用户名: 密码: 验证码:
γ-聚谷氨酸发酵及提取工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-聚谷氨酸(Poly-γ-glutamic acid;γ-PGA)是以L-、D-型谷氨酸为单体通过γ-酰胺键聚合而成的一种均聚氨基酸聚合物,可以通过微生物发酵生产获得。由于其具有良好的生物相容性、生物降解性、水溶性、无毒害无污染等优点,可作为生物絮凝剂、重金属吸收剂、保水剂、高吸水性树脂、食品添加剂、药物载体、药物缓释剂等广泛应用于环境、食品、化妆品、医药领域中,具有广阔的应用前景。本课题对γ-PGA产生菌的发酵条件优化、γ-PGA提取纯化和结构表征以及γ-PGA的初步应用进行了研究。主要研究结果如下:
     通过对培养基组分进行单因素实验和响应面实验分析,确定了菌株L536的最佳发酵培养基组成为(g/L):氯化钠15、豆粕53、柠檬酸钠16、谷氨酸钠40、氯化铵4.6、磷酸氢二钾0.625、硫酸镁1.25、硫酸锰0.35、氯化钙0.2。通过对接种量、发酵温度、初始pH值、溶氧量等培养条件的考察,获得了菌株L536的较优培养条件:接种量3%(V/V),发酵温度37℃,初始pH值pH7.0,摇瓶装液量35mL/250mL三角瓶,摇床转速200r/min,发酵时间48h左右。菌株L536在最佳培养基和较优培养条件下培养,发酵液的γ-PGA产量可达25.81g/L,比优化前提高了约1.5倍。
     对γ-PGA不同的水解方法进行比较,确定采用盐酸水解法,其最适水解时间为24h。研究乙醇法提取γ-PGA,确定乙醇的最适添加量为2倍体积,考察pH值对发酵液的粘度和γ-PGA提取的影响,最终确定γ-PGA的最佳提取路线。
     纯化样品经氨基酸分析仪分析纯度可达88.6%。纯化的γ-PGA样品经纸层析、紫外扫描和红外光谱扫描等方法进行初步分析,结果表明:γ-PGA样品是由谷氨酸单体聚合而成且其在215nm处吸收值达到最大,在260nm~280nm处没有明显的吸收峰,表明其没有典型的肽键结构。对照日本明治制药株式会社的γ-PGA标准品红外图谱,γ-PGA样品与标准品的特征吸收峰基本吻合,经图谱解析可以初步确定纯化样品为γ-聚谷氨酸
     以高岭土悬浊液为絮凝介质,研究了菌株L536产γ-PGA的絮凝特性。结果表明:在中性pH范围内、投加量为1.2g/L时,对高岭土的絮凝率达最大。Fe2+、Ca2+、Cu2+、Fe3+、Al3+均能不同程度地提高γ-PGA对高岭土的絮凝活性。其中, Ca2+的助凝效果最为显著,其最佳助凝浓度为0.09mol/L。另外,菌株L536产γ-PGA对于活性炭、Ca(OH)2也表现出较强的絮凝活性。另外,γ-PGA对于水果蔬菜的保鲜和土壤的保水具有一定的作用。
Poly-γ-glutamic acid was a compound of equal poly amino acid that consist of L- and D-glutamic acids throughγ-glutamyl bonds. Owing to its excellent characters including biocompatibility, biodegradability, non-toxicity and non-pollution,γ-PGA has been used in many areas such as environment, food, cosmetics and pharmaceutical.γ-PGA and its derivatives had a widely applications including being used as heavy metal absorber, bioflocculant, super absorbent polymers, food additive, drug carrier, sustained-release material and so on. The paper concentrated on the optimization of the strain L536’s culture medium and conditions, the separation and purification ofγ-PGA and the initial application ofγ-PGA. Main results were as follows:
     By single-factor experiments and response surface methodology, the culture medium and conditions of the strain L536 outputingγ-PGA were optimized. The optimum culture conditions were as follows (g/L): NaCl 15, soybean flour 53, sodium citrate 16, sodium glutamate 40, NH4Cl 4.6, K2HPO4 0.625, MgSO4·7H2O 1.25, MnSO4·H2O 0.35, CaC12·2H2O 0.2, inoculation amount 3%(V/V), temperature 37℃, initial pH 7.0, broth’s volume in shake flask 35mL/250mL, rotation speed of rocking bed 200r/min and culture time 48h. Under these condition, the yield ofγ-PGA was 25.81g/L, increased for about 1.5 times more than before.
