用户名: 密码: 验证码:
基于Snake的图象分割与癌细胞识别方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着医学图象可视化技术的发展和各种医学成像模式的出现,医学图象自动分析和处理已成为图象工程领域和生物医学工程领域一个重要的研究方向。作为医学图象处理中的一个热点问题,细胞图象的自动分析和识别一直受到人们的普遍重视。由于细胞核浆形态多样,细胞涂片中存在细胞重叠与杂质污染,染色不均匀,涂片细胞图象的高精度分割与恶变性状特征提取成为细胞图象处理和癌细胞定量分析与识别中的难点课题。
     本文研究细胞图象分析技术和癌细胞识别方法。针对食管涂片的细胞图象,应用图象分析和模式识别技术研究细胞的分割方法和细胞形态、颜色、纹理特征的提取,以及癌细胞分类识别技术。本文的研究成果主要体现在以下几个方面:
     1、提出了一种基于模糊灰度一致性的Snake生长模型。针对传统Snake须将初始轮廓曲线置于真实边界附近的缺点,该模型在能量函数中增加了一项基于像素点与目标灰度一致性模糊度量的生长能量,使得能量优化过程不易受局部极小值的影响,具有较强的抗噪能力。轮廓曲线采用极坐标描述,计算简便。实验结果表明,该模型分割效果良好,分割性能稳定。
     2、针对细胞核边界重叠和模糊现象,提出了一种基于信息融合的新的Snake生长模型,并构成了一种彩色细胞核分割方法。该方法充分利用细胞图象的先验信息,对细胞核进行椭圆拟合和边界重叠(污染)信息估计,基于椭圆边界和不同区域的颜色分布特点,建立多个模糊度量函数分别从几何关系和颜色一致性上描述像素点对细胞核的隶属程度,然后融合边界估计信息和各种模糊度量,建立新的Snake生长模型实现细胞核的分割。椭圆信息增强了对重叠或模糊部分的边界跟踪能力,多种信息的融合改善了分割效果。实验结果表明,新方法分割精度进一步提高,分割性能更稳定。
     3、提出多种细胞核恶变性状的特征分析方法。针对癌细胞核染色颗粒特征明显的特点,提出一种基于形态学颗粒分析的纹理描述方法(MSGF方法)。该方法构造一种二维粒度分布图对二值图象作颗粒元素分解,以颗粒元素的数量、尺度分布和几何特征参数代替传统SGF纹理分析中的连通区域特征参数,对细胞核染色颗粒特征具有更好的描述能力。此外,本文还采用曲率熵描述细胞核的形状不规则程度,给出了改进的Tamura纹理粗糙度和对比度参数描述细胞核的染色质粗细程度。
     4、在应用上述方法对细胞图象进行精确分割和恶变性状分析的基础上,对提取出的一系列细胞核形状、颜色和纹理特征参数,分别应用贝叶斯分类法和k-近邻法进行癌变细胞与非癌变细胞的分类识别实验。实验表明,单细胞的分类正确率达到86%以上,在对少量样本作拒分决策的情况下可以获得更高的分类正确率:与传统的SGF特征和癌细胞识别中使用较多的GLCM特征相比,本文提出的MSGF特征描述细胞核恶变性状更有效,分
Medical image processing has become an important area in image analysis and biomedical engineering fields due to the rapid development of medical imaging technology. As a hot issue of medical image processing, cell image analysis has attracted widely the attentions of researchers. The quantitative analysis and malignity detection of cell images obtained from smears is usually taken as a difficult problem, because of the diversity of contained tissues, uneven staining, and overlapped cell clusters in the cell images.
    This thesis focuses on the quantitative cytological analysis and automated cancerous cell recognition technology, aiming at the cell images obtained from esophageal smears. Based on the in depth research on image analysis, pattern recognition theories, and cytological pathology knowledge, we make a systematical and comprehensive study on the technologies of cell segmentation, cytological malignant feature description and cancerous cell recognition. The main contributions of this thesis are summarized as follows:
    (1) A growing snake based on fuzzy intensity consistency measure is proposed. To solve the initialization problem of the traditional snake, we improve the energy function by adding an adaptive growing energy term defined by the pixel's fuzzy intensity consistency measure. The growing snake has strong anti-noise ability and low computation cost. The experiments show that the proposed snake model has encouraging segmentation results and stable performance.
