用户名: 密码: 验证码:
复杂电网连锁故障大停电分析与预防研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济的不断发展,电网大规模互联成为电力系统发展的必然趋势,电力网络已成为世界上最复杂的网络之一。该复杂网络的形成,一方面提高了系统的运行效率,另一方面也增加了系统运行的不确定性,同时系统扰动波及范围更广,事故的后果更加严重。近年来国内外发生了多起由连锁故障引起的重大停电事故,造成了巨大损失。连锁故障的分析和预防在各国已作为一个重大的战略问题来研究。
     传统的安全分析方法过分注重各原件的个体动态特性,在深入分析电力系统连锁反应事故和大停电机理等系统动态行为方面很难揭示系统整体的动态行为特征。复杂性理论作为系统整体论分析方法,可以自顶向下全面研究停电事故,分析电力连锁故障和大停电的全局性质。本论文结合复杂性理论及连锁故障模型,对和电力系统连锁故障大停电密切相关的网络拓扑、保护故障以及大停电的预测和控制进行了研究,并提出预防连锁故障大停电的整体和局部措施。本文的具体工作如下:
     第一章介绍了电力系统连锁故障大停电的研究背景和意义;介绍了连锁故障分析和预防的研究现状和发展前景,特别强调了采用复杂性理论分析和预防电网连锁故障大停电的方法;最后介绍了本文的主要工作以及章节安排。
     第二章考虑了线路相继开断的动作特性,首先提出了一个模拟线路连锁跳闸过程的连锁故障动态模型。为比较不同电网拓扑对连锁故障大停电的影响,分别建立了具有小世界、无标度特性的人工电网模型,并基于提出的连锁故障动态模型进行仿真,验证了模型关于连锁故障动态演化过程的合理性。进一步对两种网络拓扑进行比较,发现连锁故障在小世界电网中造成的负荷损失比无标度电网大得多,并且连锁故障传播的速度远比无标度电网迅速,结论从电网结构角度为预防和减小大停电事故提供了指导。
     第三章结合电力系统本身的快速增长特性,提出了一种考虑电网演化的改进OPA模型来模拟电网在不同时间尺度上的连锁故障过程。模型在电网连锁故障慢动态过程中考虑了电网结构的演化,揭示了在不同电网演化模式下,人们追求经济利益最大化的目的总会驱使系统自组织到临界状态。模型比较了小世界电网和无标度电网演化方式的连锁故障特性,进一步验证了小世界电网的平均损失负荷大于无标度电网,而无标度电网能通过小规模停电释放系统压力,减少发生大停电的概率和规模。最后,结合进化后网络负载率的不均衡性,提出了潮流熵的概念,揭示了潮流熵的大小是决定电网是否处于临界态的关键因素。
     第四章基于风险理论和隐性故障模型,提出了一种复杂电力系统的风险评估方法用于辨识对系统停电影响最大的一系列关键线路。模型考虑了线路过负荷保护、保护隐性故障、控制策略及系统运行等参数,并且考虑了线路连锁跳闸的级联特性,对连锁故障过程中先后开断的线路赋予不同权重。在重负荷运行状态和临界运行状态对系统关键线路的辨识结果验证了模型的有效性。本章从电网局部角度提出了预防和减小连锁故障大停电事故的措施。
     第五章基于自组织理论中的协同学原理,提出了一种反映电力系统大停电的普适性模型-协同学模型。指出大停电过程中,总是伴随着电网各子系统的竞争和合作,具有自组织临界特性。进而根据伺服原理、序参量原理建立了大停电演化的序参量方程。计算实例结果表明了大停电过程存在着自组织特性,提出的模型在美加大停电中得到了很好验证,该模型可望为进一步深入分析电力系统连锁反应事故和大停电机理开拓新的研究方向。
     第六章为弥补复杂性理论对大电网连锁故障实时安全控制的不足,从预防线路连锁跳闸角度提出了一种大规模电网在线分布式计算的控制方法,提出了最佳切机切负荷控制策略来预防连锁故障。本方法不再把分布式计算局限于分层分区控制,而是把每个电网节点定义为一个智能体。模型中每个智能体在各自邻域内采用预测控制算法,经智能体间的协作求解最优控制措施。利用预测控制的滚动优化,在每个控制步内对系统控制变量和约束集进行筛选,以线性规划求解。每步优化控制算法中,各智能体数据由实际电网状态测量值得到。仿真结果表明了本方法的快速有效性。
With the development of global economy, the interconnected power grid has become one of the largest and most complex modern artifical networks in the world. In this large-scale network, the capabilities that allow power to be transferred over hundreds of miles also enable the propagation of local failures into grid-wide events and even trigger serious consequence. Recently, a series of large blackouts caused by cascading failures have taken place and bring catastrophes to the national economy. Analysis and prevention of cascading blackouts have therefore attracted great attention and been treated as an important strategic problem to study all over the world.