     Compared the different methods of hydrolysis ofγ-PGA, the hydrochloric acid hydrolysis was adoptes and the optimum hydrolysis time was 24h. The optimum ethanol concentration was 2 times than the volume of fermentation broth. The effect of pH on the viscosity of fermentation broth and extraction ofγ-PGA was studied. Ultimately, the best route of extraction ofγ-PGA was determined.
     The concentration of pureγ-PGA was 88.6% by amino acid analyzers. By paper chromatography, UV and IR, the characterization of'γ-PGA was analyzed. The results showed that the polymer was only composed of glutamic acid. There was an absorption peak at 215nm by the UV scanning. The purifiedγ-PGA basically coincidented with that of the standardγ-PGA prepared by Meiji Pharmaceutical Co., Ltd through the IR chromatograph. It indicated the polymer wasγ-PGA.
     Flocculating conditions ofγ-PGA produced by Bacillus amyloliquefaciens L536 were investigated. The flocculating activity got highest at theγ-PGA concentration of 1.2g/ L and in the neutral pH. The flocculating activity was synergistically simulated by the addition of cations, Ca2+ was the optimum cation that remarkably promoted the flocculating activity. The results showed that the optimum flocculation conditions were CaCl2 of 0.09mol/L.γ-PGA had a high flocculating activity to some organic and inorganic suspension. In addition,γ-PGA can be used to keeping the fruits and vegetables fresh and increased the soil moisture.
引文
[1]董惠均,赵鹏,王卉等.均聚氨基酸及其应用[J].食品科学,2003,24:163-165
    [2] Shih I.L., Van Y.T. The production of poly(γ-glutamic acid) from microorganisms and its various applications[J]. Bioresource Technology, 2001, 79(3) : 207-225
    [3]杨革,陈坚,曲音波,等.细菌聚γ-谷氨酸表征的研究[J].高分子材料科学与工程, 2002,18:133-136
    [4] Kishida A., Kubota H., Endo T. Aqueous solution properties of bacterial poly-α-glutamate[J]. Bioact Compat Polym, 1998, 13: 270-273
    [5] Oppermann-Sanio F. B., Pickartz S., Steinbuchel A. Biodegatdation of polyamides[J]. Polym Degrad Stabil, 1998,59: 337-344
    [6] Perez-Camero G, Congregado F, Bou J. J., et al. Biosynthesis and ultrasonic degradation of bacterial poly(γ-glutamic acid)[J]. Biotechnol Bioeng, 1999, 63: 110-115
    [7] Zanuy D, Aleman C, Munoz-Guerra S. On the helical conformation of un-ionized poly(γ-D-glutamic acid)[J]. Int JBiol Macromol, 1998, 23: 175-184
    [8] Borbély M, Nagasaki Y, Borbély J, et al. Biosynthesisi and chemical modification of poly(γ-glutamic acid)[J]. Polymer Bull, 1994, 32: 127-132
    [9] Crescenzi V. D., Alagni M., Dentini M., et al. Aqueous solution properties of bacterial poly-γ-D-glutamate[J]. ACS Symp Ser, 1996, 627: 233-242
    [10] Ashiuchi M, Misono H. Biochemistry and molecular genetics of poly-γ-glutamate synthesisi[J]. Appl Microbiol Biotechnol, 2002, 59: 9-14
    [11] Tripathi C K M, Vinod Bihari, Tyagi R D. Microbial production of D-amino acids[ J]. Process Biochem, 2000, 35: 1247-1251
    [12] Krecz A., I.Pocsi, J.Borbely. Preparation and chemical modification of poly-gamma-L-glutmic acid[J]. Folia Microbiol (Praha), 2001, 46(3): 6-183
    [13]李玉宝.生物医学材料[B].北京:化学工业出版社,2003
    [14] Sandaf, Fujiyama T., Endo T. Chemical synthesis of polygamma glutamic acid by poly condensation of gamma glutamic acid dimmer: synthesis and reaction of poly gamma glutamic acid methyester[J]. PolymSciencePartA1, 2001, 39(5): 732-741
    [15]张富仓,康绍忠.BP保水剂及其对土壤与作物的效应[J].农业工程学报,1999,15(2):74-78
    [16] Bovarnick M. The formation of extracellular D(-) glutamic acid polypeptide byBacillus subtilis[J]. Biol.Chem, 1942, 145: 415-424