    (2) Aiming at the overlapped or blurred nucleus edges, we propose a novel information fusion based growing snake to segment color cell nucleus. Utilizing adequately the prior knowledge of cell images, we firstly perform ellipse fitting on the nucleus and give an estimation on the edge superposition status. Based on the detected ellipse and tristimulus distribution characteristics of different regions, we define several fuzzy measurements to describe the degrees of the pixel belonging to the nucleus geometrically and tinctorally. At last, we fuse these fuzzy measurements with different methods and build a new growing snake to segment the nucleus. The ellipse information enhances the boundary tracking ability for the overlapped or blurred edges. The fusion of various information improves the segmentation accuracy and performance stability.
    (3) Several feature description methods are proposed to analysis the malignant characteristics of nucleus. To effectively analysis the granularity of nucleus chromomere, we proposed a morphological granularity analysis method, called MSGF method. The MSGF method constructs a 2D granularity distribution graph for the bi-level image and performs granularity element decomposition on it. The size distribution and topological feature parameters of the granularity elements are used to replace the connective region parameters in the traditional SGF texture description method. In additional, we use the curvature entropy to measure the
引文
[1] 罗述谦,周果宏.医学图象处理与分析.北京:科学出版社,2003
    [2] Young IT. The classification of white blood cell. IEEE Trans. BME, 1972, 19(1): 291-298
    [3] Levine M. Automated differentials: geometric data's HEMATRAK. Amer. J. Med. Tech., 1974(40): 462-468
    [4] Yide Ma, Rolan Dai, Lian Li. A counting and segmentation method of blood cell image with logical and morphological feature of cell. Chinese Journal of Electronics, 2002, 11(01): 53-55
    [5] Sobrevilla, P., Montseny, E., Keller, J. White blood cell detection in bone marrow images. 18th International Conference of the North American Fuzzy Information Processing Society, New York, 1999: 403-407
    [6] Guclu Ongun, Ugur Halici, Kemal Leblebicioglu etc. Feature extraction and classification of blood cells for an automated differential blood count system. Proc. IEEE-INNS IJCNN, Wahington DC, 2001: 2461-2466
    [7] SF. Bikhet, AM. Darwish, HA. Tolba, and SI. Shaheen. Segmentation and classification of white blood cells. Proc. IEEE ICASSP, Turkey, 2000: 2259-2261
    [8] 杨晓敏.血液白细胞特征抽取和分析.北京生物医学工程,1992,11(4):123129
    [9] 罗立民.血液白细胞计算机自动分类研究.东南大学学报,1993,23(5):106-109
    [10] 汪定慧,程杰,万遂人.基于彩色图象分析的白细胞自动分类算法.东南大学学报,2000,30(5):16-20
    [11] WN. Street. Cancer diagnosis and prognosis via linear-programming-based machine learning. Ph.D. Dissertation, University of Wisconsin-Madison, 1994
    [12] Hallinan. Detection of malignancy associated changes in cervical cells using statistical and evolutionary computation techniques, Ph.D. Thesis, University of Queensland, Australia, 1999
    [13] JP. Thiran, B. Macq. Morphological feature extraction for the classification of digital images of cancerous tissues. IEEE Trans. Bio-Med. Eng., 1996, 43: 1011-1020
    [14] Z.H. Zhou, Y. Jiang, Y.B. Yang, S.F. Chen. Lung cancer cell identification based on artificial neural network ensembles. Artif. Intell. Med., 2002(24): 25-36
    [15] SM Marroquin, C. Vos, E. Santamaria, X. Jove, and JC Socoro. Nonlinear image analysis for fuzzy classification of breast cancer. Proc. IEEE Conf. Image Processing, 1996(2): 943-946
    [16] Sergey Ablameyko, V. Kirillov, Dmitry Lagunovsky, et al. From cell image segmentation to differential diagnosis of thyroid cancer. Proc. of 16th Int. Conf. Pattern Recognition, Quebec, Canada, 2002: 763-766