     Conventional safety analysis constructs detailed model of every component of the system, and pays attention to dynamic behavior of individual component. Therefore, it is difficult to uncover the global dynamic characteristic while tend to deeply study the cascading failures and the mechanism of large blackouts. The complex theory, as a holism that emphasizes the whole rather than their constituent parts, can provide global and top-down perspectives of cascading blackouts. This dissertation focuses on the complex theory and cascading failure models, and employs them to make systematic and thorough studies on the topology of power grid, protection device failure as well as blackout prediction and preventive control. The main work is as follows.
     Firstly, the background and significance of cascading failure and blackout in power systems are introduced. In detail, the situation of current research on cascading failures analysis and prevention is summarized, and a novel approach which studies cascading failures via complex theory is emphasized especially. In addition, the main work and the chapter arrangement of this dissertation are briefly mentioned.
     In the second chapter, for the different time-scale of line outage, a dynamical cascading failure model for simulating lines outage is proposed at first. To compare the influence of different topology on cascading failures, two representative complex power grids, small-world network and scale-free network, are performed for line cascading failures. Simulation results prove the rationality of the dynamical evolution process of cascading failures. Moreover, according to the comparison results of the two power grids, the load loss caused by cascading failures in small-world network is much larger than that in scale-free network, and the spreading speed of cascading failures in small-world network is much faster than that in scale-free network. These results can be beneficial not only in areas such as major disturbance mitigation but also in system planning and upgrading.
     Traditional OPA model can simulate the cascading failures well but lack for considering the change of topology of the power grid. In the third chapter an improved OPA model is proposed, in which the size growing of the power grid is added to the slow dynamics. Simulation results from two typical complex networks show power grid always organizes itself to criticality in growing model of small-world network as well as scale-free network. Moreover, from the comparison results between two power grids with different growth ways, we find that the characteristic of small-world power grid makes larger load loss than that in scale-free power grid, and cascading failures in scale-free power grid often lead to small-scale lines outage and end with little load loss, which can help to release the system stress and decrease the probability of large blackouts. Furthermore, a novel conception of power flow entropy is defined to display the large heterogenous loading rate of the two grown power grids. The index of power flow entropy is one of the most important factors to judge whether the power system is at critical state.
     The fourth chapter presents a solution to find out the key lines affecting the cascading failures most. Based on the Hidden Failure model and risk theory an approach to estimate the risk of line outage and identify key lines causing blackouts is proposed for large-scale power systems. This model considers line overload, hidden failure, control strategy, operation condition and weights of tripped lines. Simulation results indicate that improving a few key lines identified at high loading can reduce the probability of blackouts, especially large blackouts; improving a few key lines identified at critical state can take the system out of critical state and avoid large blackouts.
     The fifth chapter investigates the mechanism of large blackouts and points out that in the process of blackouts, subsystems of the power grids are always competitive and cooperative. This process behaves in a manner of self-organized criticality and can be forecasted. Based on the synergetic theory of self-organized criticality, a syergetic model for power system blackout is proposed and an order parameter evolving equation for blackout is described by the order parameter theory and the slaving principle. Simulation results show that power system blackouts reveal self-organized criticality, and the proposed model has satisfying performance in the case study of North America blackouts and can be used to analyze the mechanism of cascading failures and blackouts.
     At last, to overcome the shortage of complex theory's application to real-time control of cascading failures in large-scale power grids, an online distributed computing control approach is proposed, and an optimal principle of load shedding and generator tripping is also given in the sixth chapter. In this dissertation, agent is placed at each bus of the power grid differing from traditional distributed method that takes subarea or substratum as an agent. Each agent employs model predictive control to solve its local problem based on locally available data and the global solution can be acquired with agents' cooperation. Further, a filtering method for control variable and constraint set is applied, and linear program method is used in every varying receding-horizon. The data for next varying receding-horizon control is acquired from the measured data of the real power grid. Simulation results on the IEEE118-bus system verify the fleetness and effectiveness of this method.
引文
[1]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [2]D.J.Watts,S.H.Strogatz.Collective dynamics of 'small-word' networks[J].Nature,1998,393(6684):440-442.
    [3]Xu T,Chen J,He Y,et al.Comp lex network properties of Chinese power grid[J].International Journal of Modem Physics B,2004,18(17-19):2 599-2 603.
    [4]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-358.
    [5]卢强.我国电力系统灾变防治与经济运行的重大科学问题的研究项目介绍[J].电力系统自动化,2000,24(1):1T.
    [6]R.Billinton,L.Salvaderi,J.D.McCalley,et al.Reliability issues in today's electric power utility environment[J].IEEE Transactions on Power Systems,1997,12(4):1708-1714.
    [7]陈德树.大电网安全保护技术初探[J].电网技术,2004,28(9):14-17,27.
    [8]U.S.-Canada Power System Outage Task Force.Final report on the August 14th,2003 blackout in the United States and Canada:causes and recommendations[R].April 2004.
    [9]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动 化,2004,28(3):1-5.
    [10]杨卫东,徐政,韩祯祥.电力系统灾变防治系统研究的现状与目标[J].电力系统自动化,2000,24(1):7-12.
    [11]Wang H,J.S.Thorp.Optimal locations for protection system enhancement:a simulation of cascading outages[J].IEEE Transactions on power systems,2001,16(4):528-533.