    [17] Goto A., Kunioka, M. Biosynthesis and hydrolysis of poly (γ-glutamic acid) from Bacillus subtilis IFO 3335[J]. Biosci. Biotechnol. Biochem., 1992, 56(7): 1031-1035
    [18] Kubota H., Matsunobo T, Uotani K, et al. Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01[J]. Biosci. Biotechnol. Biochem., 1993, 57(7): 1212-1213
    [19] Ogawa Y., Yamaguchi F., Tahara Y., et al. Efficient productionγ-polyglutamic acid by Bacillus subtilis (natto) in jar fermentors[J]. Biosci.Biotech.Biochem., 1997, 61: 1684-1687
    [20] Yoshihito I., Takeshi T., Tetsuo O., et.al. Glutamic acid independent production of poly(γ-glutamic acid) by Bacillus subtilis TAM-4[J]. Biosci. Biotechnol. Biochem., 1996, 60: 1239-1242
    [21] Cromwick A., Gross R.A. Effects of manganese (II) on Bacillus licheniformis ATCC 9945A physiology andγ-poly(glutamic acid) formation[J]. International Journal of Biological Macromolecules, 1995, 17(5): 259-267
    [22] Prasertsan P., Siriporn M.,Paradee M. Characterization of polyglutamic acid produced from thermotolerant bacterial isolates[J]. Inurnational Symposuim on the Bioconversion of Renewable Raw Materials, 25-29, September, 2000
    [23] Madla S., Poonsuk P., Pawadee M, et al. Screening of thermotolerant polymer producing bacteria and characterization of the polymers[C]. The 12th Annual Meeting of the Thai Society for Biotechnology“Biotechnology: Impacts &Trends”1-3, Nov, 2000
    [24]邵丽,刘建军,赵祥颖.一株产聚γ-谷氨酸菌株的筛选[J].山东食品发酵,2007, 4:5-7
    [25] Ashiuchi M, Kamei T, Baek D-H, et al. Isolation of Bacillus subtilis(chungkookjang), a poly-γ-glutamate producer with high genetic competence[J]. Appl.Microbiol Biotechnol, 2001, 57: 764-769
    [26] Ito Y,Tanaka T, Chmachi T et al. Glutamic acid independent production of poly(γ-glutamic acid)by Bacillus subtilis TAM-4[J]. Biosci Biotech Biochem, 1996, 60(8): 1239-1242
    [27] Kambourova M, Tangney M, Priest F G. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis[J]. Appl. Environ Microbiol, 2001, 67: 1004-1007
    [28] Ko Y., Gross R. Effects of glucose and glycerol on gamma-poly(glutamic acid)formation by Bacillus licheniformis ATCC 9945a[J]. Biotechnology and Bioengineering, 1998, 57(4): 430-437
    [29] Lu W K, Chiu T Y, Hung S H, et al. Use of response methodology to optimize culture medium for production of poly-γ-glutamic acid by Bacillus Lichenformis[J]. Int J Appl Sci, 2004, 2: 49-58
    [30] Richard, A.and A. Margaritis, Optimization of cell growth and poly(glutamic acid)production in batch fermentation by Bacillus subtilis[J]. BIOTECHNOLOGY LETTERS, 2003, 25(6): 465-468
    [31] Cromwick A-M, Gross R A. Int[J]. Biol.Macromol, 1995, 17: 259-267
    [32]杨革,陈坚,曲音波,等.碳源和Mn2+对地衣芽孢杆菌Bacillus licheniformis WBL-3生产聚γ-谷氨酸的影响[J].化工学报,2002,53(3):317-320
    [33] Gross R A, McCarthy S P, Shah D T. Gamma-poly(glutamic acid) esters[P]. US Patent, 5378807, 1995
    [34] Cromwick A. M, Birrer G.A., Gross R.A. Effects of pH and aeration onγ-poly(glutamic acid)formation by Bacillus licheniformis in controlled batch fermentor cultures[J]. Biotechnol.Bioeng. 1996, 50: 222-227
    [35]杨革.细菌聚γ-谷氨酸的研究[D].无锡:江南大学,2001
    [36] Do J., H.Chang, S.Lee. Efficient recovery of gamma-poly(glutamic acid) from highly viscous culture broth[J]. BIOTECHNOLOGY AND BIOENGNEERING, 2001. 76(3): 219-233
    [37] Kunioka M, Goto A. Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid,citric acid and ammonium sulfate in Bacillus subtilis IFO3335[J]. Appl Microbiol Biotechnol, 1994, 40: 867-872