    [17] D. Glotsos, P. Spyridonos, P. Petalas, et al. Support vector machines for classification of histopathological images of brain tumour astrocytomas. Proc. Int. Conf. on Computational Methods in Sciences and Engineering, Kastoria, Greece, 2003:192-195
    [18] 王洪元,石澄贤,曾生根,夏德深.癌细胞显微图象分割与识别研究.计算机工程与应用,2003(36):214-216
    [19] 陆新泉,李宁,陈世福.形态、颜色特征及神经网络在肺癌细胞识别中的应用研究.计算机辅助设计与图形学学报,2000,13(1):87-92
    [20] 王昕等.一种肿瘤细胞显微图象处理与识别系统,数据采集与处理,1996(4):291-294
    [21] 董志伟,乔友林,李连弟,等.中国癌症控制策略研究报告.中国肿瘤,2002,11(5):250-260
    [22] M. Sammouda, R. Sammouda, N. Niki, et al. Cancerous nuclei detection on digitized pathological lung color images. Computers and Biomedical Research, 2002, 35(2): 92-98
    [23] S.J. Keenan, J. Diamond, W.G. McCluggage, et al. An automated machine vision system for the histological grading of cervical intraepithelial neoplasia. Journal of Pathology, 2000(192): 351-362
    [24] H.K. Choi, T. Jarkrans, E. Bengtsson, et al. Image analysis based grading of bladder carcinoma. Comparison of object, texture and graph based methods and their reproducibility. Anal. Cell. Pathol., 1997(15): 1-18
    [25] B. Weyn, G. Van de Wouwer, S. Kumar-Singh, et al. Computer-assisted differential diagnosis of malignant mesothelioma based on syntactic structure analysis. Cytometry, 1999(35): 23-29
    [26] C. Demir, B.Yener. Automated cancer diagnosis based on histopathological images: a systematic survey. Technical report, Rensselaer Polytechnic Institute, Department of Computer Science, TR-05-09, March 2005
    [27] LG Koss. Measuring DNA in human cancer. J. Am. Med. Assoc., 1986(255): 3157-3158
    [28] A. Bocking, F. Giroud, A. Reith. Consensus report of the european society for analytical cellular pathology task force on standardization of diagnostic DNA image cytometry. Analyt. Quant. Cytol. Histol., 1995, 17(1): 1-7
    [29] 高敦岳,陆宗骐,张建正,张雷.癌细胞分析系统的研制.仪器仪表学报,1997,18(1):84-88
    [30] 张建正,陆宗骐,高敦岳.细胞DNA定量图像分析系统.微型电脑应用,1997(6):14-19
    [31] RC. Mellors, A. Glassman, GN. Papanicolaou. A microfluorometric scanning method for the detection of cancer cells in smears of exfoliated cells. Cancer, 1954(5): 458-468
    [32] J.W. Bacus, L.J. Grace. Optical microscope system for standardized cell measurements and analyses. Applied Optics, 1987(26): 3280-3293
    [33] J.H.Tucker, G.A. Shippey. Basic performance tests on the CERVIFIP linear array prescreener. Analytical Quantitative Cytology, 1982, 5(2): 129-137
    [34] J. Vrolijk, P.L. Pearson, J.S. Ploem. LEYTAS: A system for the processing of microscopic images. Analytical Quantitative Cytology, 1980(2):41-48
    [35] D. Pycock, C.J. Taylor. The MAGISCAN image analyser as a diagnostic aid in cytology. Analytical Quantitative Cytology, 1981(3): 49-54
    [36] G. Brugal, C. Garbay, F. Giroud, D. Adelh. A double scanning microphotometer for image analysis, hardware, software and biomedical applications. Journal of Histochemistry and Cytochemistry, 1977(25): 681-688
    [37] W. N. Street, Xcyt: A system for remote cytological diagnosis and prognosis of breast cancer. In L.C. Jain, editor, Soft Computing Techniques in Breast Cancer Prognosis and Diagnosis, CRC Press, 1999
    [38] Banda Gamboa, H. Ricketts, I. Cairns, et al. Automation in cervical cytology: An overview. Analytical Cellular Pathology, 1992(4): 25-48
    [39] EM Marroquin, E. Santamaria, X. Jove, and JC Socoro. Morphological analysis of mammary biopsy images. In Proc. Electrotechnical Conf. 1996: 1067-1070
    [40] RM. Haralick, SR. Sternberg, X. Zhuang. Image analysis using mathematical morphology. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1987, 9(4): 532-550
    [41] P. Sobrevilla, E. Lerma, E. Montseny. An approach to a fuzzy-based automatic pap screening system-FAPSS-addressed to cytology cells. In 22th NAFIPS Int. Conf., 2003: 138-142
