用户名: 密码: 验证码:
吉林西部盐碱湿地对农田退水的净化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农业面源污染是当前很多地区亟待解决的主要环境问题。农田退水中大量的N、P等营养物质进入地表水体后将引起水体富营养化问题。湿地能有效去除农田退水中的污染物质,本论文研究莫莫格湿地四种典型湿地植被对污水氮素的去除效率和规律,探讨了磷输入及环境要素的变化对湿地去除氮元素的影响,同时基于土地利用变化对莫莫格湿地净化农田退水的潜力进行了评估。
     在本研究中,不同湿地类型中总氮的去除过程表现出基本一致的规律,在实验结束时,水中的TN含量均处于较低的水平,香蒲湿地、芦苇湿地、水葱湿地、藨草湿地表层水中的TN含量分别为0.4mg/L、1.40mg/L、1.28mg/L和1.47mg/L。四种湿地对于水中的TN含量的去除率均达到90%以上,去除率表现出香蒲湿地>水葱湿地>芦苇湿地>藨草湿地的规律,分别为98.02%、93.62%、92.98%和92.63%。其中香蒲湿地对于水中TN的去除率要显著高于其它三种湿地类型。
     四种湿地类型对于水体中硝态氮均具有很高的去除率。在实验的第九天,水体中的硝态氮已经下降到很低的水平,均小于0.1mg/L。这表明,只要在湿地中驻留较长的时间,湿地将有效的净化水体中的硝态氮。不同湿地类型中,铵态氮的去除率均达到很高的水平,在实验结束时表层水体中的氨氮浓度基本达到极低的水平。香蒲湿地、芦苇湿地、水葱湿地及藨草湿地水体中氨氮的含量在实验结束时分别为0.08mg/L,0.16mg/L,0.03mg/L和0.11mg/L。其中藨草湿地水体中氨氮浓度的含量最低,表明藨草湿地可能对于水体中的氨氮具有较高的去除能力。
     不同的P输入情况下,各种类型湿地的总氮的去除过程分别表现不同的规律:随着污水中总磷含量的增加,香蒲湿地单元中氨氮的去除率先降低后增加,总氮和硝氮的去除率先增加后降低;芦苇湿地单元中氨氮和硝氮的去除率变化不大,总氮的去除率呈降低趋势;水葱湿地单元中氨氮的去除率先增加后降低,总氮和硝氮的去除率均呈增加趋势;藨草湿地单元中氨氮的去除率呈增加趋势,总氮去除率变化不大,硝氮去除率不断降低。
     相关性分析表明,不同湿地类型中,pH对湿地生态系统中TN的去除率影响不同。在香蒲湿地与水葱湿地中,pH与TN去除率之间具有显著的正相关关系,而在芦苇湿地与藨草湿地中,这种相关性并不明显。而相关性分析表明,香蒲湿地中ORP的高低直接影响到TN的去除率,ORP与TN去除率之间存在显著的负相关关系(r=-0.242,p=0.022),随着ORP的增加,TN去除率呈现出下降的态势。TN去除率与ORP之间并非线性关系,在ORP小于320mv时,TN的去除率基本不变,而当ORP大于320mv时,总氮的去除率开始出现波动,并呈下降态势。
     利用野外调查、GIS遥感解译,基于土地利用变化对莫莫格湿地净化农田退水潜力进行评估。莫莫格地区的TSI结果表明,莫莫格保护区地表水有一定富营养化的风险,需要注意。不同水体中的TSI存在较大差异,沟渠中TSI最高,说明沟渠中发生富营养化的可能性最高。各种水体中TSI表现出沟渠>水塘>农田>大塘>湿地>湿出>小塘>湿入>排口>湿中的规律。
Agricultural nonpoint source pollution is a major environmental problem remainedunsolved in many areas. Irrigation return water contains a large number of N, P and othernutrients which can cause water eutrophication of surface water. It is wellknown that wetlandscan effectively remove the the farmland water pollutants. This thesis focused on theinvestigation of the nitrogen removal efficiency and regularity of four typical wetland plantsin wetlands sewage of national Momoge nature reserve. The influence of phosphorus andother environmental factors on the nitrogen removal was also discussed. Meanwhile, theevaluation on the irrigation return water purification of Momoge wetland was accomplishedbased on our research.