    [38] Kanno A, Takamatsu H. Determination of poly(γ-glutamic acid) in“Natto”using cetytrimethylammonium bromide[J]. Nippon Shokuhin Kagaku Kaishi, 1995, 42 :878-886
    [39]张艳丽,高华,侯飞等.紫外分光光度法测定γ-聚谷氨酸的含量[J].青岛大学学报,2008,23(3):77-98
    [40] Keitarou Kimura, Yoshifumi Itoh. Characterization of poly-glutamate hydrolase encoded by a bacteriophage genome:possible role in phage infection of Bacillus subtilis encapsulated with poly-glutamate[J]. Applied and Environmental Microbiology, 2003, 69(5): 2491-2497
    [41] Birrer GA, Cronwick A-M.γ-Poly(glutamic acid) formation by Bacillus licheniformis: physiological and biochemical studies[J]. Int J Biol Macromol, 1994, 16: 265-275
    [42]汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000,77-101
    [43] Kazunori, S., T.Sakakibara, E.Ogawa. Molecular weight determination of star polymers and star block coplymers using GPC equipped with low-angle laser light-scattering[J]. POLYMER SCIENCE SERIES A, 2002, 43(20): 5447-5453
    [44] Kubota H., Nambu Y., Takeshi Endo. Alkaline hydrolysis of poly(? -glutamic acid) produced by Microorganism[J]. Polym Sci, Part A: Polym Chem., 1996, 34: 1347-1351
    [45] Isabel Irurzun, Jordi J.Bou, Mu?oz-Guerra, et al. Mark-Houwink Parameters of Biosynthetic Poly(γ-glutamic acid) in Aqueous Solution[J]. Maceomol. Chem.Phys, 2001, 202(17): 3253-3256
    [46]安虎仁,顾夏生,钱易.关于有机物生物降解性能测定方法选择的几点探讨[J].环境科学与技术,1994,4:47-50
    [47] Takao Suzuki, Yasutaka Tahara. Characterization of the Bacillus subtilis ywtD gene,whose product is involved in polyglutamic acid degradation[J]. Bacteriod, 2003, 185: 2379-2382
    [48] S R法内斯托克,编.李荣秀,译.生物高分子[M].北京:化学工业出版社,2004:115-153
    [49] Kunioka M. Biosynthesis and chemical reactions of poly(γ-glutamic acid) from microorganisms[J]. Microbiol Biotechnol, 1997, 47: 469-475
    [50] Kesuo Fan, Denis Gonzales, Martin Sevoian. Hydrolytic and enzymic degradation of poly(γ-glutamic acid) hydrogels and their application in slow-release systems for proteins[J]. Journal of Environmental Polymer Degradation, 1996, 4(4): 253-260
    [51]何小兵,王庭慰,徐虹等.生物合成聚γ-谷氨酸的酯化改性国外研究进展[J].精细化工,2002,19(11):636-639
    [52] Kubota H, Nambu Y, Endo Takeshi. Convenient and quantitative esterfication of poly(γ-glutamic acid) produced by microorganism[J]. Polym Sci, Part A: Polyn Chem, 1993, 31(11): 2877-2878
    [53] Shah D T, McCarthy S P, Gross R A. Gamma-poly(glutamic acid) esters[J]. ACS Polym Prep, 1993, 488
    [54] JoséMelis Margarita Morillo, Antxon Marínez de Ilarduya, Muňoz Guerra S. poly(α-alky (γ-glutamate)s of microbial orgin:Ⅰ.Ester deribatization of poly((γ-glutamic acid) and themal degradation[J]. Polymer, 2001 ,42: 9319-9327
    [55] Muňoz-Guerra S, Melis J, Pérez Camero G, et al. Poly(γ-glutamic acid) esters: Synthesisi and structure[J]. Polymer Prerints,American Chemical Society, Divisionof Polymer Chem, 1998, 39(2): 138-139
    [56] Margarita Morillo, Antxon Marínez de Ilarduya, Muňoz-Guerra S. Comblike alkyl esters of biosynthetic poly(γ-glutamic acid).Ⅰ.Synthesis and characterization[J]. Macromolecules, 2001, 34: 7868-7875
    [57] Lin Wen-Ching, Yu Da-Guang,Yang Ming-chien. Blood compatibility of novel poly(γ-glutamic acid)/polycinyl alcohol hydrogels[J]. Colloids and Surfaces B:Biointerfaces, 2006, 47(1): 43-49
    [58] Hsieh Chien-Yang, Tsaia Sung-Pei, Wang Da-Ming, et al. Preparation ofγ-PGA chitosan composite tissue engineering matrices[J]. Biomaterials, 2006, 26 (28): 5617-5623.
