be enhanced by the presence of CeO2adparticles. CeO2/Ag inverse catalysts also exhibit nice activity in catalyzing CO oxidation, supporting that the Ag NPs-CeO2interface is the active structure.
     Above experimental results provide deep insights into the fabrication of metal/oxide model catalysts based on nanocrystals and the metal-oxide support interactions and structure-activity relation of supported catalysts.
引文
[1]"World Energy Intensity:Total Primary Energy Consumption per Dollar of Gross Domestic Product using Purchasing Power Parities,1980-2004" (XLS). Energy Information Administration, U.S. Department of Energy. August 23,2006. Retrieved 2007-04-03.
    [2](a) Kelly-Yong, T. L.; Lee, K. T.; Mohamed, A. R.; Bhatia, S., Potential of hydrogen from oil palm biomass as a source of renewable energy worldwide. Energy Policy 2007,35 (11), 5692-5701. (b) Kleijn, R.; Van der Voet, E., Resource constraints in a hydrogen economy based on renewable energy sources:An exploration. Renewable and sustainable energy reviews 2010,14 (9),2784-2795.
    [3]Cao, G., Nanostructures & nanomaterials:synthesis, properties & applications. World Scientific Publishing Company:2004.
    [4]Iijima, S., Helical microtubules of graphitic carbon. Nature 1991,354 (6348),56-58.
    [5]Somorjai, G. A., Introduction to Surface Chemistry and Catalysis, John Wiley & Sons. New York 1994,491.
    [6]黄伟新,催化表面物理化学的模型体系研究.中国科学:化学2012,42(4),469479.
    [7]张立德;牟季美,纳米材料学.辽宁科学技术出版社:1994.
    [8]Ertl, G., Reactions at surfaces:From atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed 2008,47 (19),3524-3535.
    [9]Narayanan, R.; El-Sayed, M. A., Catalysis with transition metal nanoparticles in colloidal solution:nanoparticle shape dependence and stability. J. Phys. Chem. B 2005,109 (26), 12663-12676.
    [10]Zecchina, A.; Groppo, E.; Bordiga, S., Selective catalysis and nanoscience:An inseparable pair. Chem.-Eur. J.2007,13 (9),2440-2460.
    [11]Falicov, L.; Somorjai, G., Correlation between catalytic activity and bonding and coordination number of atoms and molecules on transition metal surfaces:Theory and experimental evidence. Proceedings of the National Academy of Sciences 1985,82 (8), 2207-2211.
    [12]Brandt, R. K.; Hughes, M.; Bourget, L.; Truszkowska, K.; Greenler, R. G., The interpretation of CO adsorbed on Pt/SiO2 of two different particle-size distributions. Surf. Sci. 1993,286(1),15-25.
    [13]Xia, Y.; Xiong, Y.; Lim, B., et al., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed 2009,48,60-103.
    [14]Tao, A. R.; Habas, S.; Yang, P., Shape control of colloidal metal nanocrystals. Small 2008,4 (3),310-325.
    [15]Christopher, P.; Linic, S., Engineering selectivity in heterogeneous catalysis:Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc.2008,130 (34),11264-+.
    [16]Christopher, P.; Linic, S., Shape-and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. Chemcatchem 2010,2 (1),78-83.
    [17]Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D., Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem.-Asian J.2006,1 (6),888-893.
    [18]Tian, N.; Zhou, Z.-Y.; Sun, S.-G.; Ding, Y.; Wang, Z. L., Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316 (5825),732-735.
    [19]Ma, Y; Kuang, Q.; Jiang, Z.; Xie, Z.; Huang, R.; Zheng, L., Synthesis of Trisoctahedral Gold Nanocrystals with Exposed High-Index Facets by a Facile Chemical Method. Angew. Chem. Int. Ed 2008,47 (46),8901-8904.
    [20]Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H., Growth of Tetrahexahedral Gold Nanocrystals with High-index Facets. J. Am. Chem. Soc.2009,131 (45), 16350-+.
    [21]Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005,109 (51),24380-24385.
    [22]Chang, S. J.; Li, M.; Hua, Q.; Zhang, L. J.; Ma, Y. S.; Ye, B. J.; Huang, W. X., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J. Catal.2012,293,195-204.
    [23]Deshpande, P. A.; Madras, G., Support-dependent activity of noble metal substituted oxide catalysts for the water gas shift reaction. AIChE J.2010,56 (10),2662-2676.
    [24]鲁继青;罗孟飞;雷浩;包信和;李灿,Epoxidation of Propylene on NaCl-Modified VCe1-x Cux Oxide Catalysts with Direct Molecular Oxygen as the Oxidant.2002.
    [25]Baltes, C; Vukojevic, S.; Schiith, F., Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/Al 2O3catalysts for methanol synthesis. J. Catal. 2008,258 (2),334-344.
    [26]Zhang, D.-F.; Zhang, H.; Guo, L.; Zheng, K.; Han, X.-D.; Zhang, Z., Delicate control of crystallographic facet-oriented Cu2O nanocrystals and the correlated adsorption ability. J. Mater. Chem.2009,19 (29),5220-5225.
    [27]Liang, X.; Gao, L.; Yang, S.; Sun, J., Facile Synthesis and Shape Evolution of Single-Crystal Cuprous Oxide. Adv. Mater.2009,21 (20),2068-2071.
    [28]Kuo, C. H.; Chen, C. H.; Huang, M. H., Seed-mediated synthesis of monodispersed Cu2O nanocubes with five different size ranges from 40 to 420 nm. Adv. Func. Mater.2007,17, 3773-3780.
    [29]Gou, L. F.; Murphy, C. J., Solution-phase synthesis of Cu2O nanocubes. Nemo Lett.2003,3, 231-234.
    [30]Li, X. D.; Gao, H. S.; Murphy, C. J., et al., Nanoindentation of Cu2O nanocubes. Nano Lett. 2004,4,1903-1907.
    [31]Kuo, C. H.; Huang, M. H., Facile Synthesis of Cu2O Nanocrystals with Systematic Shape Evolution from Cubic to Octahedral Structures. J. Phys. Chem. C 2008,112,18355-18360.
    [32]Singh, D. P.; Neti, N. R.; Sinha, A. S. K., et al., Growth of different nanostructures of Cu2O (nanothreads, nanowires, and nanocubes) by simple electrolysis based oxidation of copper. J. Phys. Chem. C 2007,111,1638-1645.
    [33]Zhang, Y.; Deng, B.; Zhang, T. R., et al., Shape Effects of Cu2O Polyhedral Microcrystals on Photocatalytic Activity. J. Phys. Chem. C 2010,114,5073-5079.
    [34]Shi, J.; Li, J.; Huang, X. J., et al., Synthesis and Enhanced Photocatalytic Activity of Regularly Shaped Cu2O Nanowire Polyhedra. Nano Research 2011,4,448-459.
    [35]Xu, H. L.; Wang, W. Z.; Zhu, W., Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. J. Phys. Chem. B 2006,110, 13829-13834.
    [36]Schulz, K. H.; Cox, D. F., Structure-Sensitivity in the Selective Oxidation of Propene over Cu2O Surfaces. Abstracts of Papers of the American Chemical Society 1992,204.
    [37]Schulz, K. H.; Cox, D. F., Propene Oxidation over Cu2O Single-Crystal Surfaces-a Surface Science Study of Propene Activation at 1-Atm and 300-K. J. Catal.1993,143,464-480.
    [38]Leng, M.; Liu, M.; Zhang, Y., et al., Polyhedral 50-Facet Cu2O Microcrystals Partially Enclosed by{311} High-Index Planes:Synthesis and Enhanced Catalytic CO Oxidation Activity. J. Am. Chem. Soc.132,17084-17087.
    [39]Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J., Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009,458 (7239),746-749.
    [40]Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q., Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008,453 (7195), 638-641.
    [41]Stumm, W., Chemistry of the solid-water interface:processes at the mineral-water and particle-water interface in natural systems. John Wiley & Son Inc.:1992.
    [42]Fu, Q.; Li, W.-X.; Yao, Y.; Liu, H.; Su, H.-Y; Ma, D.; Gu, X.-K.; Chen, L.; Wang, Z.; Zhang, H., Interface-confined ferrous centers for catalytic oxidation. Science 2010,328 (5982), 1141-1144.
    [43]Liu, H.; Zheng, Z.; Yang, D.; Ke, X.; Jaatinen, E.; Zhao, J.-C.; Zhu, H. Y, Coherent interfaces between crystals in nanocrystal composites. ACS Nano 2010,4 (10),6219-6227.
    [44]Zhou, Z.; Kooi, S.; Flytzani-Stephanopoulos, M.; Saltsburg, H., The Role of the Interface in CO Oxidation on Au/CeO2 Multilayer Nanotowers. Adv. Func. Mater.2008,18 (18),2801-2807.
    [45]Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C., Morphology-Dependent Interactions of ZnO with Cu Nanoparticles at the Materials'Interface in Selective Hydrogenation of CO2 to CH3OH. Angew. Chem. Int. Ed 2011, 50 (9),2162-2165.
    [46]Shibata, N.; Goto, A.; Matsunaga, K.; Mizoguchi, T.; Findlay, S.; Yamamoto, T.; Ikuhara, Y, Interface Structures of Gold Nanoparticles on TiO{2}(110). Phys. Rev. Lett.2009,102 (13), 136105.
    [47]Zanella, R.; Giorgio, S.; Shin, C.-H.; Henry, C. R.; Louis, C., Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea. J. Catal.2004,222 (2),357-367.
    [48]Yang, J. J.; Strachan, J. P.; Miao, F.; Zhang, M.-X.; Pickett, M. D.; Yi, W.; Ohlberg, D. A.; Medeiros-Ribeiro, G.; Williams, R. S., Metal/TiO2 interfaces for memristive switches. Applied Physics A 2011,102 (4),785-789.
    [49]Alivov, Y. I.; Kalinina, E.; Cherenkov, A.; Look, D. C; Ataev, B.; Omaev, A.; Chukichev, M.; Bagnall, D., Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett.2003,83,4719.
    [50]Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y, Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010,4 (11), 6425-6432.
    [51]Min, Y; Zhang, K.; Chen, Y; Zhang, Y, Synthesis of nanostructured ZnO/Bi2WO6 heterojunction for photocatalysis application. Sep. Purif. Technol.2012.
    [52]Zheng, L.; Zheng, Y.; Chen, C.; Zhan, Y; Lin, X.; Zheng, Q.; Wei, K.; Zhu, J., Network structured SnO2/ZnO heterojunction nanocatalyst with high photocatalytic activity. Inorg. Chem. 2009,48(5),1819-1825.
    [53]Ingram, D. B.; Linic, S., Water splitting on composite plasmonic-metal/semiconductor photoelectrodes:evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. J. Am. Chem. Soc.2011,133 (14),5202-5205.
    [54]Harrison, W.; Kraut, E.; Waldrop, J.; Grant, R., Polar heterojunction interfaces. Phys. Rev. B 1978,18 (8),4402.
    [55]Lalitha, K.; Sadanandam, G.; Kumari, V. D., et al., Highly Stabilized and Finely Dispersed Cu2O/TiO2:A Promising Visible Sensitive Photocatalyst for Continuous Production of Hydrogen from Glycerol:Water Mixtures. J. Phys. Chem. C 2010,114,22181-22189.
    [56]Ojeda, M.; Iglesia, E., Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun.2009,352-354.
    [57]Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B. Low-temperature oxidation of CO over gold supported on TiO2, Alpha-Fe2O3, and Co3O4. J Catal,1993,144: 175-192.