     In this study, the total nitrogen (TN) removal process was based on a consistent rule indifferent types of wetlands. TN in the water remained low at the end of the experiment, andTN of cattail wetlands, reed wetlands, scirpus tabernaemontani and scripus triqueter wetlandsof the surface water were0.4mg/L and1.40mg/L and1.28mg/L and1.47mg/L,respectively. The TN removal rates of these four wetlands were all beyond90%(cattailwetlands> wetlands Scirpus> reed wetlands Scirpus wetlands), and cattail wetlands shew thehighest TN removal rates.
     The four types of wetland water shew high removal rates of nitrates, and the nitrates inwater has dropped to less than0.1mg/L within nine days. Meanwhile, ammonium nitrogenremoval rate reached a high level in the different types of wetlands, where the ammoniacontent has reached a very low level, with cattail wetlands, wetland water reed wetland,Scirpus wetlands and Scirpus ammonia content as0.08mg/L,0.16mg/L,0.03mg/L and0.11mg/L at the end of the experiment. The Scirpus wetland waters shew the lowest contentof ammonia concentration, which indicated Scirpus wetlands may have higher ability toremove ammonia nitrogen.
     The TN removal processes of wetlands shew respective regularities due to different phosphous contents. As the contents of phosphous increased, ammonia content decreased thenincreased, while TN and nitrates contents increased then decreased in cattail wetland water.As the contents of phosphous increased, ammonia and nitrates removal rates changed little,while TN decreased in reed wetland water. As the contents of phosphous increased, nitratesremoval rates increased then decreased, while TN and ammonia removal rates increased inscirpus tabernaemontani wetland water. As the contents of phosphous increased, nitratesremoval rates increased, nitrates removal rates decreased, and TN removal rates has notchanged much in scripus triqueter wetland water. Based on
     Based on the correlation analysis, the influence of pH on TN removal rates was differentin the four types of wetlands. TN and pH shew positive correlation in the cattail and scirpustabernaemontani wetlands, while the correlation of TN and pH was not obious in the reed andscripus triqueter wetlands. Meanwhile, TN removal rates in the cattail wetland were related toORP: when ORP increased, TN removal rates decreased (r=-0.242,p=0.022). However, TNremoval rates were not linear with ORP: when ORP was less than320mV, TN changed littleas ORP increased; when ORP was more than320mV, TN removal rates decreasedfluctuatingly when ORP increased.
     The purification ability of farmland back water in Momoge wetland was investigatedthrough open field survey and remote sensing interpretation (GIS). The TSI results shew thatthe high risk of eutrophication of surface water in Momoge region should attract widespreadattention. The average TSI in different types of surface water was80.5, which shew severeeutrophication in Momoge region. TSIs differed in different types of surface water, and theTSI of ditch was the highest (ditch> reservoir> farmland> large pool> wetland entry> wetlandoutlet>small pool> wetland middle region).
引文
[1]殷书柏,吕宪国.湿地功能快速评价中的若干理论问题[J].湿地科学,2006,4(1):1-6.
    [2]House C H.Combining constructed wetlands and aquatic and soil filter for reclamation and reuse ofwater[J].Ecological Engineering[J],1999,12:27-38.
    [3]Paolo M,Marta M,et a1.Application of a horizontal subsurface flow constructed wetland ontreatment of dairy parlor wastewater.Bioresource Technology[J],2003,88:85-94.
    [4]Kickuth R.Degardation and incorporation of nutrients from rural wastewaters by land rhizosphereunder Limic Conditions[J].In:Vymazal J,Brix H,Cooper P F,et al.Utilization of manure byland spreading[M].The Netherlands:Back-guys Publishers,1977.243-335.
    [5]Kaseva M E.Performance of a sub-surface flow constructed wetland in polishing pre-treatedwastewater-a tropical case study.Water Research[J],2004,38:681-687.
    [6]Brooks A S, Rozenwald M N, Geohring L D,et al.Phosphorus removal by wollastonites:aconstructed wetland substrate.Ecological Engineering[J],2000,15:121-132.
    [7]白晓慧,王宝贞,余敏.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学学报,1999,32(6):88-92.
    [8]吴晓磊.人工湿地废水处理机理[J].环境科学,1995,16(3):83-86.
    [9]Zhou S, Hosomi M. Nitrogen transformations and balance in a constructed wetland fornutrient-polluted river water treatment using forage rice in Japan[J].Ecological Engineering,2008,32:147-155.
