用户名: 密码: 验证码:
透明颤菌血红蛋白在产聚γ-谷氨酸地衣芽胞杆菌WX-02中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚γ-谷氨酸(polyγ-glutamic acid;γ-PGA)是一种应用前景良好的生物高分子材料。地衣芽胞杆菌(Bacillus licheniformis)WX-02是γ-PGA的产生菌,其发酵液由于较粘稠而导致溶氧很差,溶氧成为γ-PGA产量提高的限制性因素之一。透明颤菌血红蛋白(VHb)是一种来源于原核生物的氧结合蛋白。本研究旨在B.licheniformisWX-02中表达透明颤菌血红蛋白基因(vgb)来改善其发酵过程中氧的利用效率,进而改善菌体生长,提高产量。
     本研究构建了能整合于芽胞杆菌染色体上的表达载体pDG1730-vgb,其含有芽胞杆菌α-淀粉酶基因的整合位点,通过Spizizen感受态转化导入B.licheniformisWX-02中,PCR验证表明vgb成功整合到其染色体上;经CO差光光谱分析,重组菌株B.licheniformis M2有VHb表达活性;摇瓶发酵实验结果显示,摇床转速为180r/min,发酵36 h的条件下,250 mL三角瓶中发酵液装液量为50 mL时,M2的生物量和γ-PGA产量分别为4.5 g/L和27.71 g/L,高于出发菌株WX-02 6.43%和6.74%;装液量为100 mL时,M2发酵的生物量和γ-PGA产量分别为4.17 g/L和26.59g╱L,高于出发菌株WX-02 15.02%和21.7%。vgb的表达促进了菌体和γ-PGA产量的增长,产物比生物量的增长明显,促进效果随着供氧条件的降低而增加。3 L发酵罐分批发酵结果显示,搅拌转速为600 r/min,通气量为2 L/min时,M2的生物量(OD_(600))达到7.39,比出发菌株WX-02提高了25.5%,γ-PGA产量达到33.5g╱L,比WX-02提高了20%,进一步证实VHb蛋白的表达对γ-PGA产量和菌体生长的促进作用。
     整合载体pDG1730-vgb在高产γ-PGA的枯草芽胞杆菌W003中的整合表达已有初步结果,本研究还构建了另一个整合载体psacB-vgb,含有枯草芽胞杆菌果聚糖酶基因(sacB)的整合位点,其在高产γ-PGA的枯草芽胞杆菌W003中的整合表达有待进一步研究。
Polyγ-glutamic acid(γ-PGA) is a biopolymer material that has potential applications in a wide range of industry and agriculture.Bacillus licheniformis WX-02 is a kind of areobacterium that can produceγ-PGA,the accumulation ofγ-PGA in the culture medium causes a significant viscosity increase that reduces dissolved oxygen(DO) in the fermentation broth.As a result,DO becomes one of the restricted factors that affects the increase ofγ-PGA yield and biomass.Vitreoscilla hemoglobin(VHb) is an oxygen-binding proteins of prokaryotic origin.This study was carried out to improve the transmission of oxygen by expression of Vitreoscilla hemoglobin gene(vgb) in Bacillus licheniformis WX-02 in order to promote synthesis ofγ-PGA and cell growth.
     An homologous recombination expression vector pDG1730-vgb which contains theα-amylase gene(amyE) for chromosomal intergration,was introduced into Bacillus licheniformis WX-02 by Spizizen natural genetic transformention,PCR analysis indicated that vgb has been successfully intergrated into the chromosome;CO binding difference spectrum analysis revealed the recombinate strain Bacillus licheniformis M2 has expressed Vitreoscilla hemoglobin with bio-activation;Shask flask fermentation experiments preliminarily showed that:the strains was cultivated at 37℃,180 r/min for 36 h,the biomass andγ-PGA yield of M2 were 4.5 g/L and 27.71 g/L,which were 6.43%and 6.74%higher than those of WX-02 when 50mL culture broth was in the 250 mL flask, comparatively the biomass andγ-PGA yield of M2 were 4.17 g/L and 26.59 g/L,then 15.02%and 21.7%higher than WX-02 with 100mL culture broth in the 250 mL flask, these results demonstrate the biomass andγ-PGA yield was improved by the vgb expression,and the increase on the latter were more obvious.The improve effects were enhanced following the oxygen supply decreased.It was shown by the results of batch cultures in a 3 L bioreactor that biomass andγ-PGA obtained in the recombinant M2 were 25.5%and 20%higher than those of the control respectively when agitation speed was 600 r/min and ventilation volume was 2 L/min,which further comferms the positive promotion effects of VHb on cell growth andγ-PGA producing.