    [58]Haruta, M., Size-and support-dependency in the catalysis of gold. Catal. Today 1997,36 (1), 153-166.
    [59]Grunwaldt, J.-D.; Kiener, C.; Wdgerbauer, C.; Baiker, A., Preparation of supported gold catalysts for low-temperature CO oxidation via "size-controlled" gold colloids. J. Catal.1999, 181 (2),223-232.
    [60]Miller, J. T.; Kropf, A. J.; Zha, Y.; Regalbuto, J. R.; Delannoy, L.; Louis, C.; Bus, E.; van Bokhoven, J. A., The effect of gold particle size on AuAu bond length and reactivity toward oxygen in supported catalysts. J. Catal.2006,240 (2),222-234.
    [61]Maillard, F.; Eikerling, M.; Cherstiouk, O.; Schreier, S.; Savinova, E.; Stimming, U., Size effects on reactivity of Pt nanoparticles in CO monolayer oxidation:The role of surface mobility. Faraday Discuss.2004,125,357-377.
    [62]Heiz, U.; Sanchez, A.; Abbet, S.; Schneider, W.-D., Catalytic oxidation of carbon monoxide on monodispersed platinum clusters:each atom counts. J. Am. Chem. Soc.1999,121 (13), 3214-3217.
    [63]Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S., Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science 2010,328 (5975),224-228.
    [64]Xiang, G. L.; Shi, X. J.; Wu, Y. L.; Zhuang, J.; Wang, X., Size effects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2. Scientific Reports 2012,2.
    [1]Kim, G., Ceria-promoted three-way catalysts for auto exhaust emission control. Industrial & Engineering Chemistry Product Research and Development 1982,21 (2),267-274.
    [2]Yao, H. C; Yao, Y. F. Y., Ceria in automotive exhaust catalysts:I. Oxygen storage. J. Catal. 1984,86 (2),254-265.
    [3]Trovarelli, A., Catalytic Properties of Ceria and Ce02-Containing Materials. Catalysis Reviews 1996,38 (4),439-520.
    [4]Trovarelli, A., Catalysis by ceria and related materials. World Scientific Publishing Company: 2002; Vol.2.
    [5]Summers, J. C.; Ausen, S. A., Interaction of cerium oxide with noble metals. J. Catal.1979, 58(1),131-143.
    [6]Su, E.; Rothschild, W., Dynamic behavior of three-way catalysts. J. Catal.;(United States) 1986,99 (2).
    [7]Gandhi, H.; Piken, A.; Shelef, M.; Delosh, R., SAE (Soc. Automot. Eng.) Tech. Pap., Paper 1976, (760201),55-66.
    [8]Bhattacharyya, A. A.; Woltermann, G. M.; Yoo, J. S.; Karch, J. A.; Cormier, W. E., Catalytic SOx abatement:the role of magnesium aluminate spinel in the removal of SOx from fluid catalytic cracking (FCC) flue gas. Ind. Eng. Chem. Res.1988,27 (8),1356-1360.
    [9]Yoo, J. S.; Jaecker, J. A., Catalyst and process for conversion of hydrocarbons. Google Patents: 1984.
    [10]Bertolacini, R. J.; Hirschberg, E. H.; Modica, F. S., Composition for removing sulfur oxides from a gas. Google Patents:1985.
    [11]Kilbourn, B. T., The role of the lanthanides in applied catalysis. Journal of the Less Common Metals 1986,126,101-106.
    [12]Kundakovic, L.; Flytzani-Stephanopoulos, M., Cu-and Ag-modified cerium oxide catalysts for methane oxidation. J. Catal.1998,179 (1),203-221.
    [13]Brazdil, J. F.; Grasselli, R. K., Relationship between solid state structure and catalytic activity of rare earth and bismuth-containing molybdate ammoxidation catalysts. J. Catal.1983,79 (1), 104-117.
    [14]Imamura, S.; Uematsu, Y.; Utani, K.; Ito, T., Combustion of formaldehyde on ruthenium/cerium (IV) oxide catalyst. Ind. Eng. Chem. Res.1991,30 (1),18-21.
    [15]Trovarelli, A.; Zamar, F.; Llorca, J.; Leitenburg, C. d.; Dolcetti, G.; Kiss, J. T., Nanophase Fluorite-Structured CeO2-ZrO2 Catalysts Prepared by High-Energy Mechanical Milling. J. Catal. 1997,169 (2),490-502.
    [16]Haneda, M.; Mizushima, T.; Kakuta, N.; Ueno, A.; Sato, Y.; Matsuura, S.; Kasahara, K.; Sato, M., Structural Characterization and Catalytic Behavior of A1203-Supported Cerium Oxides. Bull. Chem. Soc. Jpn.1993,66 (4),1279-1288.
    [17]Kalkowski, G.; Laubschat, C.; Brewer, W. D.; Sampathkumaran, E. V.; Domke, M.; Kaindl, G., Nature of Ce 4f Electronic States from 4d Excitations in Metals and Insulators. Phys. Rev. B 1985,32 (4),2717-2720.
    [18]Yamaguchi, T., Application of ZrO2 as a catalyst and a catalyst support. Catal. Today 1994, 20(2),199-217.
    [19]Nibbelke, R.; Campman, M.; Hoebink, J.; Marin, G., Kinetic Study of the CO Oxidation over Pt/y-Al2O3 and Pt/Rh/CeO2/y-Al2 O3 in the Presence of H2O and CO2. J. Catal.1997,171 (2), 358-373.
    [20]Hardacre, C.; Ormerod, R. M.; Lambert, R. M., Platinum-Promoted Catalysis by Ceria:A Study of Carbon Monoxide Oxidation over Pt (111)/CeO2. J. Phys. Chem.1994,98 (42), 10901-10905.
    [21]Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M., Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003,301 (5635),935-938.
    [22]Wang, X.; Liu, D.; Song, S.; Zhang, H., Synthesis of highly active Pt-CeO2 hybrids with tunable secondary nanostructures for the catalytic hydrolysis of ammonia borane. "Chem. Commun. (Cambridge, U. K.)" 2012.
    [23]Kalamaras, C. M.; Americanou, S.; Efstathiou, A. M., "Redox" vs "associative formate with-OH group regeneration" WGS reaction mechanism on Pt/CeO 2:Effect of platinum particle size. J. Catal.2011,279 (2),287-300.
    [24]Phatak, A.; Koryabkina, N.; Rai, S.; Ratts, J.; Ruettinger, W.; Farrauto, R.; Blau, G.; Delgass, W.; Ribeiro, F., Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria. Catal. Today 2007,123 (1),224-234.
    [25]Happel, M.; Myslivecek, J.; Johanek, V.; Dvorak, F.; Stetsovych, O.; Lykhach, Y.; Matolin, V.; Libuda, J., Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO:A model study on Pt/ceria catalysts. J. Catal.2012,289, 118-126.
    [26]Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. i., Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide-support interaction. J. Catal.2006,242 (1),103-109.
    [27]Hatanaka, M.; Takahashi, N.; Takahashi, N.; Tanabe, T.; Nagai, Y.; Suda, A.; Shinjoh, H., Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J. Catal.2009,266 (2),182-190.
    [28]Bera, P.; Patil, K.; Jayaram, V.; Subbanna, G.; Hegde, M., Ionic Dispersion of Pt and Pd on CeO2 by Combustion Method:Effect of Metal-Ceria Interaction on Catalytic Activities for NO Reduction and CO and Hydrocarbon Oxidation. J. Catal.2000,196 (2),293-301.
    [29]Pozdnyakova, O.; Teschner, D.; Wootsch, A.; Krohnert, J.; Steinhauer, B.; Sauer, H.; Toth, L.; Jentoft, F. C.; Knop-Gericke, A.; Paal, Z., Preferential CO oxidation in hydrogen (PROX) on ceria-supported catalysts, part I:Oxidation state and surface species on Pt/CeO 2under reaction conditions. J. Catal.2006,237 (1),1-16.
    [30]Yeung, C. M. Y.; Yu, K. M. K.; Fu, Q. J.; Thompsett, D.; Petch, M. I.; Tsang, S. C., Engineering Pt in ceria for a maximum metal-support interaction in catalysis. J. Am. Chem. Soc. 2005,127(51),18010-18011.
    [31]Tang, W.; Hu, Z. P.; Wang, M. J.; Stucky, G. D.; Metiu, H.; McFarland, E. W., Methane complete and partial oxidation catalyzed by Pt-doped CeO2. J. Catal.2010,273 (2),125-137.
    [32]Jacobs, G.; Graham, U. M.; Chenu, E.; Patterson, P. M.; Dozier, A.; Davis, B. H., Low-temperature water-gas shift:impact of Pt promoter loading on the partial reduction of ceria and consequences for catalyst design. J. Catal.2005,229 (2),499-512.
    [33]Deng, W. L.; Flytzani-Stephanopoulos, M., On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. Angew. Chem. Int. Ed 2006, 45 (14),2285-2289.
    [34]Bera, P.; Priolkar, K. R.; Gayen, A.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Jayaram, V.; Subbanna, G. N., Ionic dispersion of Pt over CeO2 by the combustion method: Structural investigation by XRD, TEM, XPS, and EXAFS. Chem. Mater.2003,15 (10), 2049-2060.
    [35]Kockrick, E.; Borchardt, L.; Schrage, C.; Gaudillere, C.; Ziegler, C.; Freudenberg, T.; Farrusseng, D.; Eychmuller, A.; Kaskel, S., CeO2/Pt Catalyst Nanoparticle Containing Carbide-Derived Carbon Composites by a New In situ Functionalization Strategy. Chem. Mater. 2011,23(1),57-66.
    [36]Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H., Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity. J. Am. Chem. Soc.2010,132 (14), 4998-+.
    [37]Feng, L.; Hoang, D. T.; Tsung, C. K.; Huang, W. Y.; Lo, S. H. Y.; Wood, J. B.; Wang, H. T.; Tang, J. Y.; Yang, P. D., Catalytic Properties of Pt Cluster-Decorated CeO2 Nanostructures. Nano Research 2011,4(1),61-71.
    [38]Penner, S.; Wang, D.; Podloucky, R.; Schlogl, R.; Hayek, K., Rh and Pt nanoparticles supported by CeO2:Metal-support interaction upon high-temperature reduction observed by electron microscopy. Phys. Chem. Chem. Phys.2004,6 (22),5244-5249.
    [39]Lee, E.; Manthiram, A., One-Step Reverse Microemulsion Synthesis of Pt-CeO2/C Catalysts with Improved Nanomorphology and Their Effect on Methanol Electrooxidation Reaction. J. Phys. Chem. C 2010,114 (49),21833-21839.
    [40]Hinokuma, S.; Fujii, H.; Okamoto, M.; Ikeue, K.; Machida, M., Metallic Pd Nanoparticles Formed by Pd-O-Ce Interaction:A Reason for Sintering-Induced Activation for CO Oxidation. Chem. Mater.2010,22 (22),6183-6190.
    [41]Cargnello, M.; Wieder, N. L.; Montini, T.; Gorte, R. J.; Fornasiero, P., Synthesis of Dispersible Pd@CeO2 Core-Shell Nanostructures by Self-Assembly. J. Am. Chem. Soc.2010, 132(4),1402-1409.
    [42]Zhu, H.; Qin, Z.; Shan, W.; Shen, W.; Wang, J., Low-temperature oxidation of CO over Pd/CeO2-TiO 2catalysts with different pretreatments. J. Catal.2005,233 (1),41-50.