    [42] P. Sobrevilla, E. Montseny, J. Keller. Using a fuzzy morphological structural element for image segmentation. In Proc. NAFIPS'2000, Atlanta, 2000: 95-99
    [43] P. Bamford, B. Lovell. A water immersion algorithm for cytological image segmentation. In APRS Image Segmentation Workshop, Sydney, Australia, 1996: 75-79
    [44] 崔屹.图象处理与分析——数学形态学方法及应用.北京:科学出版社,2000
    [45] CG. Loukas, GD. Wilson, B. Vojnovic. Automated segmentation of cancer cell nuclei in complex tissue sections. Proc. SPIE, Vol.4158, Amsterdam 2000, C.F. Van Swol, Y.V. Gulyaev, T.G. Papazoglou, I. Gannot eds., ISBN 0-8194-3814-6, 2000:188-198
    [46] 杨静宇,唐振民,叶玉坤,汪栋.重叠细胞图象分离算法的设计.计算机研究与发展,2000(02):101-105
    [47] A.D.H. Thomas, T. Davies, A.R. Luxmoore. The hough transform for locating cell nuclei. Analytical and Quantitative Cytology and Histology, 1992(14): 347-353
    [48] T. Mouroutis, SJ. Roberts, AA. Bharath. Compact hough transform and a maximum likelihood approach to cell nuclei detection. Proceedings 13th International Conference on Digital Signal Processing, 1997(2): 869-872
    [49] N.A. Ostu. Threshold selection method from grey-level histograms. IEEE Trans. System, Man, and Cybernetics, 1979, 9(1): 62-66
    [50] JF. Haddon. Generalized threshold selection for edge detection. Pattern Recognition, 1988(21): 195-203
    [51] 韩思奇,王蕾.图像分割的阈值法综述.系统工程与电子技术,2002,24(6):91-95
    [52] F.H.Y. Chan, F.K. Lam, H. Zhu. Adaptive thresholding by variational method. IEEE Trans. Image Processing, 1998, 7(3): 468-473
    [53] Rafael C.Gonzalez,Richard E.Woods著,阮秋琦,阮宇智等译.Digital Image Processing,second edition(数字图像处理(第二版)).北京:电子工业出版社,2003
    [54] 章毓晋.图象分割.北京:科学出版社,2001
    [55] YL. Chang, XB. Li. Adaptive image region growing. IEEE Trans. Image Processing, 1994, 3(6): 868-872.
    [56] 郑南宁,刘健勤.基于区域特征的自适应图象分割方法.电子学报,1995,23(7):98-101
    [57] C. MacAuley, B. Palcic. A comparison of some quick and simple threshold selection methods for stained cells. Analytical and Quantitative Cytology and Histology, 1988(10): 134-138
    [58] Xiaohua Chen, Chang Yu. Application of some valid methods in cell segmentation. Proc. SPIE, Tianxu Zhang; Bir Bhanu; Ning Shu; Eds Vol. 4550, 2001: 340-344
    [59] T. Tanaka, T Joke, T Oka. Cell nucleus segmentation of skin tumor using image processing. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 2001, 23(3): 2716-2719
    [60] 李翊华,胡匡祜.细胞显微图象灰度梯度双阈值的快速分割.模式识别与人工智能,1995,12(4):357-362
    [61] B. Weyn, G. Van de Wouwer, M. Koprowski, et al. Value of morphometry, texture analysis, densitometry, and histometry in the differential diagnosis and prognosis of malignant mesothelioma. J. Pathol. 1999(189): 581-589
    [62] D.Anoraganingrum, S. Kroner, B. Gottfried. Cell segmentation with adaptive region growing. Proc. 10th International Conference on Image Analysis and Processing. Venice, Italy, 1999:1043-1046
    [63] H.-S. Wu, J. Barba, J. Gil. Region growing segmentation of textured cell images. Electron. Lett. 1996(32): 1084-1085
    [64] PS Umesh Adiga, BB Chaudhuri, Region based techniques for segmentation of volumetric histopathological images. Journal of Computer Methods and Programs in Biomed., 2000, 61(1): 23-47
    [65] 张习文,蔡士杰,高晓.基于特征块的细胞核提取方法.计算机学报,2003,26(12):1781-1785
    [66] A. M. Martins, Doria Neto, et al. Texture based segmentation of cell images using neural networks and mathematical morphology. International Joint Conference on Neural Networks Washington DC, 2001: 2489-2494
    [67] N. Lassouaoui, L. Hamami, Genetic algorithms and multifractal segmentation of cervical cell images. In Proc. of Seventh International Symposium on Signal processing and its applications, 2003(2): 1-4
    [68] P. Spyridonos, D. Glotsos, D. Cavouras, et al. Pattern recognition based segmentation method of cell nuclei in tissue section analysis. In Proc. of 14th IEEE International Conference on Digital Signal Processing, Santorini, Greece, 2002:1121-1124