    [12]A G Phadke,J.S.Thorp.Expose Hidden failures to prevent cascading outages[J].IEEE Computer Application in Power,1996,9(3):20-23.
    [13]占勇,程浩忠,熊虎岗.电力网络连锁故障研究综述[J].电力自动化设备,2005,25(9):93-98.
    [14]王梅义.大电网系统技术[M].北京:中国电力出版社,1995.
    [15]Reka Kinney,Paolo Crucitti,Reka Albert,et al.Modeling cascading failures in the North American power grid[J].Eur.Phys.J B,2005,46(1):101-107.
    [16]I.Dobson,B.A.Carreras,V.E.Lynch,et al.Complex systems analysis of series of blackouts:cascading failure,criticality,and self-organization[C].Bulk Power System Dynamics and Control-Ⅵ.Cortina d'Ampezzo,Italy,2004,438-451.
    [17]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-29.
    [18]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估[J].中国电机工程学报,2005,25(25):118-122.
    [19]C C Liu.Strategic power infrastructure defense(SPID):A wide area protection and control system[C].IEEE Transmission and Distribution Conference and Exhibition,2002,500-502.
    [20]ChenChing Liu,Juhwan Jung,Gerald T,et al.The strategic power infrastructure defense(SPID) system:a conceptual design[J].IEEE Control Systems Magazine,2000,20(4):40-52.
    [21]Electric Power Research Institute(EPRI)/US Department of Defense (DoD).Complex interactive networks/system initiative:second annual report 1006089,development of analytical and computational methods for the strategic power infrastructure defense system[R].2001.
    [22]R.Albert,I.Albert,G.L.Nakarado.Structural vulnerability of the North American power grid[J].Physical Review E,2004,69(2):025103(R).
    [23]成思危.复杂科学与系统工程[J].管理科学学报,1999,2(2):1-7.
    [24]张嗣瀛.复杂系统与复杂性科学简介[J].青岛大学学报,2001,16(4):25-29.
    [25]屈靖,郭剑波.“九五”期间我国电网事故统计分析[J].电网技术,2004,28(21):60-63.
    [26]P.Crucitti,V.Latora,M.Marchiori.A topological analysis of the Italian electric power grid[J].PhysicaA,2004,338(1):92-97.
    [27]Zhaohong Bie,Xifan Wang.Evaluation of power system cascading outages[C].International Conference on Power System Technology,2002:415-419.
    [28]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [29]Per Bak,Chao Tang,Kurt Wiesenfeld.Self-organized criticality:an explanation of l/f noise[J].Physical Review Letters,1987,(7):381-384.
    [30]G.A.Held.Experimental study of critical-mass fluctuation in an evolving sand pile[J].Physical Review Letters,1990,65(9):1120-1123.
    [31]B.A.Carreras,D.E.Newman,I.Dobson,et al.Evidence for self organized criticality in electric power system blackouts[J].IEEE Transactions on Circuits and Systems,2004,51(9):1733-1740.
    [32]B.A.Carreras,D.E.Newman,I.Dobson,et al.Initial evidence for self-organized criticality in electric power blackouts[C].33rd Hawaii International Conference on System Sciences,Maui,Hawaii,Jan,2000.
    [33]B.A.Carreras,D.E.Newman,I.Dobson,et al.Evidence for self-organized criticality in a time series of electric power system blackouts[J].IEEE Transactions on Circuits and Systems,part Ⅰ,2004,51(9):1733- 1740.
    [34]于群,郭剑波.中国电网停电事故统计与自组织临界性特征[J].电力系统自动化,2006,30(2):16-21.
    [35]Réka Albert,Albert-László Barabási.Statistical mechanics of complex networks [J].Reviews of Modern Physics,2002,74:47-97.
    [36]ME.J.Newman.The structure and function of complex networks[J].SIAM Review,2003,45(2):167-256.
    [37]周涛,柏文洁,汪秉宏,等.复杂网络研究概述[J].物理,2005,34(1):31-36.
    [38]G.Surdutovich,C.Cortez,R.Vitilina,et al.Dynamics of "small world" networks and vulnerability of the electric power grid[C].Proceedings of ⅧSymposium of Specialists in Electric Operational and Expansion Planning,May,2002,Brasilia,Brasil.
    [39]易俊,周孝信,肖逾男.具有不同拓扑特征的中国区域电网连锁故障分析[J].电力系统自动化,2007,3l(10):7-10.
    [40]周涛,傅忠谦,牛永伟,等.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518.
    [41]A-L.Barabási,R.Albert.Emergence of scaling in random networks[J].Science,1999,286:509-512.
    [42]D.P.Chassin,Christian Posse.Evaluating North American electric grid reliability using the Barabási-Albert network model[J].Physica A,2005,355:667-677.
    [43]陈洁,许田,何大韧.中国电力网的复杂网络共性[J].科技导报,2004,(4):11-14.
    [44]Liang Zhao,Kwangho Park,Ying-Cheng Lai.Attack vulnerability of scale-free networks due to cascading breakdown[J].Phys.Rev.70,2004,035101(R).