    [59] Rodriguez D E, Romero-Garcia J, Ramirez-Vargas E, et al. Synthesis and swelling characteristics of semi-interpenetrating polymer network hydrogels composed of poly (acrylamide) and poly (γ-glutamic acid) [J]. Materials Letters, 2006, 60(11): 1390-1393.
    [60] Choi H J, Kunioka M. Preparation condition and swelling equilibria of hydrogel prepared byγ-irradiation from microbial poly (γ-glutamic acid)[J]. Radiat Phys Chem, 1995, 46: 175-179
    [61] Michiya Matsusaki, Takeshi Serizawa, Akio Kishida, et al. Novel functional biodegradable polymer:Synthesis and anticoagulant activity of poly (γ-glutamic acid) sulfonate (γ-PGA-sulfonate) [J]. Bioconjugate Chem, 2002, 13(1): 23-28
    [62] JoaéA Portilla-Arias, Montserrat Garcia-Alvarez, Antxon Martines de Ilarduya, et al. Thermal decomposition of microbial poly(γ-glutamic acid)and poly (γ-glutamate)s[J]. Polymer Degradation and Stability, 2007, 92(10): 1916-1924
    [63] Yang Suizhou, Li Lian, Ashok L Cholli, et al. Azobenzene-modified poly (L-glutamic acid) (AZOPL GA): Its conformational and photodynamic properties[J]. Biomacromolecules, 2003, 4(2): 366-371.
    [64] Avichezer D., Arnon R. Functional polycarboxylates-effect on human ovarian carcinoma[J]. React.Funct. Polym, 1998, 36(1): 59-69
    [65]徐凤华,蒋雪涛,主皓.均匀设计优化聚谷氨酸与表阿霉素的交联条件[J].中国医院药学杂志,1998,(5):214-215
    [66]徐凤华,蒋雪涛,主皓,等.PGA-表阿霉素的稳定性研究[J].解放军药学学报,1999,15(6):37-40
    [67] Hideki H, Makiya N, Yoshinobu T, et al. Development and pharmacokinetics of galactosylated poly-L-glutamic acid as abiodegradable carrier for liver specific drug delivery[J]. Pharm Res, 1996, 13(6): 880-884
    [68] Peter RB, Zhuang S, H irokazu K, et al. Solute absorption from the airways of the isolated rat lung.Ⅳ.mechanisms of absorption offluorophore-labeled poly-αβ-[N (2-hydroxyethyl)-DL-aspartamide][J]. Pharmaceutical Research, 1994, 11(2): 221
    [69] Rama Bhatt, Peter de Vries, et al. Polyglutamic acid-camptothecin conjugates and motheds of preparation[P]. US patent: 2002/016285 A1
    [70] P Markland, Gordon L. Modified polypeptides containingγ-benzyl glutamic acid as drug delivery platforms[J]. Internation journal of pharmaceutics, 1999, 178 (3): 183-192
    [71]冯敏,潘仕荣,吴伟荣.聚α-氨基酸黄体酮微球的制备及释药研究[J].中国药科大学学报,2001,32(4):253-256
    [72] Hashida M, Akamatsu K, Nishikawa M, et al. Design of polymeric prodrugs of PGE1 for cell-specific hepatic targeting[J]. Pharmazie, 2000, 55(3): 202-205
    [73] Iwata H., Mitsuhashi K., Novel surgical glue composed of gelatin and N-hydroxysuccinimide activated poly(L-glutamic acid): Partl.Synthesis of activated poly(L-glutamic acid) and its gelation with gelatin. Biomaterials, 1998, 19(20): 1869-1876
    [74] Otani Y., Ikada Y. Sealing effect of rapidly curable gelatin-polyγ(L-glutamic acid) hydrogel glue on lung air leak[J]. Ann Thorac Surg, 1999. 67(4):922-926
    [75] Otani Y., Tabata Y., Ikada Y. Rapidly curable biological glue composed ojgelatin and poly(L-glutamic acid)[J]. Biomaterials, 1996, 17(14): 1387-1391