     Another integrative expression vector psacB-vgb which contains the levansucrase gene(sacB) for chromosomal intergration was constructed,it will be integrated into the chromosome of Bacillus subtilis 003 in the next experimentation.
引文
1.陈守文,喻子牛,陈雄,蔡皓,柯云,孙明,何进.聚谷氨酸作为肥料吸收促进剂在农业种植中的应用.中国专利,200610018395.3.2006-09-06
    2.陈涛,王靖宇,班睿,赵学明.枯草芽胞杆菌感受态研究新进展.生命的化学,2004,24(2):130-134
    3.陈文青.透明颤菌血红蛋白基因在弗氏链霉菌中的克隆与表达.[硕士学位论文].武汉:华中农业大学,2004
    4.陈雄.枯草芽胞杆菌高产聚γ-谷氨酸及其应用研究.[博士学位论文].武汉:华中农业大学,2005
    5.陈咏竹,孙启玲.γ-多聚谷氨酸的性质、发酵生产及其应用.微生物学通报,2004,31(1):122-126
    6.邓兵兵,熊凌霜.外源蛋白在芽胞杆菌中分泌表达的研究进展.生物工程进展,2000,20(5):62-66
    7.范楠,李炎,周全,陈国强.透明颤菌血红蛋白的表达对酵母中麦角固醇合成的影响.生物工程学报,2004,20(3):441-444
    8.冯静,施庆珊,疏秀林,欧阳友生,陈仪本.透明颤菌血红蛋白研究进展及其在芽胞杆菌属中的应用.化学与生物工程,2007,24(11):5-8
    9.冯亮.透明颤菌血红蛋白在苏云金芽胞杆菌中的表达及其对菌株的影响.[博士学位论文].武汉:华中农业大学,2006
    10.郜培,陆静波,段作营,毛忠贵,史仲平.溶氧浓度对谷氨酸发酵关键酶的影响食品与发酵工业,2005,31(10):72-75
    11.郭宏秋,杨胜利.透明颤菌血红蛋白在发酵工业中的应用概述.微生物学通报,1996,23(4):227-230
    12.韩聪,张惟材,游松.Red同源重组技术研究进展.中国生物工程杂志,2003,23(12):17-21
    13.韩峰,褚艳,于文功.低温培养对大肠杆菌电穿孔转化效率的影响.高技术通讯,2003,9:30-34
    14.贺鹃,卢大军,王钦宏,沈安,江宁.细菌血红蛋白基因在产D-阿拉伯糖醇酵母菌中的克隆与表达.微生物学报,2001,41(3):315-319
    15.惠明.枯草芽胞杆菌B53的分离鉴定及产聚γ-谷氨酸的研究.[博士学位论文].北京:中国农业大学,2005
    16.江昊.聚γ-谷氨酸在枯草芽胞杆菌和大肠杆菌中的生物合成.[博士学位论文].武汉:华中农业大学,2007
    17.江曙,陈代杰,戈梅,黄为一.透明颤菌血红蛋白基因在吸水链霉菌NND-52-C中的克隆与 表达.南京农业大学学报,2004,27(4):60-63
    18.李兵,周艳芬,何叶喧,赵晓瑜,朱宝成.CO差光谱法分析重组火肠埃希菌及产黄青霉中VHb的活性表达.中国抗生素杂志,2005,30(5):267-269
