用户名: 密码: 验证码:
BacillussubtilisZJUTZY固定化转化生产γ-PGA及其水解定量检测方法的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-PGA(γ-聚谷氨酸)是一种通过微生物合成的均聚氨基酸化合物,它由谷氨酸单体以γ-羧基与氨基相缩合而成,是一种水溶性和可生物降解的新型生物高分子材料,近年来由于其被作为增稠剂,保湿剂,药物载体等而一直被广泛应用于工业领域,是一种有极大开发价值和前景的多功能性生物制品。
     Bacillus subtilis ZJUTZY为本实验室从纳豆中分离出的γ-聚谷氨酸(γ-PGA)高产菌株,本文对其固定化转化产γ-PGA的生产条件进行优选。实验得出海藻酸钙包埋具有较高的产量而且包埋菌量固定,因此确定海藻酸钙为固定化材料,采用包埋法进行固定。后采用单因素法对转化生产γ-PGA的菌种固定化条件进行优选,得到的较优条件如下:温度为37℃,pH为7,摇床转速为200rpm,接种量为12%,固液比为1:3,氯化钙浓度为4%。
     通过增加一检测样品,即醇沉物水溶中的谷氨酸含量,并且通过不断地实验,确定了水解液中和所需的NaOH的添加量,我们改进了水解法测γ-PGA产量的检测方法,并在此基础上,研究了Bacillussubtilis ZJUTZY产γ-PGA的产量变化,得出30小时的γ-PGA的产量最高为11.02g/L。
     而后根据pgsB在不同菌株中的序列,及与本实验室菌株同源性较高的Bacillus subtilis ZJU-7的pgsB序列,设计了2对引物。当分别用pgsB-F和pgsB-R为正反向引物,以Bacillus subtilis ZJUTZY基因组DNA为模板时,PCR获得了一段长1221bp的基因片段,对PCR片段进行序列测定pgsB基因,发现该基因片段与多种Bacillus subtilis菌株的pgsB基因具有较高的同源性,相似度达到了99%,故可初步认定PCR得到的DNA片段为pgsB基因的部分序列。
Poly (γ-glutamic acid) (γ-PGA) is an unusual anionic, water-solubleand high viscous polymer in which glutamate is polymerized by amidelinkages between a-amino andγ-carboxylic acid groups. For its excellentcharacters, potential applications ofγ-PGA have been of interest in the pastfew years in a broad range of industrial fields. It has been used asthickeners, humectant and drug carrier.
     Bacillus subtilis ZJUTZY, which was aγ-PGA producer, was isolatedfrom natto. And the optimum condition for producingγ-PGA was studiedthrough with immobilized Bacillus subtilis ZJUTZY. The betterimmobilizing material was calcium-alginate and the optimum conditionwas as follows: temperature 30℃, initial pH7, rotation speed 200 rpm,inoculum size 12%,beads to liquid 1:3, and CaCl2 concentration 4%.
     We improved the method of mearing the yield ofγ-PGA by two steps.One is adding a meaturement of the concentration of glutamic acid in the deposit and the other is the confirmation of the dosage of NaOH in the stepof neutralization. Then we found that the highest yield ofγ-PGA was11.02 g/L when the culture time reached 30 hours.
     Two pairs of degenerate primers was designed to be used to amplifythe partial fragment of pgsB from Bacillus subtilis ZJUTZY according tothe conservative regions of pgsB and the sequence of pgsB from Bacillussubtilis ZJU-7. A DNA band of 817bp was obtained when the latter one wasused. The DNA fragment had 99% identity with the pgsB from manyBacillus subtilis. Based on these results, it was confirmed that partial ofpgsB gene was successfully cloned from the Bacillus subtilis ZJUTZY.
引文
[1] Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly-gammaglutamatesynthesis. Applied Microbiology and Biotechnology, 2002, 59(1):9~14.
    [2] Ashiuchi M, Kamei T, Misono H. Poly-gamma-glutamate synthetase of Bacillussubtilis. Journal of Molecular Catalysis B-Enzymatic, 2003, 23(2-6):101~106.