    [43]Priolkar, K.; Bera, P.; Sarode, P.; Hegde, M.; Emura, S.; Kumashiro, R.; Lalla, N., Formation of Cel-x Pd x O2-8 Solid Solution in Combustion-Synthesized Pd/CeO2 Catalyst:XRD, XPS, and EXAFS Investigation. Chem. Mater.2002,14 (5),2120-2128.
    [44]Cargnello, M.; Montini, T.; Polizzi, S.; Wieder, N. L.; Gorte, R. J.; Graziani, M.; Fornasiero, P., Novel embedded Pd@CeO2 catalysts:away to active and stable catalysts. Dalton Trans.2010, 39 (8),2122-2127.
    [45]Zhang, H. Y.; Xie, Y.; Sun, Z. Y.; Tao, R. T.; Huang, C. L.; Zhao, Y. F.; Liu, Z. M., In-Situ Loading Ultrafine AuPd Particles on Ceria:Highly Active Catalyst for Solvent-Free Selective Oxidation of Benzyl Alcohol. Langmuir 2011,27 (3),1152-1157.
    [46]Mayernick, A. D.; Janik, M. J., Methane activation and oxygen vacancy formation over CeO2 and Zr, Pd substituted CeO2 surfaces. J. Phys. Chem. C 2008,112 (38),14955-14964.
    [47]Yang, Z.; Zhansheng, L. A.; Luo, G.; Hermansson, K., Oxygen vacancy formation energy at the Pd/CeO2(111) interface. Phys. Lett. A 2007,369 (1-2),132-139.
    [48]Kugai, J.; Miller, J. T.; Guo, N.; Song, C. S., Oxygen-enhanced water gas shift on ceria-supported Pd-Cu and Pt-Cu bimetallic catalysts. J. Catal.2011,277 (1),46-53.
    [49]Kondarides, D. I.; Verykios, X. E., Effect of Chlorine on the Chemisorptive Properties of Rh/CeO2Catalysts Studied by XPS and Temperature Programmed Desorption Techniques. J. Catal.1998,174 (1),52-64.
    [50]Bunluesin, T.; Cordatos, H.; Gorte, R. J., Study of Co Oxidation-Kinetics on Rh/Ceria. J. Catal.1995,157 (1),222-226.
    [51]Gayen, A.; Priolkar, K. R.; Sarode, R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S., Cel-xRhxO2-delta solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater.2004,16(11),2317-2328.
    [52]Gayen, A.; Priolkar, K. R.; Sarode, R.; Jayaram, V.; Hegde, M. S.; Subbanna, G. N.; Emura, S., Cel-xRhxO2-delta solid solution formation in combustion-synthesized Rh/CeO2 catalyst studied by XRD, TEM, XPS, and EXAFS. Chem. Mater.2004,16 (11),2317-2328.
    [53]Cai, W. J.; Wang, F. G.; Van Veen, A. C.; Provendier, H.; Mirodatos, C.; Shen, W. J., Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catal. Today 2008,138 (3-4),152-156.
    [54]Sharma, S.; Hu, Z. P.; Zhang, P.; McFarland, E. W.; Metiu, H., CO2 methanation on Ru-doped ceria. J. Catal.2011,278 (2),297-309.
    [55]Xu, W. Q.; Si, R.; Senanayake, S. D.; Llorca, J.; Idriss, H.; Stacchiola, D.; Hanson, J. C.; Rodriguez, J. A., In situ studies of CeO2-supported Pt, Ru, and Pt-Ru alloy catalysts for the water-gas shift reaction:Active phases and reaction intermediates. J. Catal.2012,291,117-126.
    [56]Hosokawa, S.; Kanai, H.; Utani, K.; Taniguchi, Y.-i.; Saito, Y.; Imamura, S., State of Ru on CeO2 and its catalytic activity in the wet oxidation of acetic acid. Appl. Catal. B 2003,45 (3), 181-187.
    [57]Li, N.; Descorme, C.; Besson, M., Catalytic wet air oxidation of 2-chlorophenol over Ru loaded Cex Zr 1-x O 2solid solutions. Appl. Catal. B 2007,76 (1),92-100.
    [58]Oliviero, L.; Barbier, J.; Duprez, D.; Guerrero-Ruiz, A.; Bachiller-Baeza, B.; Rodriguez-Ramos, I., Catalytic wet air oxidation of phenol and acrylic acid over Ru/C and Ru-CeO 2/C catalysts. Appl. Catal. B 2000,25 (4),267-275.
    [59]Aouad, S.; Saab, E.; Abi-Aad, E.; Aboukais, A., Study of the Ru/Ce system in the oxidation of carbon black and volatile organic compounds. Kinet. Catal.2007,48 (6),835-840.
    [60]Huang, Y. Q.; Wang, A. Q.; Li, L.; Wang, X. D.; Su, D. S.; Zhang, T., "Ir-in-ceria":A highly selective catalyst for preferential CO oxidation. J. Catal.2008,255 (2),144-152.
    [61]Tournayan, L.; Marcilio, N. R.; Frety, R., Promotion of hydrogen uptake in cerium dioxide: the role of iridium. Appl. Catal.1991,78 (1),31-43.
    [62]Zhou, Y. H.; Zhou, J., Interactions of Ni Nanoparticles with Reducible CeO2(111) Thin Films. J. Phys. Chem. C 2012,116 (17),9544-9549.
    [63]Dong, W. S.; Jun, K. W.; Roh, H. S.; Liu, Z. W.; Park, S. E., Comparative study on partial oxidation of methane over Ni/ZrO2, Ni/CeO2 and Ni/Ce-ZrO2 catalysts. Catal. Lett.2002,78 (1-4),215-222.
    [64]Zhou, Y.; Perket, J. M.; Crooks, A. B.; Zhou, J., Effect of Ceria Support on the Structure of Ni Nanoparticles. J. Phys. Chem. Lett.2010,1 (9),1447-1453.
    [65]Barrault, J.; Alouche, A.; Paul-Boncour, V.; Hilaire, L.; Percheron-Guegan, A., Influence of the support on the catalytic properties of nickel/ceria in carbon monoxide and benzene hydrogenation. Appl. Catal.1989,46 (2),269-279.
    [66]Zhu, F.; Chen, G.; Sun, S.; Sun, X., In situ growth of Au@ CeO2 core-shell nanoparticles and CeO2 nanotubes from Ce (OH) CO3 nanorods. Journal of Materials Chemistry A 2013,1 (2), 288-294.
    [67]Rojluechai, S.; Chavadej, S.; Schwank, J. W.; Meeyoo, V., Catalytic activity of ethylene oxidation over Au, Ag and Au-Ag catalysts:Support effect. Catal. Commun.2007,8(1),57-64.
    [68]Kim, H. Y.; Henkelman, G., CO Oxidation at the Interface between Doped CeO2 and Supported Au Nanoclusters. J. Phys. Chem. Lett.2012,3 (16),2194-2199.
    [69]Kim, H. Y.; Lee, H. M.; Henkelman, G., CO Oxidation Mechanism on CeO2-Supported Au Nanoparticles. J. Am. Chem. Soc.2012,134 (3),1560-1570.
    [70]Weststrate, C. J.; Resta, A.; Westerstrom, R.; Lundgren, E.; Mikkelsen, A.; Andersen, J. N., CO adsorption on a Au/CeO2 (111)model catalyst. J. Phys. Chem. C 2008,112(17),6900-6906.
    [71]Camellone, M. F.; Fabris, S., Reaction mechanisms for the CO oxidation on Au/CeO2 catalysts:Activity of substitutional Au3+/Au+ cations and deactivation of supported Au+ adatoms. J. Am. Chem. Soc.2009,131 (30),10473-10483.
    [72]Zhu, W.-J.; Zhang, J.; Gong, X.-Q.; Lu, G., A density functional theory study of small Au nanoparticles at CeO2 surfaces. Catal. Today 2011,165 (1),19-24.
    [73]Deng, W. L.; Flytzani-Stephanopoulos, M., On the issue of the deactivation of Au-ceria and Pt-ceria water-gas shift catalysts in practical fuel-cell applications. Angew. Chem. Int. Ed 2006, 45 (14),2285-2289.
    [74]Zhang, C. J.; Michaelides, A.; King, D. A.; Jenkins, S. J., Anchoring Sites for Initial Au Nucleation on CeO2{111}:O Vacancy versus Ce Vacancy. J. Phys. Chem. C 2009,113(16), 6411-6417.
    [75]Bezen, M. C. I.; Breitkopf, C.; El Kolli, N.; Krafft, J. M.; Louis, C.; Lercher, J. A., Selective Modification of the Acid-Base Properties of Ceria by Supported Au. Chem.--Eur. J.2011,17 (25), 7095-7104.
    [76]Zhou, Z.; Kooi, S.; Flytzani-Stephanopoulos, M.; Saltsburg, H., The Role of the Interface in CO Oxidation on Au/CeO2 Multilayer Nanotowers. Adv. Func. Mater.2008,18 (18),2801-2807.
    [77]Tang, Y.; Zhang, H.; Cui, L.; Ouyang, C; Shi, S.; Tang, W.; Li, H.; Chen, L., Electronic states of metal (Cu, Ag, Au) atom on CeO2 (111) surface:The role of local structural distortion. J. Power Sources 2011.
    [78]Branda, M. M.; Hernandez, N. C.; Sanz, J. F.; Illas, F., Density Functional Theory Study of the Interaction of Cu, Ag, and Au Atoms with the Regular CeO2 (111) Surface. J. Phys. Chem. C 2010,114(4),1934-1941.
    [79]Shapovalov, V.; Metiu, H., Catalysis by doped oxides:CO oxidation by Au x Ce1-x O2. J. Catal.2007,245 (1),205-214.
    [80]Roozeboom, F.; Mittelmeijer-Hazeleger, M.; Moulijn, J.; Medema, J.; De Beer, V.; Gellings, P., Vanadium oxide monolayer catalysts.3. A Raman spectroscopic and temperature-programmed reduction study of monolayer and crystal-type vanadia on various supports. J. Phys. Chem.1980, 84 (21),2783-2791.
    [81]Wu, Z.; Li, M.; Overbury, S. H., A Raman Spectroscopic Study of the Speciation of Vanadia Supported on Ceria Nanocrystals with Defined Surface Planes. Chemcatchem 2012,4 (10), 1653-1661.
    [82]Baron, M.; Abbott, H.; Bondarchuk, O.; Stacchiola, D.; Uhl, A.; Shaikhutdinov, S.; Freund, H. J.; Popa, C.; Ganduglia-Pirovano, M. V.; Sauer, J., Resolving the Atomic Structure of Vanadia Monolayer Catalysts:Monomers, Trimers, and Oligomers on Ceria. Angew. Chem. Int. Ed 2009, 48 (43),8006-8009.
    [83]Imamura, S.; Yamada, H.; Utani, K., Combustion activity of Ag/CeO2 composite catalyst. Appl. Catal. A 2000,192 (2),221-226.
    [84]Sarode, P. R.; Priolkar, K. R.; Bera, P.; Hegde, M. S.; Emura, S.; Kumashiro, R., Study of local environment of Ag in Ag/CeO2 catalyst by EXAFS. Mater. Res. Bull.2002,37 (9), 1679-1690.
    [85]Kayama, T.; Yamazaki, K.; Shinjoh, H., Nanostructured Ceria-Silver Synthesized in a One-Pot Redox Reaction Catalyzes Carbon Oxidation. J. Am. Chem. Soc.2010,132 (38), 13154-13155.