    19.李兵.透明颤菌血红蛋白基因在产黄青霉中的克隆与表达.[硕士学位论文].河北:河北大学,2005
    20.李林,邵宗泽,喻子牛.电脉冲法转化苏云金芽胞杆菌BMB171的研究.微生物学通报,2000,27(5):331-334
    21.李林.苏云金芽胞杆菌高频转化系统的建立及其性能.[博士学位论文].武汉:华中农业大学,1999
    22.林宛儒.透明颤菌血红蛋白表现对枯草杆菌菌体生长及生产聚谷氨酸之效应.[硕士学位论文].台湾:台湾科技大学,2005
    23.凌华云,闵勇,熊伟.斑贝链霉菌接合转移系统的构建及透明颤菌血红蛋白基因的表达对其次级代谢的影响.微生物学通报,2006,33(5):59-64
    24.龙海英,刘衡川,方梅.质粒消除方法及消除效果的评价研究.中国卫生检验杂志,2007,17(3):413-415
    25.卢永忠.透明颤菌血红蛋白在工程菌发酵中应用的研究.[硕士学位论文].军事医学科学院生物工程研究所,1999
    26.陆树云,姚俊,徐虹,李莎.聚谷氨酸批式生物合成的主要影响因素研究.生物加工过程,2006,4(1):65-69
    27.孟春,叶勤,邱荔,石贤爱,苏文金,郭养浩.透明颤菌血红蛋白基因表达对金色链霉菌生长代谢的影响.微生物学报,2002,42(4):418-424
    28.牛丹丹.高温酸性α-淀粉酶基因的定向突变及在地衣芽胞杆菌中的表达.[硕士学位论文].无锡:江南大学,2005
    29.任立明,陈永福.用随机整合法在芽胞杆菌中表达高温α-淀粉酶基因.农业生物技术学报,1994,2(1):50-55
    30.萨姆布鲁克,弗里奇,曼尼阿蒂斯.分子克隆实验指南.第三版.黄培堂,等译.北京:科学出版社,2002,26-130
    31.孙明,乐超颖,喻子牛.苏云金芽胞杆菌转座子整合载体的构建.农业生物技术学报,2000,8(4):321-325
    32.索晨.产γ-聚谷氨酸的地衣芽胞杆菌菌株选育及其发酵条件优化和产物分离.[硕士学位论文].浙江:浙江大学,2006
    33.唐雪明,邵蔚蓝,王正祥,方惠英,诸葛健.地衣芽胞杆菌感受态细胞的形成及高效电转化.生物技术,2002,12(4):13-15
    34.王大威,胡鸢雷,刘永建,林忠平.透明颤菌血红蛋白基因在提高枯草芽胞杆菌产脂肽功能中的研究.生物技术通讯,2007,5:116-127
    35.王磊,周新宇,唐上华,任大明.耐高温α-淀粉酶基因在枯草杆菌染色体上的整合、扩增 及表达的研究.工业微生物,1998,28(1):7-12
    36.王丽萍,彭德奎,陈守文.枯草芽胞杆菌重组木聚糖酶基因高效表达系统的构建.农业生物技术学报,2007,15(1):133-137
    37.王清路,张锐,倪万潮,陈毓荃,郭三堆.透明颤菌血红蛋白基因vgb和腈水解酶基因bxn在毕赤酵母中的表达研究.生物工程学报.2004,20(5):730-735
    38.文莹,李季伦.透明颤菌血红蛋白在阿维链霉菌中的表达.微生物学报,2000,40(1):50-56
    39.文莹,宋渊,李季伦.透明颤菌血红蛋白在肉桂地链霉菌中的表达及其对细胞生长及抗生素合成的影响.生物工程学报,2007,17(1):24-28.