    [45]J.J.Wu,Z.Y.Gao,H.J.Sun.Model for dynamic traffic congestion in scale-free networks[J].Europhys.Lett.,2006,76(5):787-793.
    [46]E.MotterA.Cascade control and defense in complex networks[J].Physical Review Letters,2004,93(9):098701.
    [47]A-L.Barabási,E.Bonabeau.Scale-free networks[J].Scientific American,2003,288:50-59.
    [48]曹一家,刘美君,丁理杰,等.大电网安全性评估的系统复杂性理论研究[J].电力系统及其自动化学报,2007,19(1):1-8.
    [49]Qiang Guo,Tao Zhou,Jiangguo Liu,et al.Growing scale-free small-world networks with tunable assortative coefficient[J].Physica A,2006,371:814-822.
    [50]Y.J.Cao,G.Z.Wang,Q.Y.Jiang,Z.X.Han.A neighbourhood evolving network model[J].Physics Letters A,2006,349:462-466.
    [51]S.H.Yook,H.Jeong,A.L.Barabási,Y.Tu.Weighted evolving networks [J].Physical Review Letters,2001,86:5835-5838.
    [52]Wang Xiaofan,Chen Guanrong.Synchronization in scale-free dynamical networks:robustness and fragility[J].IEEE Transactions on Circuits and Systems,Part Ⅰ:Regular Paper,2002,49(1):54-62.
    [53]别朝红,王锡凡.复杂电力系统一类连锁反应事故可靠性评估初探[J].电力系统自动化,200l,25(15):25-28.
    [54]R.C.Hardiman,M.Kumbale,Y.V.Makarov,et al.An advanced tool for analyzingrnultiple cascading failures[C].8thInternational Conference on Probabilistic Methods Appliedto Power System,2004:629-634.
    [55]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12.
    [56]邓慧琼.电网连锁故障预测分析方法及其应用研究[D].华北电力大学博士学位论文,2005.
    [57]R.C.Haidiman,M.Kumbale,Y.V.Makarov.Multi-Scenario cascading failure analysis using TRELSS[C].CIGRE/IEEE PES International Symposium on Quality and Security of Electric Power Delivery Systems,Montreal,Canada,2003:176-180.
    [58]Y.V.Makarov,R.C.Hardiman.Risk,reliability,cascading,and restructuring[C].IEEE Power Engineering Society General Meeting,Toronto,Canada,2003,3:1417-1429.
    [59]别朝红,王锡凡.复杂电力系统一类反应事故可靠性评估模型和算法[J].电力系统自动化,2001,25(10):30-34.
    [60]K.R.W.Bell,D.S.Kirschen,R.N.Allan,et al.Efficient Monte Carlo assessment of the value of security[C].In Proc.13th Power System Computation Conf.Trondheim,Norway,June 1999,81-87.
    [61]M.A.Rios,D.S.Kirschen,D.Jayaweera,et al.Value of security:modeling time-dependent phenomena and weather conditions[J].IEEE Transactions on Power System,2002,17(3):543-548.
    [62]Daniel S.K.,Dilan Jayaweera,Dusko P.N..A probabilistic indicator of system stress[J].IEEE Transactions on Power System,2004,19(3):1650-1657.
    [63]McCalley J D,Zhu K,Chen Q M.Dynamic decision-event trees for rapidresponse to unfolding events in bulk transmission systems[C].IEEE PowerEngineering Society Summer Meeting,Vancouver,Canada,2001,2:15-19.
    [64]李生虎,丁明,王敏,等.考虑故障不确定性和保护动作性能的电网连锁故障模式搜索[J].电网技术,2004,28(13):27-31.
    [65]A.G.Phadeke,James S.Thorp.Expose hidden failures to prevent cascading outages[J].IEEE Computer Application in Power,1996,9(3):20-23.
    [66]Jie Chen,James S.Thorp,Ian Dobson.Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[J].Electrical Power and Energy Systems,2005,27:318-326.
    [67]易俊,周孝信.考虑系统频率特性以及保护隐藏故障的电网连锁故障模型[J].电力系统自动化,2007,30(14):1-6.
    [68]易俊,周孝信,肖逾男.用连锁故障搜索算法判别和分析系统的自组织临界状态[J].中国电机工程学报,2007,27(25):1-5.
    [69]I.Dobson,B.A.Carreras,V.E.Lynch,D.E.Newman.An initial model for complex dynamics in electric power system blackouts[C].34th Hawaii International Conference on System Sciences,Hawaii,January 2001,2:710-718.
    [70]何飞,梅生伟,薛安成.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
    [71]I.Dobson,B.A.Carreras,D.E.Newman.A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C].Hawaii International Conference on System Science.Hawaii,2003,10-19.
    [72]I.Dobson,B.A.Carreras,V.E.Lynch,et al.Estimating failure propagation in models of cascading blackouts[C].8th International Conference on Probabilistic Methods Applied to Power Systems,Ames,USA,2004:641-646.