    [69] J. Serra, Introduction to mathematical morphology. Computer Vision, Graphics and Image Processing,, 1986(35): 283-305
    [70] L. Vincent, E.R. Dougherty. Morphological segmentation for textures and particles. In ER. Dougherty, ed., Digital image processing: Fundamentals and applications: Marcel-Dekker,. New York, 1994:43-102
    [71] R.F. Walker, P. Jackway, B. Lovell, and I.D. Longstaff. Classification of cervical cell nuclei using morphological segmentation and textural feature extraction. In Proc. 1994 Second Australian and New Zealand Conf. on Intelligent Information Systems, 1994: 297-301
    [72] J.B.T.M. Roerdink, A. Meijster. The watershed transform: definitions, algorithms and. parallelization strategies. Fundamenta Informaticae, 2000(41): 187—228
    [73] S. Beucher. The watershed transformation applied to image segmentation. Scanning Microscopy International, 1992(6): 299-314
    [74] N. Malpica, C. Ortiz de Solorzano, JJ. Vaquero, A. Santos, I. Vallcorba, JM. Garcia-Sagredo, F. Del Pozo. Applying watershed algorithms to the segmentation of clustered nuclei. Cytometry, 1997(28): 289-297
    [75] 王金涛,刘文耀,路烁.流域分割算法在细胞图像分割中的应用.西南交通大学学报,2002,37(3):290-294
    [76] 王浩军,郑崇勋,马东,闫相国.流域算法对血及骨髓涂片的彩色图像分割.西安交通大学学报,2001,35(12):1296-1299
    [77] 马东,曹培杰,潘凯丽,程敬之.分割重叠细胞核的方法及比较研究.北京生物医学工程,1999,18(3):142-147
    [78] 李斌,马东,曹培杰,程敬之.多信息融合的彩色细胞图象分割方法.北京生物医学工程,2000,19(1):33-38
    [79] L. Vincent, P. Soille. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans. on PAMI, 1991, 13(6): 583-598
    [80] D. Mart, E. Hildreth. Theory of edge detection. Proc. Royal Society of London, Series B, 1980(207): 187-217
    [81] JF. Canny. A computational approach to edge detection. IEEE Trans. Pattern Analysis Mach Intell, 1986, 8:679-698
    [82] J Xiao, R. Christen, C Minimo, P.H. Bartels, and M. Bibbo. An algorithm for automatic tracking of nuclear boundaries. Analytical and Quantitative Cytology and Histology, 1994(16): 240-246
    [83] A.J. Einstein, J. Gil, S. Wallenstein, C.A. Bodian, M. Sanchez, D.E. Burstein, H.S. Wu, Z. Liu. Reproducibility and accuracy of interactive segmentation procedures for image analysis in cytology. Journal Microsc., 1997(188): 136-148
    [84] CC Leung, FHY Chan, WF Chen, PCK Kwok, KY Lam. Thyroid cancer cells boundary location by a fuzzy edge detection method. Proc. of 15th International Conference on Pattern Recognition(ICPR). Barcelona, 2000:4360-4363
    [85] A. Nedzved, Sergey Ablameyko, Ioannis Pitas. Morphological segmentation of histology cell images. Proceedings of Intern. Conference on Pattern Recognition, 2000:1500-1503.
    [86] T. Mouroutis, S. J. Roberts, and A. A. Bharath. Robust cell nuclei segmentation using statistical modeling. Bioimaging, 1998, 6(2): 79~91
    [87] Tianzi Jiang, Faguo Yang. An evolutionary tabu search for cell image segmentation. IEEE Transactions on Systems, Man and Cybernetics, 2002, 32(5): 675-678
    [88] 刘勇,康立山,陈毓屏.非数值并行算法——遗传算法.北京:科学出版社,1995
    [89] 唐珉,李军,胡占义.随机Hough变换与Tabu搜索算法在基元提取中的比较.计算机学报,1999,22(1):56-65
    [90] H.-S. Wu, J. Gil, J. Barba. Optimal segmentation of cell images. IEE Proceedings in Vision, Image and Signal Processing, 1998, 145(1): 50-56
    [91] Hai-Shan Wu, Joseph Barba, and Joan Gil, A parametric fitting algorithm for segmentation of cell images. IEEE Transactions on Biomedical Engineering, 1998, 45(3): 400-407
    [92] A. Garrido, NP. de la Blanca. Applying deformable templates for cell image segmentation. Pattern Recognition, 2000, 33(5): 821-832
    [93]K.-M. Lee, W.N. Street. Automatic image segmentation and classification using on-line shape learning. Proceedings of the Fifth IEEE Workshop on the Applications of Computer Vision, December, 2000: 64-70
    