    [76] Otani Y., Ikada Y. Hemostatic capability of rapidly curable glues from gelatin poly(L-glutamic acid) and carbodiimide[J]. Biomaterials, 1998, 19(22): 2091-2098
    [77] Sekine T., et al. A new type of surgical adhesive made from porcine collagen and polyglutamic acid[J]. Biomed Mater Res, 2001, 54(2): 305-310
    [78] Oldham, E. A., et al., Comparison of action of paclitaxel and poly(L-glutamic acid) paclitaxel conjugate in human breast cancer cells[J]. Int J Oncol, 2000, 16(1): 125-132
    [79] Schechter B., WiLchek M. Soluble polymers as carriers of cis platinum[J]. Controlled Release, 1993, 10(1): 75-87
    [80] Dekie L., et al. Poly-L-glutamic acid derivatives as vectors for gene therapy[J]. Control Release, 2000, 65(1-2): 187-202
    [81] Kawashima Y., Niwa T., Takeuchi H. Preparation of multiunit hollow microspheres (microballoo) with acrylic resin containing tranilast and their drug release characteristics (in vivo)[J]. Controlled Release, 1991, 16(2): 279-290
    [82] Mitsuiki M, Akinori Mizuno. Relationship between the antifreeze activities and thechemical structures of oligo-and poly(γ-glutamic acid)[J]. Agric Food Chem, 1998, 46: 891-895
    [83] Tanimoto H., Mori M., Motoli M., et al. Natto mucilage containing polyγ-glutamic acid increases soluble calcium in the rat small intestine[J]. Biosci Biotechnot Biochem, 2001, 65: 516-521
    [84] Sakai K, Sonoda C, Murase K. Bitterness relieving agent[P]. JP patent: 021390, 2000-04-20
    [85] Shinh I L, Van Y T, Yeh L C, et al. Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties[J]. Bioresource Techinology, 2001, 78: 267-272
    [86] Yamanaka S. New gamma-polyglutamic acid, production therefore and drinking agent containing the same[P]. JP: 3047087, 1991
    [87]何观辉.聚谷氨酸与聚谷氨酸水胶-化妆品原料家族中的新“明星”[J].中国化妆品,2006,11:18-19
    [88]王文芹,孔玉涵.γ-聚谷氨酸生产技术及应用[J].发酵科技通讯,2006,35:16-17
    [89] Fumio Sanda, Taizo Fujiyama, Takeshi Endo. Chemical Synthesis of Poly-α-glutamic Acid by Polycondensation ofα-Glutamic Acid Dimer: Synthesis and Reaction of Poly-α-glutamic Acid Methyl Ester[J]. Polym Sci, Part A: Polym Chem., 2001, 39: 732-741
    [90] Tsubokawa N., Inagaki M., Kubota H., et al. Production of poly(α-glutamic acid) by Bacillus subtillis F-2-01[J]. Polym Sci, Part A: Polym Chem., 1993, 31: 3193- 3197
    [91] Veronse F. M., Ceriotli G., Calicets P. Slow release of narciclasine from matrixes obtained by radiation-induced polymerization[J]. Controlled Release, 1991, 16: 291-293
    [92] Markus P?tter, Fred Bernd, Oppermann-Sanio,et al. Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source [J]. Applied and Environmental Microbiology, 2001, 67(2): 617-622
    [93] Gonzales D, Fan K, Sevoian M. Synthesis and swelling characterizations of a poly-(gamma-glutamic acid) hydrogen[J]. polym Sci PartA: polym chem, 1996, 34: 2019-2027
    [94] Karasawa M, Tanimoto S, et.al. The use of poly-gamma-glutamic acid for preparing an agent for increasing the gamma-glutamic acid for preparing an agent for increasing the phosphorus assimilation[P]. EP: 0838160, 1998