    [10]Christian R,Steinman N, Weinhart S,et a1.A combined system of lagoon and constructed wetlandfor an effective wastewater treatment[J].Water Research,2003,37:2035-2042.
    [11]Guo Y, Jiang M, Lu XG. Simulation Study on Purification Efficiency for Nitrogen in DifferentTypes of Wetlands in Sanjiang Plain[J], China. Chinese Geographical Science,2010,20(3):252-257.
    [12]刘守江,张斌,胡翠华.人工湿地净化生活污水研究现状与展望[J].四川环境,2011,30(1):53-55.
    [13]Coveney M F,Stites D L,Lowe E F.Nutrient Removal from Eutrophic Lake water By wetlandFiltration.Ecological Engineering[J],2002,19:141-159.
    [14]刘国华,舒洪岚.印度湿地的管理与保护.江西林业科技[J],2005,4:48-49.
    [15]Juwarkar A S,Oke B,Juwarkar A,et al.Domestic wastewater treatment through constructedwetland in India.Water Science and Technology,1995,32(3):291-294.
    [16]陈宜瑜,吕宪国.湿地功能与湿地科学的研究方向[J].湿地科学,2003,1(1):7-10.
    [17]成水平,夏宜琤.香蒲、灯心草人工湿地的研究—Ⅲ净化污水的机理[J].湖泊科学,1998,10(2):66-71.
    [18]吕宪国,刘晓辉中国湿地研究进展—献给中国科学院东北地理与农业生态研究所建所50周年[J].地理科学,2008,28(3):301-308.
    [19]刘兴土,黄锡畴.三江平原地区的生态环境和沼泽生态农业开发[J].地理学与国土研究,1989,5(2):12-18.
    [20]杨永兴.三江平原沼泽区“稻-苇-鱼”复合生态系统生态效益研究[J].地理科学,1993,13(1):41-48.
    [21]李杰,钟成华,邓春光.人工湿地研究进展[J].安徽农业科学,2007,35(6):1778-1780.
    [22]Zhang J, Zhou Q, He R. Mechanism of nitrogen and phosphorus removal in free-water surfaceconstructed wetland[J]. Ecology and Environment,2004,13(1):98-101.
    [23]陈宜瑜.中国湿地研究[M].长春:吉林科学技术出版社,1995:262-268.
    [24]Heikkinen K,Ihme R,Lakso E.Contribution of cation exchange property of overflow wetland peatto removal of NH4plus discharged from some Finnish peat mines[J].Applied Geochemistry,l995,l0(2):207-210.
    [25]Sokolowska Z,Hajnos M,Borowko M,et al.Adsorption of Nitrogen on thermally treated peatsoils:The role of energetic and geometric heterogeneity[J].Journal of Colloid and InterfaceScience,1999,219:1210.
    [26]Bobbink R,Hornung M,Roelofs J G M.The effects of airborne pollutants on species diversity innatural and seminatural European vegetation[J].Journal of Ecology,1998,86(5):717-738.
    [27]尹澄清,兰智文,晏维金.白洋淀水陆交错带对陆源营养物质的截留作用初步研究[J].应用生态学报,1995,6(1):76-80.
    [28]丁峰元.长江口滨海湿地氮、磷循环及污染净化初步研究[D]:[硕士学位论文].上海:上海师范大学水生生物学系,2003.
    [29]欧维新,高建华,杨桂山.芦苇湿地对氮磷污染物质的净化效应及其价值初步估算——以苏北盐城海岸带芦苇湿地为例[J].海洋通报,2006,25(5):90-96.
    [30]缪绅裕,陈桂珠,黄玉山,等.人工污水中的磷在模拟秋茄湿地系统中的分配与循环[J].生态学报.1999,19(2):236-241.
    [31]陈桂珠,缪绅裕,黄玉山,等.人工污水中的N在模拟秋茄湿地系统中的分配循环及其净化效果[J].环境科学学报,1996,16(1):44-50.
    [32]卢少勇,金相灿,余刚.人工湿地的氮去除机理[J].生态学报,2006,26(8):2670-2677.
    [33] Sistani K R,Mays D A,Taylor R W.Development of natural conditions in constructed wetlands:Biological and chemical changes[J].Ecological Engineering,1999,12:125-131.
    [34]Mays P A,Edwards G S.Comparison of heavy metal accumulation in a natural wetland andconstructed wetlands receiving acid mine drainage[J].Ecological Engineering,2001,16:487-500.