    [3] Hezayen FF, Rehm BHA, Tindall BJ, et al. Transfer of Natrialba asiatica B1T toNatrialba taiwanensis sp nov and description of Natrialba aegyptiaca sp nov., anovel extremely halophilic, aerobic, non-pigmented member of the Archaea fromEgypt that produces extracellular poly(glutamic acid). International Journal ofSystematic and Evolutionary Microbiology, 2001, 51:1133~1142.
    [4] Ashiuchi M, Kamei T, Baek DH, et al. Isolation of Bacillus subtilis (chungkookjang),a poly-gamma-glutamate producer with high genetic competence. AppliedMicrobiology and Biotechnology, 2001, 57 (5-6): 764~769.
    [5] Ivanovics G., Bruckner V., Chemishe and immunologiche Studien uber denMechanismus der milzbrandinjektin and Immunitat; die chemische Struktur derKapselsubstanz des Milzbrandbazillus and der serologisch dentischenspezifischen Subtanz des Bazillus mesentericus[J]. Z. Immunitatsforsch, 1937. 90:304-318
    [6] Fujio Y., Distribution of plasmids in poly glutamate producing bacillus strainsisolated from "natto"-like fermented soybeans,“thua nao”,in Thailand[J]. Gen.AppL, 1986, 32(2): 241-249
    [7] Nagai, T., Koguchi K., and Itoh Y., Chemical analysis of poly-gamma-glutamic acidproduced by plasmid-free Bacillus subtilis (natto): Evidence that plasmids are notinvolved in poly-gamma-glutamic acid production[J]. J Gen Appl Microbiol, 1997,43(3): 139-143
    [8] Crescenzi V., Dentini, Aqueous solution properties of bacterial poly- -D-glutamate[J].ACS Symp.Ser., 1996, 627: 233-242
    [9] Rao M.V., Solution conformation of poly (L-lysyl-L-glutamic acid) and poly (Llysyl-L-glutamine) [J]. Int J Pept Protein Res, 1984, 24(1):48-54
    [10] Kim K.S., Graham N., Controlled elease behavior of prodrugs based on thebiodegradable poly (γ-glutamicacid) microspheres[J]. Polymer Journal, 1999, 31(5):813-816
    [11] Shih I.L., Van Y.T., The production of poly (γ-glutamic acid) from microorganismsand its various applications[J]. Bioresource Technology, 2001, 79: 207-225
    [12]杨革,陈坚,曲音波等,碳源和Mn2+对地衣芽孢杆菌Bacillus licheniformisWBL-3生产聚γ-谷氨酸的影响[J].化工学报,2002, 53(3): 317-320
    [13] Ashiuchi M., Misono H., Biochemistry and molecular genetics of poly-γ- glutamatesynthesis[J]. Appl Microbiol Biotechnol, 2002, 59: 9-14
    [14] Ashiuchi M., Nakamura H., Yamamoto T., Poly-γ-glutamate depolymerade ofBacillus subtilis: production, simple purification and substrate selectivity[J]. J MolCat B: Enzym, 2003, 23: 249-255
    [15] Mclean R.J.C., Beauchemin D, Clapham L, Metal-binding characteristics of thegamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945[J]. ApplEnviron Microbial, 1990, 59: 3671-3677
    [16] Mitsuiki M., Mizuno A., Tanimoto H., Relationship between the antifreeze activitiesand the chemical structures of oligo-and poly (glutamic acid)s[J]. J Agr Food Chem,1998, 46:891-895
    [17] Kunioka M., Choi H. J., Hydrolytic degradation and mechanical properties ofhydrogels prepared from microbial poly (amino acids) [J]. Polym Degrad Stabil,1998, 59: 33-37
    [18]黄金,陈宁,γ-聚谷氨酸的性质与生产方法[J],发酵科技通讯, 2005, 34(3):4-8
    [19] Sanda F., Fujiyama T., Endo T., Chemical synthesis of poly-gamma-glutamic acidby polycondensation of gamma-glutamic acid dimmer: synthesis and reaction ofpoly-gamma-glutamic acid methyester[J]. J Polym Science Part A-1, 2001,39(5):732-741
    [20]彭银仙,徐虹,陈国广等,新型药物载体聚谷氨酸的合成及其应用[J].中国新药杂志,2002, 11(7): 515-519
    [21] Green BD, Battisti L, Koehler TM, et al. Demonstration of a Capsule Plasmid inBacillus-Anthracis. Infection and Immunity, 1985, 49(2):291~297.