    [95] Dearfield K L, Abermathy C O. Acrylamide: its metabolism developmental andreproductive effects, genotoxicity, and carcinogenicity[J]. Mutant Res, 1998, 195: 45-47
    [96]姚俊,徐虹.生物絮凝剂γ-聚谷氨酸絮凝性能研究[J].生物加工过程, 2004,02,2(1):35-39
    [97] Bhattaharyya D, Hestekin J A. Novel poly-glutamic acid functionalized microfiltration membranes for sorption of heavy metals at high capacity[J]. Membrane Sci, 1998, 141: 121-135
    [98] Kunioka M, Furusawa K. Poly(γ-glutamic acid) hydrogel prepared from microbial poly(γ-glutamic acid) and alkane diamine with water soluble carbodiimide[J]. Appl Polym Sci, 1997, 65: 1889-1893
    [99] Tanimato H, Mori M, Motoki M, et al. Natto mucilage containing poly(γ-glutamic acid)increases soluble calcium in the rat small intestine[J]. Biosci Biotechnol Biochem, 2001, 65: 516-521
    [100]程艳玲,赵玉娥,王海玉.生物降解型聚谷氨酸的研究进展[J].北京联合大学学报(自然科学版),2008,06,22(2):45-49
    [101]赵艳霞,杨爱侠,李军,等.聚谷氨酸修饰电极同时测定多巴胺和肾上腺素[J].化学传感器,2005,09,25(3):38-42
    [102] Tachaboonyakiat W, Serizawa T, Endo T et al. The influence of molecular weight over the ultrathin films of biodegradable polyion complexes between chitosan and poly(γ-glutamic acid)[J]. Polym J, 2000, 32 :481-485
    [103]褚以文.微生物培养及优化方法及其OPTI优化软件[J].国外医药抗生素分册,1999,03,20,(2):58-60.
    [104]郝学财,余晓斌,刘志钰等.响应面方法在优化微生物培养基中的应用[J].食品研究与开发,2006,27(1):38-41
    [105] Box G P, Behnken D W. Some new three level design for the study of quantitative variables[J]. Technometrics, 1960, 2: 456-475
    [106]马晓娜.聚γ-谷氨酸的产生菌筛选发酵及絮凝性研究[D].北京:中国农业大学,2004
    [107]李大力,詹长娟,郑丽,等.盐浓度对纳豆芽孢杆菌发酵产γ-聚谷氨酸影响的研究[J].化学与生物工程,2007,24(2):50-51,72
    [108] Kunioka. Biosythesis of poly(gamma glutamic acid) from L-glutamin citric acid and ammonium sulfate in Bacillus subtilis IFO 3335[J]. Appl Microbiol Biotechnol, 1995, 44(3): 501-506
    [109] Dimitrios G.Hatzinikolaou, Henry Y.Wang. Communication to the Editor Quautitative Evaluation of the pH Profile in organic acid fermentations[J].Biotechnology and Bioengineering., 1991, 37: 190-195
    [110] Jin H, Ho N. C., Sang Y. L. Efficient recovery ofγ-poly (Glutamic acid) from highly viscous culture broth[J]. Biotechnol.Bioeng, 2001, 76: 219-223
    [111] Ashichi,M., K.Tani, S. K, Properties of glutamate racemase from Bacillus subtilis IFO3336 producing poly-γ-glutamate[J]. Biochem, 1998, 123(6): 1156-1163
    [112]惠明.枯草芽孢杆菌B53的分离鉴定及产聚γ-谷氨酸的研究[D].北京:中国农业大学,2005
    [113]王虹.γ-聚谷氨酸及其在水处理中的应用[J].化工时刊,2009,23(2):59-61
    [114]张惟杰主编.糖复合物生化研究技术[M].(第二版),杭州:浙江大学出版社, 1998:10-12
    [115]吴平主编.食品分析[M].北京:中国轻工业出版社,2005:93-94
    [116]万红贵,何小兵,王庭慰,等.生物合成聚γ-谷氨酸的结构表征[J].精细化工,2004, 07,21(7):493-495
    [117]白京生.微生物絮凝剂的研究发展及应用[J].天津化工,2005,19(3):12-14
    [118]张毅,汪新,邱乐泉,等.Bacillus subtilis ZJUTZY产γ-聚谷氨酸的分子量分布及其絮凝特性研究[J].浙江工业大学学报,2008,36(6):647-650
    [119]何宁,李寅,陆茂林,等.生物絮凝剂的絮凝条件[J].无锡轻工大学学报,2001,20(3):248-251

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700