    [35]Dunbabin J S,Bowmer K H.Potential use of constructed wetlands for treatment of industrialwastewaters containing metals[J].Science of the Total Environmental,1992,111:151-168.
    [36]Ann Y,Reddy K R,Delfino J J.Influence of redox potential on phosphorus solubility in chemicallyamended wetland organic soils[J].Ecological Engineering,2000,14:169-180.
    [37]McCartney M P,Stratford C,Neal C,et al.Seasonality and water quality trends in a maturingrecreated reed bed[J].Science of the Total Environment,2003,314-316.
    [38]Reddy K R,Burgoon P S.Influence of temperature on biogeochemical processes in constructedwetlands—implications to wastewater treatment[J]. Paper presented at the Symposium onConstructed Wetlands in Cold Climates,Niagara-on-the-Lake:Ontario,1996.
    [39]夏汉平,柯宏华,邓钊平,等.人工湿地处理炼油废水的生态效益研究[J].生态学报,2003,23(7):1344-1355.
    [40]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志,2002,21(4):51-59.
    [41]Eriksson P G,Weisner S E B.Nitrogen removal in a wastewater reservoir:The importance ofdenitrification by epiphytic biofilms on submersed vegetation[J].Journal of EnvironmentalQuality,1997,26:905-910.
    [42]赵洪波,卡林,吴睿,等.水生植被对湖滨湿地水环境净化效果及影响因素分析[J].安徽农业科学,2012,40(6):3532-3535.
    [43]Novotny V.Diffuse pollution from agriculture-a worldwide outlook[J].Water Science andTechnology,1999,39(3):1-13.
    [44]张毅敏,张永春.利用人工湿地治理太湖流域小城镇生活污水可行性探讨[J].农业环境保护,1998,17(5):232-234.
    [45]宋雪红,蒋新元,赵梦婕湿地水生植物的水质净化与资源化利用[J].环境保护与循环经济,2011,11:59-62.
    [46]季宁宁,李绪谦,李红艳.湿地底质环境对不同浓度污水的净化效果[J].环境工程学报,2012,6(7):2249-2256.
    [47]陈俊宏,高旭,谢伟丹,等.植物对潜流人工湿地净化微污染水效果的影响研究.环境工程学报,2012,6(2):515-518.
    [48]Martin C D.Nutrient reduction in an in-series constructed wetland system treating landfillleachate[J]. Water Science and Technology,1994,29(4):267-272.
    [49]Hoppe H G.Microbial decomposition in aquatic environments:combined processes of extra cellularactivity and substrate uptake[J].Applied Environmental Microbiology,1988,54:784-790.
    [50]Madigan M T. Brock biology of microorganisms,8th ed[M]. Prentice Hall. Upper SaddleRiver,N J.1997:986.
    [51]Healy M,Cawley A.Nutrient processing capacity of a constructed wetland in westernIreland[J]. Journal of Environmental Quality,2002,31(5):1739-1747.
    [52]胡啸,蔡辉,陈刚,等.3种类型水生植物及其组合对污染水体中铬、氮和磷的净化效果研究[J].水处理技术,2012,38(4):1739-1747.
    [53]董凤丽,袁俊峰,马翠欣.滨岸缓冲带对农业面源污染NH+4-N,TP的吸收效果[J].上海师范大学学报(自然科学版),2004,33(2):93-97.
    [54]Sakadevan K, Bavor HJ.Phosphate adsorption characteristics of soils,slags and zeolite to be usedas substrates in constructed wetland systems[J].Water research,1998,32(2):393-399.
    [55]徐成斌,于宁,马溪平,等.不同河岸植物带对非点源污染河水污染物降解实验研究[J].气象与环境学报,2008,24(6):63-66.
    [56]程红光,郝芳华,任希岩,等.不同降雨条件下非点源污染氮负荷入河系数研究[J].环境科学学报,2006,26(3):392-396.
    [57]Schulz P,Peall S C.Effectiveness of a constructed wetland for retention of nonpoint-sourcepesticide pollution in the Lourens River catchment, South Africa[J].Environmental Sciencesand Technology,2001,35:422-426.
    [58]颜淼,陈求稳,吴文强.曹家路流域面源污染的特征及规律[J].中国水土保持,2009,(4):18-22.
    [59]Christian R,Steinmann,Weinhart S,et a1.A combined system of lagoon and constructed wetlandfor an effective wastewater treatment[J].Water Research,2003,37:2035-2042.