    [94]M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. International Journal of Computer Vision, 1987,1(4): 321-331
    
    [95]T. Mclnerney, D. Terzopoulos. Deformable Models in Medical Image Analysis: A Survey. Medical Image Analysis, 1996, l(2):91--108
    
    [96]D.N. Davis. The application of active contours applied to MR and CT images. Computer Science Internal Report, CSIRP 95-1, February, 1995
    
    [97]LD. Cohen. On active contour models and balloons. CVGIP: Image Understanding, 1991, 53(2): 211-218
    
    [98]Chenyang Xu, Jerry L. Prince. Snakes, shapes and gradient vector flow. IEEE Transactions on Image Processing, 1998, 7(3): 359-369
    
    [99]D J Williams, M. Shab. A fast algorithm for active contours and curvature estimation. CVGIP: Image Understanding, 1992, 55(1): 14-26
    
    [100]P. Brigger, J. Hoeg, and M. Unser. B-Spline snakes: A flexible, tool for parametric contour detection. IEEE Transactions on Image. Processing, 2000, 9(9): 1484-1496
    
    [101]S.R. Gunn. Dual active contour models for image feature extraction. Ph.D. Thesis, University of Southampton, May 1996
    
    [102]S.R. Gunn, M.S. Nixon. A robust snake implementation: A dual active contour. IEEE Trans. Pattern Anal. Mach. Intell., 1997,19(1): 63-68
    
    [103]Pascal Bamford, Brian Lovell. Unsupervised cell nucleus segmentation with active contours. Signal Processing (Special Issue: Deformable models and techniques for image and signal processing), 1998, 71(2):203-213
    
    [104]P. Bamford, B. Lovell. Improving the robustness of cell nucleus segmentation. In British Machine Vision Conference, Southampton, UK, September 14 -17, 1998(2): 518-524
    
    [105]P. Bamford, B. Lovell, Bayesian analysis of cell nucleus segmentation by a Viterbi search based active contour. In Proceedings of the 14th International Conference on Pattern Recognition, Brisbane, Australia, August 1998: 133-135
    [106] Amir Arsham Amini. Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(9): 855-867
    [107] 胡炯炯,于慧敏,房波.基于形态学约束的B-Snake模型的细胞图象自动分割方法.中国图象图形学报,2005,10(1):31-37
    [108] K.M. Lee, W.N. Street. A fast and robust approach for automated segmentation of breast cancer nuclei. In Proc. of the Second IASTED International Conference on Computer Graphics and Imaging, Palm Springs, CA., 1999: 42-47
    [109] H.S. Wu, J. Barba. An efficient semi-automatic algorithm for cell contour extraction. Journal of Microsc. 1995(179): 270-276
    [110] Herrera-Espineira C, Marcos-Munoz C, Esquivias J., Automated segmentation of cell nuclei in fine needle aspirates of the breast. Anal Quant Cytol Histol. 1998 Feb;20(1):29-35
    [111] X.C. Jin, TTE Yeo, SH Ong, Jayasooriah, R. Sinniah. An automated clump decomposition system for cervical tissue sections. Proc. of IEEE EMBS, Baltimore, 1994(1): 720-721
    [112] 刘相滨,邹北骥,胡峰松.基于边界剥离的细胞图象分离算法.中国图象图形学报,2002,7(3):234-239
    [113] 薛东军,平西建,臧传辉.基于测地形态学进行细胞图象分割的新方法.信息工程大学学报,2003,4(4):88-92
    [114] H.D. Cheng, X.H. Jiang, Y. Sun, J. Wang. Color image segmentation: Advances and prospects. Pattern Recognition, 2001, 34(12): 2259-2281
    [115] TQ. Chen, Y. Lu. Color Image Segmentation—An Innovative Approach. Pattern Recognition, 2001(35): 395-405
    [116] J. F. Yang, SS. Hao, PC Chung. Color image segmentation using fuzzy c-means with eigenspace projections. Signal Processing, 2002(82): 461-472
    [117] 陆建峰,杨静宇,叶玉坤.一个用于彩色肺癌细胞图象的分割算法.南京理工大学学报,2000,24(6):481-485
    [118] W.N. Street, W.H. Wolberg, O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, San Jose, CA, 1993(1905): 861-870
    [119] Mouroutis Theodoros. Segmentation and classification of cell nuclei in tissue sections. Ph.D. thesis, Department of Biological and Medical Systems, Imperial College London, 2000.