    [86]Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F., Growth, Structure, and Stability of Ag on CeO2(l 11):Synchrotron Radiation Photoemission Studies. J. Phys. Chem. C 2011,115 (14),6715-6725.
    [87]Zhang, J.; Li, L.; Huang, X.; Li, G., Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012,22(21),10480-10487.
    [88]Yin, F. C; Huang, M. W.; Su, X. P.; Zhang, P.; Li, Z.; Shi, Y., Thermodynamic assessment of the Ag-Ce (silver-cerium) system. J. Alloy. Comp.2002,334,154-158.
    [89]Mondragon-Galicia, G.; Perez-Hernandez, R.; Gutierrez-Wing, C. E.; Mendoza-Anaya, D., A novel synthesis method to produce silver-doped CeO2 nanotubes based on Ag nanowire templates. Phys. Chem. Chem. Phys.2011,13 (37),16756-16761.
    [90]Chang, S. J.; Li, M.; Hua, Q.; Zhang, L. J.; Ma, Y. S.; Ye, B. J.; Huang, W. X., Shape-dependent interplay between oxygen vacancies and Ag-CeO2 interaction in Ag/CeO2 catalysts and their influence on the catalytic activity. J. Catal.2012,293,195-204.
    [91]Wang, J. H.; Liu, M. L.; Lin, M. C., Oxygen reduction reactions in the SOFC cathode of Ag/CeO2. Solid State Ionics 2006,177 (9-10),939-947.
    [92]Bera, P.; Patil, K. C.; Hegde, M. S., NO reduction, CO and hydrocarbon oxidation over combustion synthesized Ag/CeO2 catalyst. Phys. Chem. Chem. Phys.2000,2 (16),3715-3719.
    [93]Yen, H.; Seo, Y.; Kaliaguine, S.; Kleitz, F., Tailored Mesostructured Copper/Ceria Catalysts with Enhanced Performance for Preferential Oxidation of CO at Low Temperature. Angew. Chem. Int. Ed 2012,51 (48),12032-12035.
    [94]Avgouropoulos, G.; Ioannides, T., Effect of synthesis parameters on catalytic properties of CuO-CeO2. Appl. Catal. B 2006,67 (1-2),1-11.
    [95]Menon, U.; Poelman, H.; Bliznuk, V.; Galvita, V. V.; Poelman, D.; Marin, G. B., Nature of the active sites for the total oxidation of toluene by CuO-CeO2/A1203. J. Catal.2012,295, 91-103.
    [96]Jia, A. P.; Jiang, S. Y.; Lu, J. Q.; Luo, M. F., Study of Catalytic Activity at the CuO-CeO2 Interface for CO Oxidation. J. Phys. Chem. C 2010,114 (49),21605-21610.
    [97]Pu, Z. Y.; Liu, X. S.; Jia, A. P.; Xie, Y. L.; Lu, J. Q.; Luo, M. F., Enhanced activity for CO oxidation over Pr-and Cu-doped CeO(2) catalysts:Effect of oxygen vacancies. J. Phys. Chem. C 2008,112(38),15045-15051.
    [98]Chiu, K. I.; Kwong, F. I.; Ng, D. H. L., Enhanced oxidation of CO by using a porous biomorphic CuO/CeO2/Al2O3 compound. Microporous and Mesoporous Materials 2012,156, 1-6.
    [99]Rodriguez, J. A.; Jirsak, T.; Freitag, A.; Hanson, J. C.; Larese, J. Z.; Chaturvedi, S., Interaction of SO2 with CeO2 and Cu/CeO2 catalysts:photoemission, XANES and TPD studies. Catal. Lett.1999,62 (2-4),113-119.
    [100]Yang, F.; Graciani, J. s.; Evans, J.; Liu, P.; Hrbek, J.; Sanz, J. F.; Rodriguez, J. A., CO Oxidation on Inverse CeO x/Cu (111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of O2. J. Am. Chem. Soc.2011,133 (10),3444-3451.
    [101]Wang, X. Q.; Rodriguez, J. A.; Hanson, J. C.; Gamarra, D.; Martinez-Arias, A.; Fernandez-Garcia, M., In situ studies of the active sites for the water gas shift reaction over Cu-CeO2 catalysts:Complex interaction between metallic copper and oxygen vacancies of ceria. J. Phys. Chem. B 2006,110 (1),428-434.
    [102]Bera, P.; Priolkar, K. R.; Sarode, P. R.; Hegde, M. S.; Emura, S.; Kumashiro, R.; Lalla, N. P., Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques:Formation of a Cel-xCuxO2-delta solid solution. Chem. Mater.2002,14 (8), 3591-3601.
    [103]Hu, S. C.; Zhou, F.; Wang, L. Z.; Zhang, J. L., Preparation of Cu2O/CeO2 heterojunction photocatalyst for the degradation of Acid Orange 7 under visible light irradiation. Catal. Commun. 2011,12 (9),794-797.
    [104]Qin, J. W.; Lu, J. F.; Cao, M. H.; Hu, C. W., Synthesis of porous CuO-CeO2 nanospheres with an enhanced low-temperature CO oxidation activity. Nanoscale 2010,2 (12),2739-2743.
    [105]Rodriguez, J. A.; Graciani, J.; Evans, J.; Park, J. B.; Yang, F.; Stacchiola, D.; Senanayake, S. D.; Ma, S. G.; Perez, M.; Liu, P.; Sanz, J. F.; Hrbek, J., Water-Gas Shift Reaction on a Highly Active Inverse CeOx/Cu(111) Catalyst:Unique Role of Ceria Nanoparticles. Angew. Chem. Int. Ed 2009,48 (43),8047-8050.
    [106]Patil, S.; Seal, S.; Guo, Y.; Schulte, A.; Norwood, J., Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 2006,88 (24).
    [107]Bemal, S.; Blanco, G.; Botana, F.; Gatica, J.; Perez Omil, J.; Pintado, J.; Rodriguez-lzquierdo, J.; Maestro, P.; Braconnier, J., Study of the reduction/reoxidation cycle in a La/Ce/Tb mixed oxide. J. Alloy. Comp.1994,207,196-200.
    [108]Logan, A.; Shelef, M., Oxygen availability in mixed cerium/praseodymium oxides and the effect of noble metals. J. Mater. Res.1994,9 (2),468-475.
    [109]Hori, C. E.; Brenner, A.; Ng, K. Y. S.; Rahmoeller, K. M.; Belton, D., Studies of the oxygen release reaction in the platinum-ceria-zirconia system. Catal. Today 1999,50 (2),299-308.
    [110]Hori, C. E.; Permana, H.; Ng, K. Y. S.; Brenner, A.; More, K.; Rahmoeller, K. M.; Belton, D., Thermal stability of oxygen storage properties in a mixed CeO2-ZrO2 system. Appl. Catal. B 1998,16(2),105-117.
    [111]Rohart, E.; Larcher, O.; Deutsch, S.; Hedouin, C.; Aimin, H.; Fajardie, F.; Allain, M.; Macaudiere, P., From Zr-rich to Ce-rich:thermal stability of OSC materials on the whole range of composition. Top. Catal.2004,30-1 (1-4),417-423.
    [112]Liang, X.; Wang, X.; Zhuang, Y.; Xu, B.; Kuang, S. M.; Li, Y. D., Formation of CeO2-ZrO2 solid solution nanocages with controllable structures via kirkendall effect. J. Am. Chem. Soc.2008,130 (9),2736-+.
    [113]Nagai, Y.; Yamamoto, T.; Tanaka, T.; Yoshida, S.; Nonaka, T.; Okamoto, T.; Suda, A.; Sugiura, M., X-ray absorption fine structure analysis of local structure of CeO2-ZrO2 mixed oxides with the same composition ratio (Ce/Zr=l). Catal. Today 2002,74 (3-4),225-234.
    [114]Imamura, S.; Uchihori, D.; Utani, K.; Ito, T., Oxidative decomposition of formaldehyde on silver-cerium composite oxide catalyst. Catal. Lett.1994,24 (3-4),377-384.
    [115]Murrell, L. L.; Carlin, R. T., Silver on ceria:An example of a highly active surface phase oxide carbon oxidation catalyst. J. Catal.1996,159 (2),479-490.
    [116]Courson, C.; Taouk, B.; Bordes, E., Ion oxide conductor as a catalytic membrane for selective oxidation of hydrocarbons. Catal. Lett.2000,66 (3),129-138.
    [117]Beier, M. J.; Hansen, T. W.; Grunwaldt, J. D., Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. J. Catal.2009,266 (2), 320-330.
    [118]Russell, A.; Epling, W. S., Diesel oxidation catalysts. Catalysis Reviews 2011,53 (4), 337-423.
    [119]Scire, S.; Riccobene, P. M.; Crisafulli, C., Ceria supported group IB metal catalysts for the combustion of volatile organic compounds and the preferential oxidation of CO. Appl. Catal. B 2010,101(1-2),109-117.
    [120]Zhang, J.; Li, L.; Huang, X.; Li, G., Fabrication of Ag-CeO2 core-shell nanospheres with enhanced catalytic performance due to strengthening of the interfacial interactions. J. Mater. Chem. 2012,22 (21),10480-10487.
    [121]Aneggi, E.; Llorca, J.; de Leitenburg, C.; Dolcetti, G.; Trovarelli, A., Soot combustion over silver-supported catalysts. Appl. Catal. B 2009,91 (1-2),489-498.
    [122]Shimizu, K.-i.; Kawachi, H.; Satsuma, A., Study of active sites and mechanism for soot oxidation by silver-loaded ceria catalyst. Appl. Catal. B 2010,96 (1),169-175.
    [123]Preda, G.; Pacchioni, G., Formation of oxygen active species in Ag-modified CeO2 catalyst for soot oxidation:A DFT study. Catal. Today 2011,177 (1),31-38.
    [124]Aoyama, N.; Yoshida, K.; Abe, A.; Miyadera, T., Characterization of highly active silver catalyst for NOx reduction in lean-burning engine exhaust. Catal. Lett.1997,43 (3-4),249-253.
    [125]Stevenson, S. A., Metal-support interactions in catalysis, sintering, and redispersion. Van Nostrand Reinhold:1987.
    [126]Sun, T.; Seff, K., Silver Clusters and Chemistry in Zeolites. Chem. Rev.1994,94 (4), 857-870.
    [127]Shimizu, K.; Sugino, K.; Kato, K.; Yokota, S.; Okumura, K.; Satsuma, A., Formation and redispersion of silver clusters in Ag-MFI zeolite as investigated by time-resolved QXAFS and UV-vis. J.Phys. Chem. C 2007,111 (4),1683-1688.
    [128]Martens, L. R.; Grobet, P. J.; Jacobs, P. A., Preparation and catalytic properties of ionic sodium clusters in zeolites.1985.
    [129]Qu, Z. P.; Cheng, M. J.; Huang, W. X.; Bao, X. H., Formation of subsurface oxygen species and its high activity toward CO oxidation over silver catalysts. J. Catal.2005,229 (2),446-458.
    [130]Qu, Z. P.; Huang, W. X.; Cheng, M. J.; Bao, X. H., Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. J. Phys. Chem. B 2005,109 (33),15842-15848.
    [131]Qu, Z.; Huang, W.; Zhou, S.; Zheng, H.; Liu, X.; Cheng, M.; Bao, X., Enhancement of the catalytic performance of supported-metal catalysts by pretreatment of the support. J. Catal.2005, 234 (1),33-36.
    [132]Zhang, X. D.; Qu, Z. P.; Yu, F. L.; Wang, Y., High-temperature diffusion induced high activity of SB A-15 supported Ag particles for low temperature CO oxidation at room temperature. J. Catal.2013,297,264-271.