    [60]Claussen W,Lenz F.Effect of ammonium or nitrate nutrition on net photosynthesis,growth,andactivity of the enzymes nitrate reductase and glutamine synthetase in blueberry,raspberry andstrawberry[J].Plant and Soil,1999,208:95-102.
    [61]Cooper P F,Findlater B C.Constracted wetlands in water pollution control[J].Pergam on Press,1990:77-96.
    [62]Cooper P,Green B.Reed bed treatment systems for sewage treatment in the United Kingdom-Thefirst10years’ experience[J].Water Sci Tech,1995,32(3):317-327.
    [63]Coveney M F, Stites D L, Lowe E F.Nutrient Removal from Eutrophic Lake water By wetlandFiltration[J].Ecological Engineering,2002,19:141-159.
    [64]Crites R W. Design criteria and practice for constructed wetlands[J]. Water Science andTechnology,1994,29(4):1-6.
    [65]Cronk J K.Constructed wetlands to treat wastewater from dairy and swine operations:areview[J]. Agriculture,Ecosystems and Environment,1996,58:97-114.
    [66]David A K,David M B,Gentry L E,et al.Effectiveness of constructed wetlands in reducingnitrogen and phosphorus export from agriculture tile drainage[J].Journal of Environment andQuaity,2000,29:1262-1274.
    [67]Day J W,Ko J Y,Rybczyk J,et al.The use of wetlands in the Mississippi Delta for wastewaterassimilation:a review[J].Ocean&Coastal Management,2004,47:671-691.
    [68]胡茂桂,傅晓阳,张树清,等.基于元胞自动机的莫莫格湿地土地覆被预测模拟[J].资源科学,2007,29(2):142-149.
    [69]岳书平,张树文,闫业超.吉林西部沼泽湿地景观变化及其驱动机制分析[J].中国环境科学,2008,28(2):163-167.
    [70]许清涛,顾冬梅.莫莫格国家级自然保护区的湿地环境资源及其发展对策[J].延边大学学报2003,25(1):47-50.
    [71]许林书,姜明.莫莫格保护区湿地土壤均化洪水效益研究[J].土壤学报,2005,42(1):159-162.
    [72]申晋利,于五一,齐小平,等.基于面向对象方法的莫莫格生态环境变化遥感分析研究[J].遥感应用,2008,6:71-75.
    [73]沈惠安,胥铭兴,王凤翥.莫莫格自然保护区湿地生态需水量计算[J].东北水利水电,2009,6:44-47.
    [74]吕金福,肖荣寰,介冬梅,等.莫莫格湖泊群近50年来的环境变化[J].地理科学,2000,20(3):279-283.
    [75]田迅,卜朝君.莫莫格湿地干湿界面植物种群动态分析[J].四川草原,2005,4(3):11-13.[76]杨育红,阎百兴.中国东北地区非点源污染研究进展[J].应用生态学报,2010,21(3):777-784.
    [77]石沐子,孙猛,刘娜.莫莫格国家级自然保护区湿地生态旅游保护性开发的保障体系探究[J].中国林业经济,2009,2:33-36.
    [78]孙晓梅.曲延光.莫莫格湿地生态环境需水量研究[J].东北水利水电,2007,25(270):54-55.
    [79]郎振华,胥铭兴,孙晓梅.莫莫格湿地地表水环境现状与保护[J].东北水利水电,2009,11:54-57.
    [80]邓春暖,章光新,潘响亮.莫莫格湿地不同盐分梯度对芦苇生理生态的影响[J].河南农业科学,2012,41(5):61-64.
    [81]白景贵,刘改云,鲍显志.莫莫格湿地生态演变及水源解决途径探析[J].吉林水利,2002,4:9-11.
    [82]王秀梅,杨连俊.莫莫格国家级自然保护区水环境问题和措施[J].吉林水利,2010,9:39-41.
    [83]于秀丽,许林书.莫莫格湿地土壤铁的质量分数及分布[J].东北林业大学学报,2012,40(6):111-114.
    [84]姜明,吕宪国,许林书,等.莫莫格自然保护区湿地潜在土壤养分效益估算[J].自然资源学报,2005,2:105-111.
    [85]姜明,吕宪国.湿地土壤及其环境功能评价体系[J].湿地科学,2006,4(3):168-173.