    [73]D.P.Nedic,I.Dobson,D.S.Kirschen,et al.Criticality in a cascading failure blackout model[J].International Journal of Electrical Power & Energy Systems,2006,28(9):627-633.
    [74]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-6.
    [75]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2006,31(12):12-18.
    [76]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(81:7-11.
    [77]Paolo Crucitti,Vito Latora,Massimo Marchiori.A topological analysis ofthe Italian electric power grid[J].Physica A,2004,338:92-97.
    [78]Paolo Crucitti,Vito Latora,Massimo Marchiori,et al.Error and attack tolerance of complex networks[J].Physica A,2004,340:388-394.
    [79]Paolo Crucitti,Vito Latora,Massimo Marchiori.Model for cascading failures in complex networks[J].Physical Review E,2004,69:045104/124.
    [80]丁明,韩平平.小世界电网的连锁故障传播机理分析[J].电力系统自动化,2007,31(18):6-10.
    [81]电力工业部.电力系统安全稳定导则[M].北京:电力工业出版社,1981.
    [82]丛伟,潘贞存,丁磊,等.满足“三道防线”要求的广域保护系统及其在电力系统中的应用[J].电网技术,2004,28(18):29-33.
    [83]M.Amin.Toward self-healing energy infrastructure system[J].IEEE Computer Application in Power,2001,14(1):20-29.
    [84]K.Moslehi,A.Kumar,H.D.Ching,et al.Control approach for self-healing power system:a conceptual overview[C].Electricity Trans.in deregulated market:Challenges,Opportunities and Necessary R& D,Carnegie Mellon(USA):2004.
    [85]郭志忠.电网自愈控制方案[J].电力系统自动化,2005,29(10):85-91.
    [86]薛禹胜.时空协调的大停电防御框架(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [87]时空协调的大停电防御框架(二)广域信息、在线量化分析和自适应优化控制[J].电力系统自动化,2006,30(2):1-10.
    [88]时空协调的大停电防御框架(三)各道防线内部的优化和不同防线之间的协调[J].电力系统自动化,2006,30(3):1-11.
    [89]丁道齐.用复杂网络理论分析电网连锁故障大停电事故机理[J].中国电力,2007,40(11):25-32.
    [90]Xiaogang Chen,Quanyuan Jiang,Yijia Cao.Impact of characteristic path length on cascading failure of power grid[C].5th Proceedings of PowerCon on 2006International Conference on Power System Technology,Chongqing,China,2006,274-274.
    [91]I.Dobson,B.A.Carreras,D.E.Newman.A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C].Hawaii International Conference on System Science,Hawaii,2003:65-71.
    [92]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [93]H.哈肯,郭治安等译.信息与自组织[M].成都:四川教育出版社,1988.
    [94]曹一家,丁理杰,江全元,韩祯祥.基于协同学原理的大停电预测模型[J].中国电机工程学报,2005,25(18):13-19.
    [95]于群,郭剑波.我国电力系统停电事故自组织临界性的研究[J].电网技术,2006,30(6):1-5.
    [96]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(8):7-10,40.
    [97]A.G.Phadke,J.S.Thorp.Expose hidden failures to prevent cascading outages in power systems[J].IEEE Computer Applications in Power,1996,9(3):20-23.
    [98]陈为化,江全元,曹一家.考虑继电保护隐性故障的电力系统连锁故障风险评估[J].2006,30(13):14-20.
    [99]丁理杰,刘美君,曹一家,等.基于隐性故障模型和风险理论的关键线路辨识[J].电力系统自动化,2007,31(6):1-6.
    [100]Vaibhav Dondet,Vanessa Lopez,Bernard Lesieutret,et al.Identification of Severe Multiple Contingencies in Electric Power Networks[C].In Proceedings of the North American Power Symposium,Ames,IA,October 2005.
    [101]Vaibhav Dondet,Vanessa Lopez,Bernard Lesieutret,et al.Severe Multiple Contingency Screening in Electric Power Systems[J].IEEE Transactions on Power Systems,2008,23(2):406-417.
    [102]倪向萍,梅生伟,张雪敏.基于复杂网络理论的输电线路脆弱度评估方法[J].电力系统自动化,2008,32(4):1-5.
    [1]丁道齐.用复杂网络理论分析电网连锁故障大停电事故机理[J].中国电力,2007,40(11):25-32.
    [2]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-5.
    [3]D.J.Watts,S.H.Strogatz.Collective dynamics of 'small-world' networks [J].Nature,1998,393(4):440-442.
    [4]孟仲伟,鲁宗相,宋靖雁.中美电网的小世界拓扑模型比较分析[J].电力系统自动化,2004,28(15):21-29.
    [5]丁明,韩平平.基于小世界拓扑模型的大型电网脆弱性评估算法[J].电力系统自动化,2006,30(8):7-10,40.
    [6]丁明,韩平平.小世界电网的连锁故障传播机理分析[J].电力系统自动化,2007,31(25):6-10.
    [7]Liang Zhao,Kwangho Park,and Ying-Cheng Lai.Attack vulnerability of scale-free networks due to cascading breakdown[J].Physical Review E,2004,70,035101(R).