    [133]Lieske, H.; Lietz, G.; Spindler, H.; Volter, J., Reactions of platinum in oxygen-and hydrogen-treated Pty-Al2O3 catalysts:I. Temperature-programmed reduction, adsorption, and redispersion of platinum. J. Catal.1983,81 (1),8-16.
    [134]Yu, L. B.; Shi, Y. Y.; Zhao, Z.; Yin, H. B.; Wei, Y. C.; Liu, J. A.; Kang, W. B.; Jiang, T. S.; Wang, A. L., Ultrasmall silver nanoparticles supported on silica and their catalytic performances for carbon monoxide oxidation. Catal. Commun.2011,12 (7),616-620.
    [135]Xiang, G. L.; Shi, X. J.; Wu, Y. L.; Zhuang, J.; Wang, X., Size effects in Atomic-Level Epitaxial Redistribution Process of RuO2 over TiO2. Scientific Reports 2012,2.
    [136]Cargnello, M.; Wieder, N. L.; Montini, T.; Gorte, R. J.; Fornasiero, P., Synthesis of Dispersible Pd@CeO2 Core-Shell Nanostructures by Self-Assembly. J. Am. Chem. Soc.2010, 132 (4),1402-1409.
    [137]Haruta, M., Size-and support-dependency in the catalysis of gold. Catal. Today 1997,36 (1),153-166.
    [138]Daniel, M.-C.; Astruc, D., Gold nanoparticles:assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews-Columbus 2004,104 (1),293.
    [139]Haruta, M.; Dat6, M., Advances in the catalysis of Au nanoparticles. Appl. Catal. A 2001, 222(1),427-437.
    [140]Haruta, M., Catalysis of gold nanoparticles deposited on metal oxides. Cattech 2002,6 (3), 102-115.
    [141]Bond, G. C.; Thompson, D. T., Gold-catalysed oxidation of carbon monoxide. Gold Bull. 2000,33 (2),41-50.
    [142]Lopez, N.; Janssens, T.; Clausen, B.; Xu, Y.; Mavrikakis, M.; Bligaard, T.; N(?)rskov, J. K., On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation. J. Catal.2004,223 (1),232-235.
    [143]Cargnello, M.; Gentilini, C.; Montini, T.; Fonda, E.; Mehraeen, S.; Chi, M.; Herrera-Collado, M.; Browning, N. D.; Polizzi, S.; Pasquato, L., Active and stable embedded Au@ CeO2 catalysts for preferential oxidation of CO. Chem. Mater.2010,22 (14),4335-4345.
    [144]Huang, Z. W.; Gu, X.; Cao, Q. Q.; Hu, P. P.; Hao, J. M.; Li, J. H.; Tang, X. F., Catalytically Active Single-Atom Sites Fabricated from Silver Particles. Angew. Chem. Int. Ed 2012,51 (17),4198-4203.
    [145]Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S., Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science 2010,328 (5975),224-228.
    [146]Campbell, C. T.; Farmer, J. A., Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science 2010,329 (5994),933-936.
    [147]Jentys, A., Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys.1999,1 (17),4059-4063.
    [148]Luches, P.; Pagliuca, F.; Valeri, S.; Illas, F.; Preda, G.; Pacchioni, G., Nature of Ag Islands and Nanoparticles on the CeO2(111) Surface. J. Phys. Chem. C 2012,116 (1),1122-1132.
    [149]Pacchioni, G., Electronic interactions and charge transfers of metal atoms and clusters on oxide surfaces. Phys. Chem. Chem. Phys.2013,15 (6),1737-1757.
    [150]Yang, H. Y.; Chen, F.; Jiao, Y. C.; Zhang, J. L., The role of interfacial lattice Ag+on titania based photocatalysis. Appl. Catal. B 2013,130,218-223.
    [151]Henderson, M. A.; Perkins, C.; Engelhard, M. H.; Thevuthasan, S.; Peden, C. H., Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci.2003,526 (1), 1-18.
    [152]Skoda, M.; Cabala, M.; Chab, V.; Prince, K.; Sedlacek, L.; Skala, T.; Sutara, F.; Matolin, V., Sn interaction with the CeO 2(111) system:Bimetallic bonding and ceria reduction. Appl. Surf. Sci.2008,254 (14),4375-4379.
    [153]Meng, L.; Jia, A. P.; Lu, J. Q.; Luo, L. F.; Huang, W. X.; Luo, M. F., Synergetic Effects of PdO Species on CO Oxidation over PdO-CeO2 Catalysts. J. Phys. Chem. C 2011,115 (40), 19789-19796.
    [154]Hori, C. E.; Brenner, A.; Ng, K. Y. S.; Rahmoeller, K. M.; Belton, D., Studies of the oxygen release reaction in the platinum-ceria-zirconia system. Catal. Today 1999,50 (2), 299-308.
    [155]Wang, Y. H.; Wang, F.; Song, Q.; Xin, Q.; Xu, S. T.; Xu, J., Heterogeneous Ceria Catalyst with Water-Tolerant Lewis Acidic Sites for One-Pot Synthesis of 1,3-Diols via Prins Condensation and Hydrolysis Reactions. J. Am. Chem. Soc.2013,135 (4),1506-1515.
    [1]van Bokhoven, J. A., Understanding Structure-Performance Relationships in Oxidic Catalysts:Controlling Shape and Tuning Performance. Chemcatchem 2009,1 (3),363-364.
    [2]Choudary, B. M.; Mulukutla, R. S.; Klabunde, K. J., Benzylation of Aromatic Compounds with Different Crystallites of MgO. J. Am. Chem. Soc.2003,125 (8),2020-2021.
    [3]Hu, L. H.; Peng, Q.; Li, Y. D., Selective Synthesis of Co304 Nanocrystal with Different Shape and Crystal Plane Effect on Catalytic Property for Methane Combustion. J. Am. Chem. Soc.2008,130 (48),16136-16137.
    [4]Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J., Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009,458 (7239),746-749.
    [5]Bao, H. Z.; Zhang, W. H.; Shang, D. L.; Hua, Q.; Ma, Y. S.; Jiang, Z. Q.; Yang, J. L.; Huang, W. X., Shape-Dependent Reducibility of Cuprous Oxide Nanocrystals. J. Phys. Chem. C 2010, 114 (14),6676-6680.
    [6]Hua, Q.; Shang, D. L.; Zhang, W. H.; Chen, K.; Chang, S. J.; Ma, Y. S.; Jiang, Z.Q.; Yang, J. L.; Huang, W. X., Morphological Evolution of Cu2O Nanocrystals in an Acid Solution:Stability of Different Crystal Planes. Langmuir 2010,27 (2),665-671.
    [7]Bao, H. Z.; Zhang, W. H.; Hua, Q.; Jiang, Z. Q.; Yang, J. L.; Huang, W. X., Crystal-Plane-Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angew. Chem.2011,123 (51),12502-12506.
    [8]Hua, Q.; Chen, K.; Chang, S. J.; Ma, Y. S.; Huang, W. X., Crystal Plane-Dependent Compositional and Structural Evolution of Uniform Cu2O Nanocrystals in Aqueous Ammonia Solutions. J. Phys. Chem. C 2011,115 (42),20618-20627.
    [9]Trovarelli, A., Catalytic Properties of Ceria and Ce02-Containing Materials. Catalysis Reviews 1996,38 (4),439-520.
    [10]A. Trovarelli, Catalysis by Ceria and Related Materials, Imperial College Press, London,2002.
    [11]Carrettin, S.; Concepcion, P.; Corma, A.; Lopez Nieto, J. M.; Puntes, V. F., Nanocrystalline CeO2 Increases the Activity of Au for CO Oxidation by Two Orders of Magnitude. Angew. Chem. Int. Ed 2004,43 (19),2538-2540.
    [12]Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal.2005,229 (1),206-212.
    [13]Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005,109 (51),24380-24385.
    [14]Lv, J. G.; Shen, Y.; Peng, L. M., et al., Exclusively selective oxidation of toluene to benzaldehyde on ceria nanocubes by molecular oxygen. Chem. Commun.2010,46,5909-5911.
    [15]Zhou, K. B.; Yang, Z. Q.; Yang, S., Highly Reducible CeO2 Nanotubes. Chem. Mater.2007, 19(6),1215-1217.
    [16]Si, R.; Flytzani-Stephanopoulos, M., Shape and crystal-plane effects of nanoscale ceria on the activity of Au-CeO2 catalysts for the water-gas shift reaction. Angew. Chem. Int. Ed 2008,47 (15),2884-2887.
    [17]Tana; Zhang, M. L.; Li, J.; Li, H. J.; Li, Y.; Shen, W. J., Morphology-dependent redox and catalytic properties of CeO2 nanostructures:Nanowires, nanorods and nanoparticles. Catal. Today 2009,148 (1-2),179-183.
    [18]Guan, Y.; Hensen, E. J. M., Cyanide leaching of Au/CeO2:highly active gold clusters for 1,3-butadiene hydrogenation. Phys. Chem. Chem. Phys.2009,11 (41).
    [19]Feng, L.; Hoang, D. T.; Tsung, C. K.; Huang, W. Y.; Lo, S. H. Y.; Wood, J. B.; Wang, H. T.; Tang, J. Y.; Yang, P. D., Catalytic Properties of Pt Cluster-Decorated CeO2 Nanostructures. Nano Research 2011,4(1),61-71.
    [20]Guan, Y.; Ligthart, D.; Pirgon-Galin, O.; Pieterse, J.; van Santen, R.; Hensen, E., Gold Stabilized by Nanostructured Ceria Supports:Nature of the Active Sites and Catalytic Performance. Top. Catal.2011,54 (5),424-438.
    [21]Liu, X. W.; Zhou, K. B.; Wang, L.; Wang, B. Y; Li, Y. D., Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. J. Am. Chem. Soc.2009,131 (9), 3140-+.
    [22]Wu, Z. L.; Li, M. J.; Overbury, S. H., On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J. Catal.2012,285 (1),61-73.
    [23]Kundakovic, L.; Flytzani-Stephanopoulos, M., Cu-and Ag-modified cerium oxide catalysts for methane oxidation. J. Catal.1998,179 (1),203-221.
    [24]Imamura, S.; Yamada, H.; Utani, K., Combustion activity of Ag/CeO2 composite catalyst. Appl. Catal. A 2000,192 (2),221-226.
    [25]Fu, Q.; Saltsburg, H.; Flytzani-Stephanopoulos, M., Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003,301 (5635),935-938.
    [26]Tang, X. F.; Chen, J. L.; Li, Y. G.; Li, Y.; Xu, Y. D.; Shen, W. J., Complete oxidation of formaldehyde over Ag/MnOx-CeO2 catalysts. Chem. Eng. J.2006,118 (1-2),119-125.
    [27]Cai, W. J.; Wang, F. G.; Van Veen, A. C.; Provendier, H.; Mirodatos, C.; Shen, W. J., Autothermal reforming of ethanol for hydrogen production over an Rh/CeO2 catalyst. Catal. Today 2008,138 (3-4),152-156.
    [28]Hatanaka, M.; Takahashi, N.; Takahashi, N.; Tanabe, T.; Nagai, Y.; Suda, A.; Shinjoh, H., Reversible changes in the Pt oxidation state and nanostructure on a ceria-based supported Pt. J. Catal.2009,266 (2),182-190.