    [22] Candela T, Mock M, Fouet A. CapE, a 47-amino-acid peptide, is necessary forBacillus anthracis polyglutamate capsule synthesis. Journal of Bacteriology, 2005,187(22):7765~7772.
    [23] Ashiuchi M, Soda K, Misono H. A poly-gamma-glutamate synthetic system ofBacillus subtilis IFO 3336: Gene cloning and biochemical analysis of polygamma-glutamate produced by Escherichia coli clone cells. Biochemical andBiophysical Research Communications, 1999, 263(1):6~12.
    [24] Ashiuchi M, Nawa C, Kamei T, et al. Physiological and biochemical characteristicsof poly gamma-glutamate synthetase complex of Bacillus subtilis. EuropeanJournal of Biochemistry, 2001, 268(20):5321~5328.
    [25] Tarui Y, Iida H, Ono E, et al. Biosynthesis of poly-gamma-glutamic acid in plants:Transient expression of poly-gamma-glutamate synthetase complex in tobaccoleaves. Journal of Bioscience and Bioengineering, 2005, 100(4):443~448.
    [26] Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Molecular Microbiology,2006, 60(5):1091~1098.
    [27] Ashiuchi M, Tani K, Soda K, et al. Properties of glutamate racemase from Bacillussubtilis IFO3336 producing poly-gamma-glutamate. Journal of Biochemistry, 1998,123(6):1156~1163.
    [28]吴群,徐虹,许琳. Bacillus subtilis NX-2合成γ-聚谷氨酸的立体构型调控机理.过程工程学报, 2006, 6(3):458~461.
    [29] Troy FA. Chemistry and Biosynthesis of Poly(Gamma-D-Glutamyl) Capsule inBacillus-Licheniformis .1. Properties of Membrane-Mediated BiosyntheticReaction. Journal of Biological Chemistry, 1973, 248(1):305~315.
    [30] Eveland SS, Pompliano DL, Anderson MS. Conditionally lethal Escherichia colimurein mutants contain point defects that map to regions conserved among mureinand folyl poly-gamma-glutamate ligases: Identification of a ligase superfamily.Biochemistry, 1997, 36(20):6223~6229.
    [31] Urushibata Y, Tokuyama S, Tahara Y. Characterization of the Bacillus subtilisywsC gene, involved in gamma-polyglutamic acid production. Journal ofBacteriology, 2002, 184(2):337~343.
    [32] Mader U, Antelmann H, Buder T, et al. Bacillus subtilis functional genomics:genome-wide analysis of the DegS-DegU regulon by transcriptomics andproteomics. Molecular Genetics and Genomics, 2002, 268(4):455~467.
    [33] Sung MH, Park C, Kim CJ, et al. Natural and edible biopolymer poly-gammaglutamicacid: Synthesis, production, and applications. Chemical Record, 2005,5(6):352~366.
    [34] Stanley NR, Lazazzera BA. Defining the genetic differences between wild anddomestic strains of Bacillus subtilis that affect poly-gamma-DL-glutamic acidproduction and biofilm formation. Molecular Microbiology, 2005, 57(4):1143~1158.
    [35] Kimura K, Tran LSP, Do TH, et al. Expression of the pgsB Encoding the Polygamma-DL-glutamate Synthetase of Bacillus subtilis (natto). BioscienceBiotechnology and Biochemistry, 2009, 73(5):1149~1155.