    [8]Jian Xu,Xiao Fan Wang.Cascading failures in scale-free coupled map lattices [J].Physica A,2005,349:685-692.
    [9]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-5.
    [10]I.Dobson,Jie Chen,J.S.Thorp,et al.Examining criticality of blackouts in power system models with cascading events[C].35th Hawaii International Conference on System Sciences,Hawaii,2002,2:10.
    [11]Jie Chen,J.S.Thorp,I.Dobson.Cascading dynamics and mitigation assessment in power system disturbances via a hidden failure model[J].Electrical Power and Energy Systems,2005,27,318-326.
    [12]余晓丹,贾宏杰,陈建华.电力系统连锁故障预测初探[J].电网技术,2006,30(13):20-25.
    [13]B.A.Carreras,V.E.Lynch,I.Dobson,et al.Blackout mitigation in an electric power transmission system[C].Hawaii International Conference on System Science,Hawaii,2003.
    [14]Hui Ren,I.Dobson.Using transmission line outage data to estimate cascading failure propagation in an electric power system[J].IEEE Trans.on Circuits and System,PartⅡ,2008,55(9):927-931.
    [15]唐斯庆,张弥,李建设,等.海南电网“9.26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-8.
    [16]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12.
    [17]Jianfeng Zhang,Femando L.Alvarado.A heuristic model of cascading line trips.8th International Conference on Probabilistic Methods Applied to Power Systems[C].Ames,Iowa,September,2004.
    [18]金华征,程浩忠,翟海保.电网规划中最小切负荷费用计算方法[Jr].电力系统及其自动化学报,2005,17(6):5-9.
    [19]A-L Barabási,R.Albert.Emergence of scaling in random networks[J].Science,1999,286:509-512.
    [20]R.Albert,I.Albert,L.N.Gary.Structural vulnerability of the north American power grid[J].PHYSICAL REVIEW E,2004,69(1):025103/1-025103/4.
    [21]B.A.Carreras,V.E.Lynch,I.Dobson,et al.Critical points and transitions in an electric power transmission model for cascading failure blackouts[J].Chaos,2002,12(4):985 -994.
    [22]H.Liao,J.Apt,S.Talukdar.Phase transitions in the probability of cascading failures[C].Electricity Transmission in Deregulated Markets:Conference at Carnegie Mellon University,Pittsburgh,PA,December 2004.
    [23]E.MotterA.Cascade control and defense in complex networks[J].Physical Review Letters,2004,93(9):098701.
    [1]曹一家,江全元,丁理杰.电力系统大停电的自组织临界现象[J].电网技术,2005,29(15):1-5.
    [2]鲁宗相.电网复杂性及大停电事故的可靠性研究[J].电力系统自动化,2005,29(12):93-97.
    [3]B.A.Carreras,D.E..Newman,Dobson I,et al.Evidence for self-organized criticality in a time series of electric power system blackouts[J].IEEE Trans.Circuits and System,2004,51(9):1733-1740.
    [4]中国电力监管委员会,《电力监管年度报告(2006)》,2007.
    [5]中国电力企业联合,《2007年全国电力工业统计快报》,2008.
    [6]I.Dobson,B.A.Carreras,V.E.Lynch,et al.An initial model for complex dynamics in electric power system blackouts[C].34th Hawaii International Conference on System Sciences,Hawaii,January 2001,2:710-718.
    [7]I.Dobson,J.Chen,J.S.Throp,et al.Newman.Examining criticality of blackouts in power system models with cascading events[C].35th Hawaii International Conference on System Sciences,Hawaii,January 2002:2-10.
    [8]I.Dobson,B.A.Carreras,V.E.Lynch.Complex systems analysis of series of blackouts:cascading failure,criticality,and self-organization[C].Bulk Power System Dynamics and Control-Ⅵ,Italy,2004.
    [9]何飞,梅生伟,薛安成.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
    [10]D.P.Nedic,I.Dobson,D.S.Kirschen,et al.Criticality in a cascading failure blackout model[J].International Journal of Electrical Power & Energy Systems,2006,28(9):627-633.
    [11]梅生伟,翁晓峰,薛安成,等.基于最优潮流的停电模型及自组织临界性分析[J].电力系统自动化,2006,30(13):1-6.
    [12]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2006,31(12):12-18.
    [13]Qiang Guo,Tao Zhou,Jiangguo Liu,et al.Growing scale-free small-world networks with tunable assortative coefficient[J].Physica A,2006,371:814-822.
    [14]A-L Barabási,R.Albert.Emergence of scaling in random networks [J].Science,1999,286:509-512.
    [15]R.Albert,I.Albert,G.L.Nakarado.Structural vulnerability of the North American power grid[J].Physical Review E,2004,69(2):025103(R).
    [16]E.MotterA.Cascade control and defense in complex networks[J].Physical Review Letters,2004,93(9):098701.
    [17]邢修三.物理熵、信息熵及其演化方程[J].中国科学(A辑),2001,31(1):77-84.