    [29]Beier, M. J.; Hansen, T. W.; Grunwaldt, J. D., Selective liquid-phase oxidation of alcohols catalyzed by a silver-based catalyst promoted by the presence of ceria. J. Catal.2009,266 (2), 320-330.
    [30]Zhou, H. P.; Wu, H. S.; Shen, J.; Yin, A. X.; Sun, L. D.; Yan, C. H., Thermally Stable Pt/CeO2 Hetero-Nanocomposites with High Catalytic Activity. J. Am. Chem. Soc.2010,132 (14),4998-+.
    [31]Kayama, T.; Yamazaki, K.; Shinjoh, H., Nanostructured Ceria-Silver Synthesized in a One-Pot Redox Reaction Catalyzes Carbon Oxidation. J. Am. Chem. Soc.2010,132 (38), 13154-13155.
    [32]Primo, A.; Marino, T.; Corma, A.; Molinari, R.; Garcia, H., Efficient Visible-Light Photocatalytic Water Splitting by Minute Amounts of Gold Supported on Nanoparticulate CeO2 Obtained by a Biopolymer Templating Method. J. Am. Chem. Soc.2011,133 (18),6930-6933.
    [33]Li, M. J.; Wu, Z. L.; Overbury, S. H., CO oxidation on phosphate-supported Au catalysts: Effect of support reducibility on surface reactions. J. Catal.2011,278 (1),133-142.
    [34]Kalamaras, C. M.; Americanou, S.; Efstathiou, A. M., "Redox" vs "associative formate with-OH group regeneration" WGS reaction mechanism on Pt/CeO2:Effect of platinum particle size. J. Catal.2011,279 (2),287-300.
    [35]Sayle, T. X. T.; Parker, S. C.; Catlow, C. R. A., The role of oxygen vacancies on ceria surfaces in the oxidation of carbon monoxide. Surf. Sci.1994,316 (3),329-336.
    [36]Campbell, C. T.; Farmer, J. A., Ceria Maintains Smaller Metal Catalyst Particles by Strong Metal-Support Bonding. Science 2010,329 (5994),933-936.
    [37]Farmer, J. A.; Baricuatro, J. H.; Campbell, C. T., Ag Adsorption on Reduced CeO2(111) Thin Films. J. Phys. Chem. C 2010,114 (40),17166-17172.
    [38]Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F., Growth, Structure, and Stability of Ag on CeO2(111):Synchrotron Radiation Photoemission Studies. J. Phys. Chem. C 2011,115 (14),6715-6725.
    [39]Esch, F.; Fabris, S.; Zhou, L.; Montini, T.; Africh, C.; Fornasiero, P.; Comelli, G.; Rosei, R., Electron Localization Determines Defect Formation on Ceria Substrates. Science 2005,309 (5735),752-755.
    [40]Campbell, C. T.; Peden, C. H. F., Chemistry-Oxygen vacancies and catalysis on ceria surfaces. Science 2005,309 (5735),713-714.
    [41]Nolan, M.; Parker, S. C.; Watson, G. W., The electronic structure of oxygen vacancy defects at the low index surfaces of ceria. Surf. Sci.2005,595 (1-3),223-232.
    [42]Wu, Z.; Li, M.; Howe, J.; Meyer, H. M.; Overbury, S. H., Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption*. Langmuir 2010,26 (21),16595-16606.
    [43]Oyama, S. T.; Zhang, X.; Lu, J.; Gu, Y.; Fujitani, T., Epoxidation of propylene with H2 and O2 in the explosive regime in a packed-bed catalytic membrane reactor. J. Catal.2008,257 (1), 1-4.
    [44]Zhang, H.; Wang, G.; Chen, D.; Lv, X. J.; Jinghong, U. H., Tuning Photoelectrochemical Performances of Ag-TiO2 Nanocomposites via Reduction/Oxidation of Ag. Chem. Mater.2008, 20 (20),6543-6549.
    [45]Sun, W.; Li, Y. Z.; Shi, W. Q.; Zhao, X. J.; Fang, P. F., Formation of AgI/TiO2 nanocomposite leads to excellent thermochromic reversibility and photostability. J. Mater. Chem. 2011,21 (25),9263-9270.
    [46]T.F. Moulder, W.J. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Perkin Elmer, Eden Prairie, Minnesota,1992.
    [47]Weber, W. H.; Hass, K. C.; McBride, J. R., Raman study of CeO_{2}:Second-order scattering, lattice dynamics, and particle-size effects. Phys. Rev. B 1993,48 (1),178-185.
    [48]Nakajima, A.; Yoshihara, A.; Ishigame, M., Defect-induced Raman spectra in doped CeO2. Phys. Rev. B 1994,50 (18),13297-13307.
    [49]Taniguchi, T.; Watanabe, T.; Sugiyama, N.; Subramani, A. K.; Wagata, H.; Matsushita, N.; Yoshimura, M., Identifying Defects in Ceria-Based Nanocrystals by UV Resonance Raman Spectroscopy. J. Phys. Chem. C 2009,113 (46),19789-19793.
    [50]Luo, M. F.; Yan, Z. L.; Jin, L. Y.; He, M., Raman Spectroscopic Study on the Structure in the Surface and the Bulk Shell of CexPrl-xO2-S Mixed Oxides. J. Phys. Chem. B 2006,110 (26), 13068-13071.
    [51]Dutta, S.; Chattopadhyay, S.; Jana, D.; Banerjee, A.; Manik, S.; Pradhan, S. K.; Sutradhar, M.; Sarkar, A., Annealing effect on nano-ZnO powder studied from positron lifetime and optical absorption spectroscopy. J. Appl. Phys.2006,100 (11).
    [52]Sachdeva, A.; Chavan, S. V.; Goswami, A.; Tyagi, A. K.; Pujari, P. K., Positron annihilation spectroscopic studies on Nd-doped ceria. J. Solid State Chem.2005,178 (6),2062-2066.
    [53]S. Ohta, T. Kosaka, K. Sato, in:Advanced Science Research Symposium 2009,Positron, Muon and Other Exotic Particle Beams for Materials and Atomic/Molecular Sciences, vol.225, 2010.
    [54]Puska, M. J.; Nieminen, R. M., Theory of Positrons in Solids and on Solid-Surfaces. Reviews of Modern Physics 1994,66 (3),841-897.
    [55]Kong, M.; Li, Y. Z.; Chen, X.; Tian, T. T.; Fang, P. F.; Zheng, F.; Zhao, X. J., Tuning the Relative Concentration Ratio of Bulk Defects to Surface Defects in TiO2 Nanocrystals Leads to High Photocatalytic Efficiency. J. Am. Chem. Soc.2011,133 (41),16414-16417.
    [1]Sun, Y. G.; Xia, Y. N., Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298 (5601),2176-2179.
    [2]Im, S. H.; Lee, Y. T.; Wiley, B.; Xia, Y. N., Large-scale synthesis of silver nanocubes:The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed 2005,44 (14),2154-2157.
    [3]Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y., Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide. Chem. Phys. Lett.2006,432 (4-6),491-496.
    [4]Hu, J.; Odom, T. W.; Lieber, C. M., Chemistry and physics in one dimension:synthesis and properties of nanowires and nanotubes. ACC. Chem. Res.1999,32 (5),435-446.
    [5]Kong, J.; Soh, H. T; Cassell, A. M.; Quate, C. F.; Dai, H., Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 1998,395 (6705),878-881.
    [6]Frank, S.; Poncharal, P.; Wang, Z.; de Heer, W. A., Carbon nanotube quantum resistors. Science 1998,280 (5370),1744-1746.
    [7]Braun, E.; Eichen, Y.; Sivan, U.; Ben-Yoseph, G., DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 1998,391 (6669),775-778.
    [8]Ge, J.; Yao, H. B.; Wang, X.; Ye, Y. D.; Wang, J. L.; Wu, Z. Y.; Liu, J. W.; Fan, F. J.; Gao, H. L.; Zhang, C. L., Stretchable Conductors Based on Silver Nanowires:Improved Performance through a Binary Network Design. Angew. Chem.2013,125 (6),1698-1703.
    [9]Sun, Y. G.; Gates, B.; Mayers, B.; Xia, Y. N., Crystalline silver nanowires by soft solution processing. Nano Lett.2002,2 (2),165-168.
    [10]Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N., Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinyl pyrrolidone). Chem. Mater.2002,14 (11),4736-4745.
    [11]Yin, Y. D.; Lu, Y.; Sun, Y. G.; Xia, Y. N., Silver nanowires can be directly coated with amorphous silica to generate well-controlled coaxial nanocables of silver/silica. Nano Lett.2002, 2 (4),427-430.
    [12]Sun, Y. G.; Mayers, B.; Herricks, T.; Xia, Y. N., Polyol synthesis of uniform silver nanowires:A plausible growth mechanism and the supporting evidence. Nano Lett.2003,3 (7), 955-960.
    [13]Sun, Y. G.; Mayers, B.; Xia, Y. N., Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett.2003,3 (5),675-679.
    [14]Xia, Y. N.; Yang, P. D., Chemistry and physics of nanowires. Adv. Mater.2003,15 (5), 351-+.
    [15]Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q., One-dimensional nanostructures:Synthesis, characterization, and applications. Adv. Mater.2003,15 (5),353-389.
    [16]Tang, X. L.; Tsuji, M.; Jiang, P.; Nishio, M.; Jang, S. M.; Yoon, S. H., Rapid and high-yield synthesis of silver nanowires using air-assisted polyol method with chloride ions. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2009,338 (1-3),33-39.
    [17]Jin, R. C.; Cao, Y. W.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G., Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001,294 (5548),1901-1903.
    [18]Metraux, G. S.; Cao, Y. C.; Jin, R.; Mirkin, C. A., Triangular nanoframes made of gold and silver. Nano Lett.2003,3 (4),519-522.
    [19]Metraux, G. S.; Mirkin, C. A., Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater.2005,17 (4),412-415.
    [20]Xue, C.; Metraux, G. S.; Millstone, J. E.; Mirkin, C. A., Mechanistic study of photomediated triangular silver nanoprism growth. J. Am. Chem. Soc.2008,130 (26),8337-8344.
    [21]Millstone, J. E.; Hurst, S. J.; Metraux, G. S.; Cutler, J. I.; Mirkin, C. A., Colloidal gold and silver triangular nanoprisms. Small 2009,5 (6),646-664.
    [22]Xue, G.; Mirkin, C. A., pH-Switchable Silver Nanoprism Growth Pathways. Angew. Chem. 2007,119 (12),2082-2084.
    [23]Xue, C.; Chen, X.; Hurst, S. J.; Mirkin, C. A., Self-Assembled Monolayer Mediated Silica Coating of Silver Triangular Nanoprisms. Adv. Mater.2007,19 (22),4071-4074.
    [24]Pastoriza-Santos, I.; Liz-Marzan, L. M., Synthesis of silver nanoprisms in DMF. Nano Lett. 2002,2 (8),903-905.
    [25]Mulvaney, P., Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir 1996, 12 (3),788-800.
    [26]Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S., Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys.2002,116 (15),6755-6759.
    [27]Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., The bactericidal effect of silver nanoparticles. Nanotechnology 2005,16 (10), 2346-2353.
    [28]Wiley, B. J.; Xiong, Y. J.; Li, Z. Y.; Yin, Y. D.; Xia, Y. A., Right bipyramids of silver:A new shape derived from single twinned seeds. Nano Lett.2006,6 (4),765-768.
    [29]Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A., Shape-controlled synthesis of colloidal platinum nanoparticles. SCIENCE-NEW YORK THEN WASHINGTON-1996,1924-1925.