    [86]白军红,邓伟,张玉霞莫莫格湿地土壤氮磷空间分布规律研究[J].水土保持学报,2001,15(4):79-81.
    [87]W rman A,Kronn s V.Effect of pond shape and vegetation heterogeneity on flow and treatmentperformance of constructed wetland[J].Journal of Hydrology,2005,301(1-4):123-128.
    [88]Juma N G,Paul E A.Mineralizable soil nitrogen:Amounts and extractability ratios.Soil Science[J]Society of American Journal,1984,48:76-80.
    [89]Chris C.Effect of loading rate planting on treatment of dairy farm wastewaters in constructedwetlands:II. Removal of nitrogen phosphorous[J].Water Research,1995.,19(1):17-26.
    [90]Krausea S,Jacobs J,Voss A,et al.Assessing the impact of changes in landuse and managementpractices on the diffuse pollution and retention of nitrate in a riparian floodplain[J].Science of theTotal Environment,2008,389:149-164.
    [91]Ditoro D M,Sifitzpatric J J. Documentation for water quality analysis simulation program(WASP)and model verification program (MVP)[J].Duluth,MN:US Environmental Protection Agency,1983.
    [92]Donahue R L, Miller R W, Shickluna J C. Soil-An introduction to soil and plantgrowth[J]. Prentice-Hall,Inc.New Jersey.1983:216-221.
    [93]Burgoon P S,Reddy K P,Debusk T A,et al.Vegetated submerged beds with artificial substrates:II. N and P removal.Journal of Environmental Engineering,1991,117(4):408-424.
    [94]彭世彰,高焕芝,张正良.灌区沟塘湿地对稻田排水中氮磷的原位消减效果及机理研究[J].水力学报,2010,41(4):406-411.
    [95]苑韶峰,吕军,俞劲炎.氮、磷的农业非点源污染防治方法[J].水土保持学报,2004,18(1):122-125.
    [96]马永生,张淑英,邓兰萍.氮、磷在农田沟渠湿地系统中的迁移转化机理及其模型研究进展[J].甘肃科技,2005,21(2):12-15.
    [97]Dunbabin J S,Bowmer K H.Potential use of constructed wetlands for treatment of industrialwastewaters containing metals[J].Science of the Total Environmental,1992,111:151-168.
    [98]杨育红,阎百兴,沈波,等.第二松花江流域非点源污染输出负荷研究[J].农业环境科学报,2009,28(1):161-165.
    [99]刘孝利,陈求稳,曾昭霞,等.典型黑土区非点源污染控制途径研究[J].中国水土保持,2009,(5):31-34.
    [100]项学敏,宋春霞,李彦生,等.湿地植物芦苇和香蒲根际微生物特性研究[J].环境保护科学,2009,(5):31-34.
    [101]杨建云.洱海湖区非点源污染与洱海水质恶化[J].云南环境科学,2004,23,(增刊):104-105.
    [102]Fink D F,Mitsch W J.Hydrology and nutrient biogeochemistry biogeochemistry in a created riverdiversion oxbow wetland[J].Ecological Engineering,2007,30:93-102.
    [103]代嫣然,梁威,吴振斌.低碳高氮废水的人工湿地脱氮研究进展[J].农业环境科学学报,2010,S1:95-99.
    [104]彭江燕,刘忠翰.不同水生植物影响污水处理效果的主要参数比较[J].环境科学导刊,1998,2:10-15.
    [105]Carson R E.A trophic state index for lakes[J].Limnology and Oceanography,1977,22(2):361-365.
    [106]张晟.三峡库区富营养化评价方法探讨[J].西南农业大学学报,2004,26(3):340-343.
    [107]申晋利,于五一,齐小平.基于面向对象方法的莫莫格生态环境变化遥感分析研究[J].遥感应用,2008,6:71-74.
    [108]王志强,张柏,张树清,等.吉林省西部湿地动态过程及生态环境效应分析.资源科学,2006,28(2):105-111.
    [109]胡茂桂,傅晓阳,张树清,等.基于元胞自动机的莫莫格湿地土地覆被预测模拟.资源科学,2007,2:141-146.
    [110]戴红娟,郭来春.白城地区农业面源污染调查及控制措施[J].吉林水利,2006,11:10-11
    [111]刘振乾,吕宪国.三江平原沼泽湿地污水处理的实地模拟研究[J].环境科学学报,2001,21(2):157-161.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700