    40.吴奕,杨胜利.透明颤菌血红蛋白的表达及对基因工程菌的影响.生物工程学报,1996,12(2):177-182
    41.吴奕,杨胜利.透明颤菌血红蛋白基因调控与功能的研究.生物工程学报.1997,13(1):1-5
    42.吴奕,杨胜利.整合型vgb基因载体的构建和研究.生物工程学报,1996,12(3):276-283
    43.谢承佳,何冰芳,李霜.基因敲除技术及其在微生物代谢工程方面的应用。生物加工过程,2007,5(3):10-14
    44.谢志雄,陈向东,陈琪,沈萍.细菌感受态细胞摄取和分泌DNA的相关性研究,Ⅰ含有质粒的枯草芽胞杆菌自然感受态缺陷突变株的诱变和分离.遗传,1999,21(1):23-25
    45.杨革,陈坚,曲音波,伦世仪.细菌聚γ-谷氨酸溶液流变性能的研究.高分子学报,2002,3:345-348)
    46.杨革,刘艳,李桂芝.溶氧及pH对地衣芽胞杆菌合成聚γ-谷氨酸的影响.应用与环境生物学报,2006,12(6):850-853.
    47.杨革.细菌聚谷氨酸的研究.[博士学位论文].无锡:江南大学,2001
    48.杨雅婷.来源于枯草芽胞杆菌的中温α-淀粉酶基因的克隆及在原核微生物中的表达.[硕士学位论文].山东:山东师范大学,2007
    49.杨运桂,张惠堂,童芹,杨艳华,王又,杨胜利,龚毅.新型高密度发酵基因工程菌G830.生物化学与生物物理学报,2001,33(3):296-302
    50.应明.产核黄素枯草芽胞杆菌ccpA基因敲除及其发酵特性的研究.[博士学位论文].天津:天津大学,2005
    51.于慧敏,沈忠耀.透明颤菌血红蛋白及其基因的研究进展.微生物学报,1999,39(5):478-482
    52.于慧敏,史悦,沈忠耀.透明颤菌血红蛋白的分离纯化与分析检测.中国生物工程杂志,2003,23(4):94-98
    53.于慧敏,史悦,张延平,杨胜利,沈忠耀.透明颤菌血红蛋白基因在产PHB重组大肠杆菌中的引入.微生物学报,2001,41(5):548-552
    54.余河斌,余少文,汤新,张煜,邢苗.血红蛋白基因在产CBH Ⅱ毕赤酵母工程菌中的表达.生 物技术,2007,17(4):25-29
    55.余志强,杨明明,杨朝霞,林峰,张西锋,张炜炜,樊俊华,姜发堂.同源重组法构建枯草杆菌spoOA基因缺失突变株.武汉大学学报(理学版),2004,50(2):229-233
    56.俞俊棠,唐孝宣.生物工艺学(下册).第二版.华东理工大学出版社,1992
    57.张风豪,王海燕,何明雄.利用血红蛋白基因提高短小芽胞杆菌在低氧条件下的碱性蛋白酶产量.高技术通讯,2007,17(7):755-760
    58.张锋,赵晓瑜,周艳芬.低氧诱导透明颤菌血红蛋白基因在大肠杆菌中的表达.华北农学报,2006,21(增刊):20-22
    59.张立国,罗人明,周集体,吕红,杜进民,郭建博,罗晓,王晓磊.透明颤菌血红蛋白基因克隆及在紫色非硫细菌中的表达.河北工业科技,2008,25(1):1-4
    60.张晓舟.新型表达系统和遗传操作体系的建立及应用.[博士学位论文].南京:南京农业大学,2006
    61.张玉军,孔浩,王斌.透明颤菌血红蛋白对毕赤酵母菌体密度及表达的影响.西北农业学报,2008,17(1):88-91
    62.章银梅,李心治,黄凡,党本元,范树田.血红蛋白基因在枯草芽胞杆菌中的表达及其作用的研究.遗传学报.2000,27(2):183-188
    63.周艳芬,赵晓瑜,张玉,冯书亮,王容燕.透明颤菌血红蛋白基因在苏云金杆菌中的表达.河北大学学报(自然科学版),2006,26(1):33-37
    64.Anne M C,Gregory A B,Richard A G.Effects of pH and aeration on γ-poly(glutamic acid)formation by Bacillus licheniformis in controlled batch fermentor cultures.Biotechnology and Bioengineering,1996,50:222-227
    65.Aono R.Characterization of structural component od cell walls of alkalophilic strain of Bacillus sp.C-125.Journal Biochemistry,1987,245:467-472
    66.Ashiuchi M,Kamei T,Back D H,et al.Isolation of Bacillus subtilis(chungkookjang) a poly-γ-glutamate producer with high genetic competence.Applied Microbiology Biotechnology,2001,57:764-769
    67.Ashiuchi M,Shimanouchi K,Horiuchi T,Kamei T,Misono H.Genetically engineered poly-γ-glutamate producer from Bacillus subtilis ISW1214.Biosci.Biotechnology Biochemistry,2006,70(7):1794-1797
    68.Ashiuchi M,Soda K,Misono H.A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO3336:gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells.Biochemistry Biophysical Research,1999,263:6-12
    69.Ashiuchil M,Nawa C,KameilT,Song JJ,Hong SE Sung MH,Soda K,Yagi T & Misono H.Physiological and biochemical characteristics of poly-glutamate synthetase complex of Bacillus subtilis.European Journal of Biochemistry,2001,268:5321-5328
    70.Babu K R,Satynarayana T,α-amylase production by thermophilic Bacillus coagulans in solid-state fermentation.Process Biochemistry,1996,30:305-309