    [18]李志民,李卫星,李勃龙.熵原理及其在电力系统可靠性中的应用[J].电力系统及其自动化学报,2001,13(3):37:40.
    [1]屈靖,郭剑波.“九五”期间我国电网事故统计分析[J].电网技术,2004,28(21):60-63.
    [2]U.S.-Canada Power System Outage Task Force.Final report on the August 14th,2003 blackout in the United States and Canada:causes and recommendations[R].April,2004.
    [3]薛禹胜.时空协调的大停电防御框架:(一)从孤立防线到综合防御[J].电力系统自动化,2006,30(1):8-16.
    [4]I.Dobson,J.Chen,J.S.Throp,et al.Examining criticality of blackouts in power system models with cascading events[C].35th Hawaii International Conference on System Sciences,Hawaii,January 2002,2:10pp.
    [5]Jie Chen,J.S.Thorp,I.Dobson.Cascading Dynamics and Mitigation Assessment in Power System Disturbances via a Hidden Failure Model [J].Electrical Power and Energy Systems,2005,27,318-326.
    [6]曹一家,丁理杰,江全元,韩祯祥.基于协同学原理的大停电预测模型[J].中 国电机工程学报,2005,25(18):13-19.
    [7]夏道止.电力系统分析[M].北京:中国电力出版社,1995.
    [8]A.G.Phadke,J.S.Thorp.Expose hidden failures to prevent cascading outages in power systems[J].IEEE Computer Applications in Power,1996,9(3):20-23.
    [9]Jie Chen,J.S.Thorp,Manu Parashar.Analysis of Electric Power System Disturbance Data.Hawaii International conference on System Sciences[C],January 2001,Hawaii.
    [10]丁剑,白晓民,方竹,等.基于贝叶斯网络的扰动后预想事故分析方法[J].电力系统自动化,2007,31(20):1-6.
    [11]熊小伏,蔡伟贤,周家启,等.继电保护隐藏故障造成输电线路连锁跳闸的概率模型[J].电力系统自动化,2008,32(13):6-10.
    [12]孙元章,程林,刘海涛.基于实时运行状态的电力系统运行可靠性评估[J].电网技术,2005,29(15):6-12.
    [13]周宗发,艾欣,邓慧琼,等.基于故障树和模糊推理的电网连锁故障分析方法[J].电网技术,2006,30(8):86-91.
    [14]陆波,唐国庆.基于风险的安全评估方法在电力系统中的应用[J].电力系统自动化,2000,25(11):61-64.
    [15]陈为化,江全元,曹一家,韩祯祥.基于风险理论的复杂电力系统脆弱性评估[J].电网技术,2005,29(4):12-17.
    [16]夏德明,梅生伟,侯云鹤.基于OTS的停电模型及其自组织临界性分析[J].电力系统自动化,2006,31(12):12-18.
    [1]丁道齐.用复杂网络理论分析电网连锁故障大停电事故机理[J].中国电力,2007,40(11):25-32.
    [2]柏文洁,汪秉宏,周涛.从复杂网络的观点看大停电事故[J].复杂系统与复杂性科学,2005,2(3):29-37.
    [3]B.A.Carreras,V.E.Lynch,M.L.Sachtjen,et al.Modeling blackout dynamics in power transmission networks with simple structure[C].Hawaii International Conference on System Science,Hawaii,2001.
    [4]I.Dobson,B.A.Carreras,V.E.Lynch,et al.Complex systems analysis of series of blackouts:cascading failure,criticality,and self-organization[C].Bulk Power System Dynamics and Control-Ⅵ,Italy,2004.
    [5]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-5.
    [6]B.A.Carreras,D.E.Newman,I.Dobson,et al.Evidence for self-organized criticality in electric power system blackouts[C].Hawaii International Conference on System Science,Hawaii,2001.
    [7]P.Bak,C.Tang,K.Wiesenfeld.Self-organized criticality:an explanation of I/f noise[J].Physical Review Letter,1987,59(7):381-384.
    [8]P.Bak,K.Chen.Self-organized criticality[J].Scientific American,1991,264(1):26-33.
    [9]I.Dobson,B.A.Carreras,V.E.Lynch,et al.An initial model for complex dynamics in electric power system blackouts[C].Hawaii International Conference on System Science,Hawaii,2001.
    [10]Dobson I,Carreras B A,Newman D E.A branching process approximation to cascading load-dependent system failure[C].35th Hawaii International Conference on System Science,Hawaii,2004.
    [11]S.Tamaronglak.Analysis of power system disturbances due to relay hidden failures[D].Virginia Polytechnic and State University,Blacksburg,Virginia, 1994.
    [12]J.Chen,J.S.Thorp.Study on cascading dynamics in power transmission systems via a DC hidden failure model[C].IEE Fifth International Conference on Power System Management and Control,2002:384-389.
    [13]J.M.Carlson,J.Doyle.Highly optimized tolerance:a mechanism for power laws in designed systems[J].Physical Review E,1999,60(2):1412-1427.
    [14]H.哈肯,郭治安,等译.信息与自组织[M].成都:四川教育出版社,1988.