    [30]Yu, Y.-Y.; Chang, S.-S.; Lee, C.-L.; Wang, C. C., Gold nanorods:electrochemical synthesis and optical properties. J. Phys. Chem. B 1997,101 (34),6661-6664.
    [31]Sun, S.; Murray, C.; Weller, D.; Folks, L.; Moser, A., Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 2000,287 (5460),1989-1992.
    [32]Xia, Y.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E., Shape-Controlled Synthesis of Metal Nanocrystals:Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed 2009,48 (1), 60-103.
    [33]Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B 2005,109 (29),13857-13870.
    [34]Lofton, C.; Sigmund, W., Mechanisms controlling crystal habits of gold and silver colloids. Adv. Func. Mater.2005,15 (7),1197-1208.
    [35]Elechiguerra, J. L.; Reyes-Gasga, J.; Yacaman, M. J., The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem.2006,16 (40),3906-3919.
    [36]Wulff, G., On the question of speed of growth and dissolution of crystal surfaces Zeitschrift Fur Krystallographie Und Mineralogie 1901,34 (5/6),449-530.
    [37]Wiley, B.; Sun, Y. G.; Xia, Y., Synthesis of silver wanostructures with controlled shapes and properties. ACC. Chem. Res.2007,40 (10),1067-1076.
    [38]Sun, Y. G.; Xia, Y. N., Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Adv. Mater.2002,14 (11),833-837.
    [39]Marks, L., Experimental studies of small particle structures. Reports on Progress in Physics 1999,57(6),603.
    [40]Wiley, B.; Herricks, T.; Sun, Y. G.; Xia, Y. N., Polyol synthesis of silver nanoparticles:Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons (vol 4, pg 1734,2004). Nano Lett.2004,4 (10),2057-2057.
    [41]Wiley, B.; Sun, Y.; Xia, Y., Polyol synthesis of silver nanostructures:control of product morphology with Fe (Ⅱ) or Fe (Ⅲ) species. Langmuir 2005,21 (18),8077-8080.
    [42]Sosa, I. O.; Noguez, C.; Barrera, R. G., Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003,107 (26),6269-6275.
    [43]Tang, X.; Tsuji, M.; Nishio, M.; Jiang, P., Roles of chloride anions in the shape evolution of anisotropic silver nanostructures in poly (vinylpyrrolidone)(PVP)-assisted polyol process. Bull. Chem. Soc. Jpn.2009,82 (10),1304-1312.
    [44]Bock, C0; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R., Size-selected synthesis of PtRu nano-catalysts:reaction and size control mechanism. J. Am. Chem. Soc.2004, 126 (25),8028-8037.
    [45]Liu, N.; Yin, L.; Wang, C.; Zhang, L.; Lun, N.; Wang, C.; Qi, Y., One-Pot Synthesis of PtRu Nanoparticle Decorated Ordered Mesoporous Carbons with Improved Hydrogen Storage Capacity. J. Phys. Chem. C 2010,114 (50),22012-22018.
    [46]Henglein, A., Reduction of Ag (CN) 2-on silver and platinum colloidal nanoparticles. Langmuir 2001,17 (8),2329-2333.
    [47]Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M. H., Ag@ AgCl:a highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed 2008,47 (41),7931-7933.
    [48]Millar, G. J.; Nelson, M. L.; Uwins, P. J. R., In situ imaging of catalytic etching on silver during methanol oxidation conditions by environmental scanning electron microscopy. J. Catal. 1997,169 (1),143-156.
    [49]Millar, G. J.; Nelson, M. L.; Uwins, P. J. R., In situ imaging of catalytic etching on silver during methanol oxidation conditions by environmental scanning electron microscopy. J. Catal. 1997,169 (1),143-156.
    [50]Linic, S.; Barteau, M. A., Control of ethylene epoxidation selectivity by surface oxametallacycles. J. Am. Chem. Soc.2003,125 (14),4034-4035.
    [51]Lu, J.; Bravo-Suarez, J. J.; Takahashi, A.; Haruta, M.; Oyama, S. T., In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal.2005,232 (1),85-95.
    [52]Lei, Y.; Mehmood, F.; Lee, S.; Greeley, J.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Meyer, R. J.; Redfern, P. C.; Teschner, D.; Schlogl, R.; Pellin, M. J.; Curtiss, L. A.; Vajda, S., Increased Silver Activity for Direct Propylene Epoxidation via Subnanometer Size Effects. Science 2010,328 (5975),224-228.
    [53]Christopher, P.; Linic, S., Engineering selectivity in heterogeneous catalysis:Ag nanowires as selective ethylene epoxidation catalysts. J. Am. Chem. Soc.2008,130 (34),11264-+.
    [54]Christopher, P.; Linic, S., Shape- and Size-Specific Chemistry of Ag Nanostructures in Catalytic Ethylene Epoxidation. Chemcatchem 2010,2 (1),78-83.
    [55]Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D., Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem.--Asian J.2006,1 (6),888-893.
    [56]Zhang, Z.; Zhao, B.; Hu, L., PVP protective mechanism of ultrafine silver powder synthesized by chemical reduction processes. J. Solid State Chem.1996,121 (1),105-110.
    [57]Shin, H. S.; Yang, H. J.; Kim, S. B.; Lee, M. S., Mechanism of growth of colloidal silver nanoparticles stabilized by polyvinyl pyrrolidone in y-irradiated silver nitrate solution. J. Colloid Interface Sci.2004,274 (1),89-94.
    [58]Wang, H.; Qiao, X.; Chen, J.; Wang, X.; Ding, S., Mechanisms of PVP in the preparation of silver nanoparticles. Mater. Chem. Phys.2005,94 (2),449-453.
    [1]Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Perez, M., Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 2007,318 (5857), 1757-1760.
    [2]Yang, F.; Graciani, J. s.; Evans, J.; Liu, P.; Hrbek, J.; Sanz, J. F.; Rodriguez, J. A., CO Oxidation on Inverse CeO x/Cu (111) Catalysts:High Catalytic Activity and Ceria-Promoted Dissociation of O2. J. Am. Chem. Soc.2011,133 (10),3444-3451.
    [3]Kuo, C. H.; Hua, T. E.; Huang, M. H., Au Nanocrystal-Directed Growth of Au-Cu2O Core-Shell Heterostructures with Precise Morphological Control. J. Am. Chem. Soc.2009,131 (49),17871-17878.
    [4]Aslan, K.; Wu, M.; Lakowicz, J. R.; Geddes, C. D., Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc.2007,129 (6),1524-+.
    [5]Cargnello, M.; Wieder, N. L.; Montini, T.; Gorte, R. J.; Fornasiero, P., Synthesis of Dispersible Pd@CeO2 Core-Shell Nanostructures by Self-Assembly. J. Am. Chem. Soc.2010, 132(4),1402-1409.
    [6]Ditlbacher, H.; Hohenau, A.; Wagner, D.; Kreibig, U.; Rogers, M.; Hofer, F.; Aussenegg, F. R.; Krenn, J. R., Silver nanowires as surface plasmon resonators. Phys. Rev. Lett.2005,95 (25), 257403.
    [7]Tian, Z.-Q.; Ren, B.; Wu, D.-Y., Surface-enhanced Raman scattering:from noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002,106 (37), 9463-9483.
    [8]Mai, H. X.; Sun, L. D.; Zhang, Y. W.; Si, R.; Feng, W.; Zhang, H. P.; Liu, H. C.; Yan, C. H., Shape-selective synthesis and oxygen storage behavior of ceria nanopolyhedra, nanorods, and nanocubes. J. Phys. Chem. B 2005,109 (51),24380-24385.
    [9]Fu, Q.; Li, W. X.; Yao, Y. X.; Liu, H. Y.; Su, H. Y.; Ma, D.; Gu, X. K.; Chen, L. M.; Wang, Z.; Zhang, H.; Wang, B.; Bao, X. H., Interface-Confined Ferrous Centers for Catalytic Oxidation. Science 2010,328 (5982),1141-1144.
    [10]Larachi, F. c.; Pierre, J.; Adnot, A.; Bernis, A., Ce 3d XPS study of composite CexMn1-xO2-y wet oxidation catalysts. Appl. Surf. Sci.2002,195 (1),236-250.
    [11]Tao, A. R.; Habas, S.; Yang, P. D., Shape control of colloidal metal nanocrystals. Small 2008, 4 (3),310-325.
    [12]Washio, I.; Xiong, Y. J.; Yin, Y. D.; Xia, Y. N., Reduction by the end groups of poly(vinyl pyrrolidone):A new and versatile route to the kinetically controlled synthesis of Ag triangular nanoplates. Adv. Mater.2006,18 (13),1745-+.
    [13]Wang, Y. H.; Wang, F.; Song, Q.; Xin, Q.; Xu, S. T.; Xu, J., Heterogeneous Ceria Catalyst with Water-Tolerant Lewis Acidic Sites for One-Pot Synthesis of 1,3-Diols via Prins Condensation and Hydrolysis Reactions. J. Am. Chem. Soc.2013,135 (4),1506-1515.
    [14]Takimoto, B.; Nabika, H.; Murakoshi, K., Enhanced Emission from Photoactivated Silver Clusters Coupled with Localized Surface Plasmon Resonance. J. Phys. Chem. C 2009,113 (27), 11751-11755.
    [15]Moskovits, M., Surface-enhanced spectroscopy. Reviews of Modern Physics 1985,57 (3), 783.
    [16]Nie, S. M.; Emery, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997,275 (5303),1102-1106.
    [17]Fleischmann, M.; Hendra, P.; McQuillan, A., Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett.1974,26 (2),163-166.
    [18]Michaels, A. M.; Nirmal, M.; Brus, L., Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc.1999,121 (43),9932-9939.
    [19]Fievet, F.; Lagier, J.; Blin, B.; Beaudoin, B.; Figlarz, M., Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ionics 1989,32,198-205.
    [20]Song, H.; Kim, F.; Connor, S.; Somorjai, G. A.; Yang, P., Pt nanocrystals:Shape control and Langmuir-Blodgett monolayer formation. J. Phys. Chem. B 2005,109 (1),188-193.
    [21]Borodko, Y.; Humphrey, S. M.; Tilley, T. D.; Frei, H.; Somorjai, G. A., Charge-transfer interaction of poly (vinylpyrrolidone) with platinum and rhodium nanoparticles. J. Phys. Chem. C 2007,111 (17),6288-6295.
    [22]Mayer, A. B., Colloidal metal nanoparticles dispersed in amphiphilic polymers. Polym. Adv. Technol.2001,12 (1-2),96-106.
    [23]Tan, X.; Wang, Z.; Yang, J.; Song, C.; Zhang, R.; Cui, Y., Polyvinylpyrrolidone-(PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnology 2009,20 (44),445102.
    [24]Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc.1977,99 (15),5215-5217.
    [25]Xian, J.; Hua, Q.; Jiang, Z.; Ma, Y.; Huang, W., Size-dependent interaction of the poly (N-vinyl-2-pyrrolidone) capping ligand with Pd nanocrystals. Langmuir 2012,28 (17),6736-6741.
    [26]Taylor, L. S.; Langkilde, F. W.; Zografi, G., Fourier transform Raman spectroscopic study of the interaction of water vapor with amorphous polymers. J Pharm Sci 2001,90 (7),888-901.
    [27]Sherry, L. J.; Chang, S. H.; Schatz, G. C.; Van Duyne, R. P.; Wiley, B. J.; Xia, Y. N., Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett.2005,5 (10),2034-2038.