    [36]游庆红,张新民,陈国广等,γ-聚谷氨酸的生物合成及应用[J].现代化工,2002,22(12): 56-59
    [37] Li C., Price J.E., Milas L., Antitumor activity of poly (L-glutamic acid)-paclitaxelon syngeneic and xenografted tumors[J]. Clin Cancer Res, 1999, 5(4):891-897
    [38] Auzenne E., Donato N.J., Li C., Superior therapeutic profile of poly-L- glutamicacid-paclitaxel copolymer compared with taxol in xenogeneic compartmentalmodels of human ovarian carcinoma[J]. Clin Cancer Res, 2002, 8(2):573-581
    [39]陈国广,陈茂伟,韦萍等,聚谷氨酸及其衍生物在新型药物传输系统中的应用[J].南京工业大学学报:自然科学版,2003, 25(2): 75-78
    [40]李崇辉,温守明,池木根等,肝靶向配体半乳糖基白蛋白和多PGA[J].生物化学与生物物理进展,1998, 25(6): 532-535
    [41] Shih I.L., Van Y.T., The production of poly (γ-glutamic acid) from microorganismsand its various applications[J]. Bioresource Technology, 2001, 79: 207-225
    [42]施庆珊,γ-聚谷氨酸的微生物合成与应用[J].精细与专用化学品,2004, 12(11):20-23
    [43] Choi H.J., KunioLca M., Preparation conditions and swelling eqlilibria of hydrogelprepared by Y-irradiation from microbial poly (γ-glutamic acid) [J]. Radiat PhysChem, 1995, 46(2): 175-179
    [44] Shih I.L., Van Y.T., The production of poly (γ-glutamic acid) from microorganismsand its various applications[J]. Bioresource Technology, 2001, 79: 207-225
    [45]施庆珊,许虹,林小平等,γ-多聚谷氨酸的微生物合成[J].生物技术,2004,14(1): 65-67
    [46]游庆红,张新民,陈国广等,γ-聚谷氨酸的生物合成及应用[J].现代化工,200222(12): 56-59
    [47]施庆珊,γ-聚谷氨酸的微生物合成与应用[J].精细与专用化学品,2004, 12(11):20-23
    [48] Konno A., Taguchi T., Yamaguchi T., Bakery products and noodles containingpolyglutamic acid[P]. US Patent : 4 888, 1988年9月3日.
    [49]姚俊,徐虹,生物絮凝剂γ-聚谷氨酸絮凝性能研究[J].生物加工工程,2004,2(1): 35-39
    [50]王传海,何都良,郑有飞等,保水剂新材料γ-聚谷氨酸的吸水性能和生物学效应的初步研究[J].中国农业气象,2004, 25(2): 19-22
    [51]张新民,游庆红,徐虹等,生物可降解型聚谷氨酸高吸水树脂的制备[J].高分子材料科学与工程,2003, 19(2): 203-205
    [52] Giannos S. A., Shah D., Gross R.A., The biosynthesis of unusual polyamidescontaining glutamic acid[J], ACS Polym Prepr, 1990, 31: 209
    [53] Yahata K., Sadanobu J., Endo T., Preparation of poly-benzyl-γ-glutamic acidfiber[J]. Polym Prepr Jpn, 1992, 42:1077
    [54]李东,孙家义.2,4-二硝基氟苯柱前衍生高效液相色谱法测定18种氨基酸[J].化学分析计量,2004,13(1):18-20
    [55] Paraskevas G., Atta-Politou J., Koupparis M., Spectrophotometric determination oflisinopril in tablets using 1-fluoro-2, 4-dinitrobenzene reagent[J]. Journal ofPharmaceutical and Biomedical Analysis, 2002, 29(5):865-872
    [56]周定,侯文华.固定化微生物法处理含酚废水的研究[J].环境科学,1990,11(1):2-6.
    [57]朱柱,李和平,郑泽根.固定化细胞技术中的载体材料及其在环境治理中的应用[J].重庆建筑大学学报,2000,22(5):95~101.
    [58]宋应民,殴富初.包埋法固定化微生物处理化工废水[J].广东化工,2006,8(33):68-70
    [59]桑莉.微生物发酵法生产γ-聚谷氨酸[D].南京;南京工业大学,2004
    [60] Qun Wu, Hong Xu, Pingkai Ouyang, et al. Improvement of poly(γ-glutamic acid)biosynthesis and redistribution of metabolic flux with the presence of differentadditives in Bacillus subtilis CGMCC 0833[J]. Appl Microbiol Biotechnol (2008)79:527–535
    [61] Sambrook J., Russel D.R.. Molecular Cloning: A laboratory manual (Cold SpringHarbor Laboratory Press, Cold Spring Harbor, New York, 2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700