    [120] P. Spyridonos, P. Ravazoula, D. Cavouras, G. Nikiforidis. An automatic classification system of urine bladder tumors employing morphological and textural nuclear features. In IEEE Proc.2001 International Conference on Image Processing, 2001(2): 853-856
    [121] Mihran Tuceryan, Anil K. Jain. Texture analysis, Handbook of pattern recognition & computer vision. World Scientific Publishing, 1993:235-276
    [122] R .M. Haralick. Statistical and structural approaches to texture. Proc. of IEEE, 1979, 67(5): 786-804
    [123] R.M. Haralick, K. Shanmugam, I. Dinstein. Texture features for image classification. IEEE Trans. Systems, Man and cybernetics, 1973(3): 610-621
    [124] L. Rajesh, P. Dey. Fractal dimensions in urine smears: A comparison between benign and malignant cells. Anal. Quant. Cytol. Histol. 2003(25): 181-182
    [125] A.J. Einstein, H.S. Wu, M. Sanchez, J. Gil. Fractal characterization of chromatin appearance for diagnosis in breast cytology. J. Pathol. 1998(185): 366-381
    [126] 王浩军,郑崇勋,朱华锋,闫相国.基于分形特征的细胞核表面纹理分析.中国图象图形学报,2003,8(10):1166-1171
    [127] A.N. Esgiar, R.N.G. Naguib, B.S. Sharif, M.K. Bennett, A. Murray. Fractal analysis in the detection of colonic cancer images. IEEE Trans. Information Technology in Biomedicine, 2002, 6(1), pp 54-58
    [128] RF. Walker, PT. Jackway, BC. Lovell. Cervical cell classification via co-occurrence and markov random field features.In Proc. of DICTA-95, Brisbane, Australian, 1995:294-299
    [129] Ross F Walker, Paul Jackway. Statistical geometric features: extensions for cytological texture analysis. ICPR '96, the 13th International Conference on Pattern Recognition, 25-30th August, 1996(Ⅱ): 790-794
    [130] B. Weyn, G. Van de Wouwer, A. Van Daele, R Scheunders, D. Van Dyck, E. Van Marck, W. Jacob. Automated breast tumor diagnosis and grading based on wavelet chromatin texture description. Cytometry, 1998(33): 32-40
    [131] G. Wolf, M. Beil, H. Guski. Chromatin structure analysis based on a hierarchic texture model. Analytical and Quantitative Cytology and Histology, 1995(17): 25-34
    [132] C. Demir, S.H. Gultekin, B.Yener. Learning the topological properties of brain tumors. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2005, 2(3):262-270
    [133] NA Murshed, F. Bortolozzi, R. Sabourin. A fuzzy ARTMAP-based classification system for detecting cancerous cells, based on the one-class problem approach. 13th International Conference on Pattern Recognition(ICPR'96), Vienna(Austria), August, 1996:478-482
    [134] F. Schnorrenberg, C.S. Pattichis, C.N. Schizas, K. Kyriacou, M. Vassiliou. Computer-aided classification of breast cancer nuclei. Technol. Health Care 1996(4): 147-161
    [135] AV Dias, F. Bortolozzi, MRBS Delgado, Results of the use of Bayesian classifiers for identification of breast cancer cell nuclei. In Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, 1996:508-512
    [136] K. Blekas, A. Stafylopatis, D. Kontoravdis, A. Likas, R Karakitsos. Cytological diagnosis based on fuzzy neural networks. J. Intelligent Systems, 1998(8): 55-79
    [137] K. Kim. A physiological neuro fuzzy learning algorithm for medical image recognition. IEEE International Fuzzy Systems Conference, 1999(1): 140-144
    [138] J. Smolle. Computer recognition of skin structures using discriminant and cluster analysis, Skin Res. Technol. 2000(6): 58-63
    [139] A.N. Esgiar, R.N.G. Naguib, B.S. Sharif, M.K, Bennett, A. Murray, Microscopic image analysis for quantitative measurement and feature identification of normal and cancerous colonic mucosa, IEEE Trans. information technology in biomedicine. 1998(2): 197-203
    [140] M. Wiltgen, A. Gerger, J. Smolle. Tissue counter analysis of benign common nevi and malignant melanoma. Int. J. Med. Inform. 2003(69): 17-28
    [141] 谢青,曹立明.利用决策树方法进行癌细胞识别.同济大学学报,2001,29(7):816-821
    [142] 边肇祺,张学工等.模式识别(第二版).北京:清华大学出版社,2000
    [143] 钱宇平,何尚浦,李婉先.流行病学(第二版).北京:人民卫生出版社,1986
    [144] R. Christen, J. Xiao, C. Minimo, G. Gibbons, H. Galera-Davidson, P.H. Barrels, M. Bibbo. Chromatin texture in hematoxylin and eosin stained prostate tissue. Analytical and Quantitative Cytology and Histology, 1993(15): 383-388
    [145] Y. Liu, T. Zhao and J. Zhang. Learning multispectral texture features for cervical cancer detection. Proceedings of 2002 IEEE International Symposium on Biomedical Imaging: Macro to Nano, Washington DC, July, 2002: 169-172