    71.Brans A,Filee P,ChevigneA,Claessens A,Joris B.New integrative method to generate Bacillus subtilis recombinant strains free of selection markers.Applied and environmental microbiology,2004,70(12):7241-7250
    72.Chol M G,Webster D A,Caughey W S.Oxygenated intermediate and carbonyl species of cytochrome(Vitreoscilla).Characterization by infrared spectroscopy.Journal of Biology Chemistry,1982,257:865-869
    73.Chung J W,Webster D A,Pagilla K R,Stark B C.Chromosomal integration of the Vitreoscilla hemoglobin gene in Burkholderia and Pseudomonas for the purpose of producing stable engineered strains with enhanced bioremediating ability.Journal of Industrial Microbiology &Biotechnology.2001,27:27-33
    74.Crowwick A M,Birrer G A,Gross R A,Effects of pH and aeration on poly(γ-glutamic acid)formation by Bacillus licheniformis in controlled batch fermentor cultures.Biotechnology Bioengineering,1996,50:222-227
    75.Dikshit KL,Webster DA.Cloning,characterization and expression of the bacterial globin gene from Vitreoscilla in Escherichia coli.Gene,1988,70:377-386
    76.Duff SMG,Wittenberg J B,Hill R D.Expression,purification and properties of recombinant barley(Hordeum sp.) hemoglobin.Journal of Biology Chemistry,1997,272:16746-16752
    77.Dunny G M,Lee L N,Leblanc D J.Improved Electroporation and Cloning Vector System for Gram-Positive Bacteria.Applied and environmental microbiology,1991,57(4):617-622
    78.Feng L,Chen S W,Sun M.Expression of Vitreoscilla hemoglobin in Bacillus thuringiensis improve the cell density and insecticidal crystal proteins yield.Applied Microbiology Biotechnoogyl,2007,74(2):390-397
    79.Fernandez S,Sorokin A,Alonso J C.Genetic recombination in Bacillus subtilis 168:Effects of recU and recS mutations on DNA repair and homologous recombination.Journal of Bacteriology,1998,180(13):3405-3409
    80.Hartl B,Wehrl W,Wiegert T,Homuth G,Schumann W.Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes.Journal of Bacteriology,2001,183(8):2696-2699
    81.Hemoglobin Gene in Enterobacter Aerogenes:Effect on Cell Growth and Oxygen Uptake.Applied Biochemistry and Microbiology,2004,40(3):241-248
    82.Joshi M,Mande S,Dikshit KL.Hemoglobin Biosynthesis in Vitreoscilla stercoraria DW:Cloning,Expression,and Characterization of a New Homolog of a Bacterial Globin Gene.Applied Environment Microbiology,1998,64:2220-2228
    83.Kallio P T,Bailey J E.Intracellular expression of Vitreoscilla hemoglobin(VHb) enhances total protein secretion and improves the production of alPha-amylase and neutral protease in Bacillus subtilis.Biotechnology Progress,1996,12:31-39
    84.Kallio P T,Heidrich J,Koskenkorva T,Bollinger C J T,Farres J,Frey A D.Analysis of novel hemoglobins during microaerobic growth of HMP-negative Escherichia coli.Enzyme and Microbial Technology.2007,40:329-336