    [28]Templeton, A. C.; Pietron, J. J.; Murray, R. W.; Mulvaney, P., Solvent refractive index and core charge influences on the surface plasmon absorbance of alkanethiolate monolayer-protected gold clusters. J. Phys. Chem. B 2000,104 (3),564-570.
    [29]Zhong, Z.; Patskovskyy, S.; Bouvrette, P.; Luong, J. H.; Gedanken, A., The surface chemistry of Au colloids and their interactions with functional amino acids. J. Phys. Chem. B 2004,108 (13), 4046-4052.
    [30]Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J., Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008,24 (10),5233-5237.
    [31]Niitsoo, O.; Couzis, A., Facile synthesis of silver core-silica shell composite nanoparticles. J. Colloid Interface Sci.2011,354 (2),887-890.
    [32]Rao, G. R.; Sahu, H. R., XRD and UV-Vis diffuse reflectance analysis of CeO2-ZrO2 solid solutions synthesized by combustion method. J. Chem. Sci.2001,113 (5-6),651-658.
    [33]Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q., Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010,464 (7287),392-395.
    [34]Lin, X. D.; Uzayisenga, V.; Li, J. F.; Fang, P. P.; Wu, D. Y.; Ren, B.; Tian, Z. Q., Synthesis of ultrathin and compact Au@MnO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS). J. Raman Spectrosc.2012,43 (1),40-45.
    [35]Venkatesan, S.; Erdheim, G.; Lombardi, J. R.; Birke, R. L., Voltage dependence of the surface-molecule line in the enhanced raman spectrum of several nitrogen containing compounds. Surf. Sci.1980,101 (1),387-398.
    [36]Hildebrandt, P.; Stockburger, M., Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem.1984,88 (24),5935-5944.
    [37]Borodko, Y.; Habas, S. E.; Koebel, M.; Yang, P.; Frei, H.; Somorjai, G. A., Probing the interaction of poly (vinylpyrrolidone) with platinum nanocrystals by UV-Raman and FTIR. J. Phys. Chem. B 2006,110 (46),23052-23059.
    [38]Hayazawa, N.; Tarun, A.; Inouye, Y.; Kawata, S., Near-field enhanced Raman spectroscopy using side illumination optics. J. Appl. Phys.2002,92 (12),6983-6986.
    [39]Zhang, J. T.; Li, X. L.; Sun, X. M.; Li, Y. D., Surface enhanced Raman scattering effects of silver colloids with different shapes. J. Phys. Chem. B 2005,109 (25),12544-12548.
    [40]Wu, Z.; Li, M.; Howe, J.; Meyer, H. M.; Overbury, S. H., Probing Defect Sites on CeO2 Nanocrystals with Well-Defined Surface Planes by Raman Spectroscopy and O2 Adsorption*. Langmuir 2010,26 (21),16595-16606.
    [41]Grant, C. D.; Schwartzberg, A. M.; Norman, T. J.; Zhang, J. Z., Ultrafast electronic relaxation and coherent vibrational oscillation of strongly coupled gold nanoparticle aggregates. J.Am. Chem. Soc.2003,125 (2),549-553.
    [42]Schwartzberg, A. M.; Grant, C. D.; Wolcott, A.; Talley, C. E.; Huser, T. R.; Bogomolni, R.; Zhang, J. Z., Unique gold nanoparticle aggregates as a highly active surface-enhanced Raman scattering substrate. J. Phys. Chem. B 2004,108 (50),19191-19197.
    [43]Norman, T. J.; Grant, C. D.; Magana, D.; Zhang, J. Z.; Liu, J.; Cao, D.; Bridges, F.; Van Buuren, A., Near infrared optical absorption of gold nanoparticle aggregates. J. Phys. Chem. B 2002,106 (28),7005-7012.
    [44]Kim, K. L.; Lee, S. J.; Kim, K., Surface-enhanced Raman scattering of benzyl phenyl sulfide in silver sol:excitation-wavelength-dependent surface-induced photoreaction. J. Phys. Chem. B 2004,108 (26),9216-9220.
    [45]Lu, Y.; Liu, G. L.; Kim, J.; Mejia, Y. X.; Lee, L. P., Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect. Nano Lett.2005,5 (1),119-124.
    [46]Quagliano, L. G., Observation of molecules adsorbed on III-V semiconductor quantum dots by surface-enhanced Raman scattering. J. Am. Chem. Soc.2004,126 (23),7393-7398.
    [47]Garcia-Vidal, F. J.; Pendry, J., Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett.1996,77(6),1163.
    [48]Futamata, M.; Maruyama, Y.; Ishikawa, M., Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method. J. Phys. Chem. B 2003,107 (31),7607-7617.
    [49]Musi, A.; Massiani, P.; Brouri, D.; Trichard, J.-M.; Da Costa, P., On the Characterisation of Silver Species for SCR of NO x with Ethanol. Catal. Lett.2009,128 (1-2),25-30.
    [50]Zhou, K. B.; Wang, X.; Sun, X. M.; Peng, Q.; Li, Y. D., Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J. Catal.2005,229 (1),206-212.
    [51]Waterhouse, G. I. N.; Bowmaker, G. A.; Metson, J. B., The thermal decomposition of silver (Ⅰ, Ⅲ) oxide:A combined XRD, FT-IR and Raman spectroscopic study. Phys. Chem. Chem. Phys. 2001,3 (17),3838-3845.
    [1]Wang, Z. L.; Song, J., Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006,312 (5771),242-246.
    [2]Wang, X.; Summers, C. J.; Wang, Z. L., Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays. Nano Lett.2004,4 (3),423-426.
    [3]Jagadish, C.; Pearton, S. J., Zinc oxide bulk, thin films and nanostructures:processing, properties, and applications. Elsevier Science:2011.
    [4]Wang, N.; Sun, C.; Zhao, Y.; Zhou, S.; Chen, P.; Jiang, L., Fabrication of three-dimensional ZnO/TiO2 heteroarchitectures via a solution process. J. Mater. Chem.2008,18 (33),3909-3911.
    [5]Sibu, C.; Kumar, S. R.; Mukundan, P.; Warrier, K., Structural modifications and associated properties of lanthanum oxide doped sol-gel nanosized titanium oxide. Chem. Mater.2002,14 (7), 2876-2881.
    [6]Padmanabhan, S. C.; Pillai, S. C.; Colreavy, J.; Balakrishnan, S.; McCormack, D. E.; Perova, T. S.; Gun'ko, Y.; Hinder, S. J.; Kelly, J. M., A simple sol-gel processing for the development of high-temperature stable photoactive anatase titania. Chem. Mater.2007,19 (18),4474-4481.
    [7]Subramanian, V.; Wolf, E.; Kamat, P. V., Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 2001,105 (46),11439-11446.
    [8]Pillai, S. C.; Periyat, P.; George, R.; McCormack, D. E.; Seery, M. K.; Hayden, H.; Colreavy, J.; Corr, D.; Hinder, S. J., Synthesis of high-temperature stable anatase TiO2 photocatalyst. J. Phys. Chem. C 2007,111 (4),1605-1611.
    [9]Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001,293 (5528),269-271.
    [10]Gouvea, C. A.; Wypych, F.; Moraes, S. G.; Duran, N.; Peralta-Zamora, P., Semiconductor-assisted photodegradation of lignin, dye, and kraft effluent by Ag-doped ZnO. Chemosphere 2000,40 (4),427-432.
    [11]Hariharan, C., Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles:Revisited. Appl. Catal. A 2006,304,55-61.
    [12]Kamat, P. V., Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002,106 (32),1129-11'44.
    [13]Kamat, P. V., Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev.1993,93(1),267-300.
    [14]Herrmann, J.-M.; Tahiri, H.; Ait-lchou, Y.; Lassaletta, G.; Gonzalez-Elipe, A.; Fernandez, A., Characterization and photocatalytic activity in aqueous medium of TiO2and Ag-TiO2 coatings on quartz. Appl. Catal. B 1997,13 (3),219-228.
    [15]Kamat, P. V., Photophysical, photochemical and photocatalytic aspects of metal nanoparticles. J. Phys. Chem. B 2002,106 (32),7729-7744.
    [16]Kang, H. S.; Ahn, B. D.; Kim, J. H.; Kim, G. H.; Lim, S. H.; Chang, H. W.; Lee, S. Y., Structural, electrical, and optical properties of p-type ZnO thin films with Ag dopant. Appl. Phys. Lett.2006,88 (20),202108-202108-3.
    [17]Pathak, P.; Meziani, M. J.; Castillo, L.; Sun, Y.-P., Metal-coated nanoscale TiO2 catalysts for enhanced CO2 photoreduction. Green Chem.2005,7 (9),667-670.
    [18]Chao, H.; Yun, Y.; Xingfang, H.; Larbot, A., Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. J. Eur. Ceram. Soc.2003,23 (9), 1457-1464.
    [19]Stathatos, E.; Petrova, T.; Lianos, P., Study of the efficiency of visible-light photocatalytic degradation of basic blue adsorbed on pure and doped mesoporous titania films. Langmuir 2001, 17 (16),5025-5030.
    [20]Hirakawa, T.; Kamat, P. V., Charge separation and catalytic activity of Ag@ TiO2 core-shell composite clusters under UV-irradiation. J. Am. Chem. Soc.2005,127 (11),3928-3934.
    [21]Djurisic, A.; Leung, Y.; Tam, K.; Hsu, Y.; Ding, L.; Ge, W.; Zhong, Y.; Wong, K.; Chan, W.; Tam, H., Defect emissions in ZnO nanostructures. Nanotechnology 2007,18 (9),095702.
    [22]Vanheusden, K.; Seager, C.; Warren, W.; Tallant, D.; Voigt, J., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors. Appl. Phys. Lett.1996,68,403.
    [23]Van Dijken, A.; Meulenkamp, E.; Vanmaekelbergh, D.; Meijerink, A., The luminescence of nanocrystalline ZnO particles:the mechanism of the ultraviolet and visible emission. J. Lumin. 2000,87,454-456.
    [24]Lu, W. W.; Gao, S. Y.; Wang, J. J., One-Pot Synthesis of Ag/ZnO Self-Assembled 3D Hollow Microspheres with Enhanced Photocatalytic Performance. J. Phys. Chem. C 2008,112 (43),16792-16800.
    [25]Zheng, Y. H.; Zheng, L. R.; Zhan, Y. Y.; Lin, X. Y.; Zheng, Q.; Wei, K. M., Ag/ZnO heterostructure nanocrystals:Synthesis, characterization, and photocatalysis. Inorg. Chem.2007, 46 (17),6980-6986.
    [26]Shan, G.; Xu, L.; Wang, G.; Liu, Y., Enhanced raman scattering of ZnO quantum dots on silver colloids. J. Phys. Chem. C 2007,111 (8),3290-3293.
    [27]Lee, M.-K.; Kim, T. G.; Kim, W.; Sung, Y.-M., Surface Plasmon Resonance (SPR) Electron and Energy Transfer in Noble Metal-Zinc Oxide Composite Nanocrystals. J. Phys. Chem. C 2008,112(27),10079-10082.
    [28]Linsebigler, A. L.; Lu, G.; Yates Jr, J. T., Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results. Chem. Rev.1995,95 (3),735-758.
    [29]Li, X.; Li, F., Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environmental Science & Technology 2001,35 (11),2381-2387.
    [30]Tay, Y. Y.; Tan, T. T.; Liang, M. H.; Boey, F.; Li, S., Specific defects, surface band bending and characteristic green emissions of ZnO. Phys. Chem. Chem. Phys.2010,12 (23),6008-6013.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700