    [146] Hu Y, Ashenayi K. Veltri R, O'Dowd G, Miller C, Hurst R, and Bonnet R. A comparison of neural network and fuzzy c-means methods in bladder cancer cell classification. Proceedings of IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, 1994:3461-3466
    [147] D.K. Tasoulis, R Spyridonos, N.G.Pavlidis, D. Cavouras, P.Ravazoula, G. Nikiforidis, M.N. Vrahatis. Urinary bladder tumor grade diagnosis using on-line trained neural networks. In Proc. Knowl. Based Intell. Inform. Eng. Syst. 2003:199-206
    [148] Cheolhun Na, Hyeonjae Kim. Effective discrimination of cancer cells in medical images. Nuclear Science Symposium and Medical Imaging Conference, 1993 IEEE Conference Record. 1993: 1371-1375
    [149] F. Chen, J. Xie, H. Zhang, and D. Xia. A technique based on wavelet and morphology transform to recognize the cancer cell in pleural effusion. In Proc. International Workshop on Medical Imaging and Augmented Reality(MIAR'01), 2001: 199-203
    [150] Hongyuan Wang, Shenggen Zeng, Chengang Yu, Xiaogang Wang, Deshen Xia. The research of microscopic image segmentation and recognition on the cancer cells fallen into peritoneal effusion. In Proc. International Workshop on Medical Imaging and Augmented Reality(MIAR '01), 2001: 253-258
    [151] Jing Zhang, Chein-I Chang, SJ. Miller, K.A. Kang. Optical biopsy of skin tumors. Proceedings of the First Joint BMES/EMBS Conference, 1999(2): 1095
    [152] J. Diamond, N.H. Anderson, P. H. Bartels, R. Montironi, P.W. Hamilton. The use of morphological characteristics and texture analysis in the identification of tissue composition in prostatic neoplasia. Human Pathology, 2004(35): 1121-1131
    [153] 杜百廉主编.食管癌.北京:中国科学技术出版社,1994
    [154] 河南省肿瘤防治研究队,林县人民医院编.食管癌的早期诊断.北京:人民卫生出版社,1973
    [155] Yi-Jing Shu, Etienne Cloor. Comprehensive cancer cytopathology of the cervix uteri(correlation with histopathology). McGraw-Hill Publishing, 1995
    [156] 郭戈,平西建,胡敏,周利莉.基于迭代的癌细胞图象自动多阈值分割.信息工程大学学报,2004,5(3):72-74
    [157] 李培华,张田文.主动轮廓线模型(蛇模型)综述.软件学报,2000,11(6):751-757
    [158] M.Kass, A.Witkin, and D. Terzopoulos. Snakes: active contour models. International Journal of Computer Vision, 1987, 1(4): 321-331
    [159] Chenyang Xu, D. L. Pham and J. L. Prince. Image segmentation using deformable models. Handbook of Medical Imaging, 2000, vol. 2, chapter 3. SPIE Press
    [160] D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: recovering 3D shape and nonrigid motion. Artificial Intelligence, 1988, 36(1): 91-123
    [161] S. Menet, P. Saint-Marc, and G. Medioni. B-snakes: Implementation and application to stereo. Image Understanding Workshop, Sept. 1990:720-726
    [162] G. Storvik. A bayesian approach to dynamic contours through stochastic sampling and simulated annealing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994, 16(10): 970-986
    [163] H.D. Cheng, Y.H. Chen, Ying Sun. A novel fuzzy entropy approach to image enhancement and thresholding. Signal Processing, 1999(75): 277-301
    [164] 章毓晋.图象工程——图象处理和分析(上册).清华大学出版社,1999
    [165] 章毓晋.图象分割评价技术分类和比较.中国图象图形学报,1996,1(2):151-158
    [166] Y.J. Zhang, J.J. Gerbrands. Segmentation evaluation using ultimate measurement accuracy. SPIE 1657, 1992:449-460
    [167] N. Otsu. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man, Cybern., 1979, 9(1): 62-66
    [168] A. Fitzgibbon, M. Pilu, and R. Fisher. Direct least square fitting of ellipses. IEEE Trans. PAMI, 1999, 21(5): 476-480
    [169] S. Loncaric. A survey of shape analysis techniques. Pattern Recognition, 1998, 31(8): 983-1001
    [170] 梅向明,黄敬之.微分几何.北京:高等教育出版社,1988
    [171] H Tamura, S Mori, T Yamawaki. Texture features corresponding to visual perception. IEEE Trans. SMC, 1978, 8(6): 460-473
    [172] 孙兴华,杨静宇,郭丽.基于改进纹理粗糙度的图象检索研究.计算机工程,2002,28(1):144-146
    [173] Y. Q. Chen, M. S. Nixon, and D. W. Thomas. Statistical geometric features for texture classification. Pattern Recognition, 1995, 28(4): 537-552
    [174] Anil K. Jain. Statistical pattern recognition: A Review. IEEE Trans. PAMI, 2000, 22(1): 4-37
    [175] Richard O. Duda, Peter E. Hart, David G Stork,(李宏东,姚天翔等译).Pattern Classification Second Edition,(模式分类第二版).北京:机械工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700