    [15]姜璐,李克强编著.简单巨系统演化理论[M].北京:北京师范大学出版社,2002.
    [16]薛禹胜,周海强,顾晓荣.电力系统分岔与混沌研究述评[J].电力系统自动化,2002,26(17):9-15.
    [17]黄润秋,许强.斜坡失稳时间的协同学预测模型[J].山地研究,1997,15(1):7-12.
    [18]H.Haken.Information and Self-organization[M],Springer,Berlin,1988.
    [19]Z.J.Bao,Y.J.Cao,L.J.Ding,et al.Synergetic behavior in the cascading failure propagation of scale-free coupled map lattices[J].Physica A,2008,387:5922-5929.
    [20]邓聚龙.灰色系统理论教程[M].华中理工大学出版社,1990.
    [21]周平,杨岚,周家启.电力系统负荷灰色预测的新方法[J].电力系统及其自动化学报,1998,10(3):45-50.
    [22]张大海,江世芳,史开泉.灰色预测公式的理论缺陷及改进[J].系统工程理论与实践,2002,22(8):140-142.
    [23]http://www.nerc.com/-filez/blackout.html.
    [24]I.Dobson,B.A.Carreras,D.E.Newman,Branching process models for.the exponentially increasing portions of cascading failure blackouts[C].Hawaii International Conference on System Sciences,January 2005,Hawaii.
    [1]印永华,郭剑波,赵建军,等.美加“8·14”大停电事故初步分析以及应吸取的教训[J].电网技术,2003,27(10):8-12.
    [2]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-5.
    [3]韩祯祥,曹一家.电力系统的安全性及防治措施[J].电网技术,2004,28(9):1-6.
    [4]李生虎,丁明,汪兴强.电力系统静态电压安全问题的概率评价[J].电力系统自动化,2003,27(20):26-30.
    [5]赵伟 白晓民 丁剑.基于协同式专家系统及多智能体技术的电网故障诊断方法[J].中国电机工程学报,2006,26(20):1-8.
    [6]I.S.Baxevanos,P.D.Labridis.Implementing multi-agent systems technology for power distribution network control and protection management[J].IEEE Trans.on power delivery,2007,22(1):433-443.
    [7]陈中,杜文娟,王海风,等.电压稳定后紧急控制多代理系统框架[J].电力系统自动化,2006,30(12):33-37.
    [8]何飞,梅生伟,薛安成,等.基于直流潮流的电力系统停电分布及自组织临界性分析[J].电网技术,2006,30(14):7-12.
    [9]Jie Chen,James S.Thorp,Ian Dobson.Cascading Dynamics and Mitigation Assessment in Power System Disturbances via a Hidden Failure Model[J].Electrical Power and Energy Systems,2005,27,318-326.
    [10]A.G.Phadke,J.S Thorp.Expose hidden failures to prevent cascading outages in power systems[J].IEEE Computer Applications in Power,1996,9(3):20-23.
    [11]史忠植.智能主体及其应用[M].北京:科学出版社,2001.
    [12]M.E.Bratman.Intentions,plants,and practical reason[M].Cambridge: Harvard University Press,1987.
    [13]何炎祥,陈莘萌.Agent和多Agent系统的设计与应用[M].武汉:武汉大学出版社,2001.
    [14]范玉顺,曹军威.多代理系统理论、方法与应用[M].北京:清华大学出版社,2002.
    [15]曹一家.多Agent系统协调理论中的几个关键问题.技术跨越与高新技术产业发展[M].北京:中国科学技术出版社,2002:21-22.
    [16]束洪春,唐岚,董俊.多Agent技术在电力系统中的应用展望[J].电网技术,2005,29(6):27-31.
    [17]王成山,张家安.暂态稳定分布式仿真计算的改进算法[J].电力系统自动化,2004,28(14):28-32.
    [18]刘科研,盛万兴,李运华.互联电网的直流最优潮流分解算法研究[J].中国电机工程学报,2006,26(12):21-25.
    [19]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113.
    [20]H.H.Happ.分块法及其在电力系统中的应用[M].北京:科学出版社,1987.
    [21]Yongjun Zhang,Zhen Ren.Real-time optimal reactive power dispatch using multi-agent technique[J].Electric Power Systems Research,2004,69:259-265.
    [22]张勇军,任震.无功电压动态控制的分布式协同优化[J].中国电机工程学报,2004,24(4):34-38.
    [23]P.Hines,H.Liao,D.Jia,et al.Autonomous agents and cooperation for the control of cascading failures in electric grids[C].Proceedings of the IEEE Conference on Networking,Sensing and Control,Tuscan,2005.
    [24]杜晓宁,席裕庚,李少远.分布式预测控制优化算法[J].控制理论与应用,2002,19(5):793-796.
    [25]赵晋泉,江晓东,李华,等.一种基于连续线形规划的静态稳定预防控制方法[J].电力系统自动化,2005,29(14):17-22.
    [26]徐慧明,毕天姝,黄少锋,等.基于广域同步测量系统的预防连锁跳闸控制 策略[J].中国电机工程学报,2007,27(19):32-38.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700