    85.Kallio P T,Kim D J,Tsai P S,Bailey J E.Intracellular expression of Vitreoscilla hemoglobin alters Escherichia coli energy metabolism under oxygen-limited conditions.European Journal of Biochemistry,1994,219:201-208
    86.Konno A,Taguchi T,Yamaguchi T.Bakery products and noodles containing poly(γ-glutamic acid).US patent,4888193,1989-12-19
    87.Koskenkorva T,Frey A D,Kallio P T.Characterization of heterologous hemoglobin and flavohemoglobin promoter regulation in Escherichia coli.Journal of Biotechnology,2006,122:61-175
    88.Kunioka M,Goto A.Biosynthesis of poly(γ-glutamic acid) from L-glutamic acid,citric acid and ammonium sulfate in Bcillus subtilis IFO3335.Applied Microbiology Biotechnology,1994,40:867-872
    89.Kunioka M.Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms.Applied Microbiology Biotechnology,1997,47:469-475
    90.Kunioka M.Properties of hydrogels prepared by irradiation in microbial poly(γ-glutamic acid)aqueous solution.Kobunshi Ronbunshu,1993,50:755-760
    91.Lee Y K,Kim S B,Park C S,Kim J G,Oh H M,Yoon B D,Kim H S.Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrophobic liquids,Applied Microbiology Biotechnology,2005,67:789-794
    92.Lin Y H,Li Y F,Huang M C,Tsal Y C.Intracellular expression of Vitreoscilla hemoglobin in Aspergillus terreus to alleviate the effect of a short break in aeration during culture.Biotechnology Letters,2004,26:1067-1072
    93.Marrero R,Welkos S L.The transformation frequency of plasmids into Bacillus anthracis is affected by adenine methylation.Gene.1995,152:75-78
    94.Middleton R,Hofmeister A.New shuttle vectors for ectopic insertion of genes into Bacillus subtilis.Plasmid.2004,51:238-245
    95.Niaudet B,Janniere L,Ehrlich S D.Integration of Linear,Heteroiogous DNA molecules into the Bacillus subtilis chromosome:mechanism and use in induction of predictable rearrangements.Journal of Bacteriology,1985,163(1):111-120
    96.Potter M,Sanio B F O,Chel A S.Cultivation of bacteria producing polyamino acids withliquid manure as carbon and nitrogen source.Applied and environmental microbiology,2001,617-622
    97.Richard A,Margaritis A.Optimization of cell growth and poly(glutamic acid) production in batch fermentation by Bacillus subtilis.Biotechnology Letters,2003,25:465-468
    98.Richard A,Margaritis A.Rheology,Oxygen Transfer,and Molecular Weight Characteristics of Poly(glutamic acid) Fermentation by Bacillus subtilis.Biotechnology and Bioengineering,2003,82(3):299-305
    99.Rodionova T A,Shekhovtsova N.V,Panikov N.S.,Nikolaev Y A.Effect of Cultivation Conditions on Growth and Adhesion of Bacillus licheniformis.Microbiology,2003,72(4):466-471
    100.Saito Y,Taguchi H,Akamastu T.DNA taken into Bacillus subtilis competent cells by lysed-protoplast transformation is not ssDNA but dsDNA.Journal of Bioscience and Bioengineering.2006,101(4):334-339
    101.Saito Y,Taguchi H,Akamatsu T.Fate of transforming bacterial genome following incorporation into competent cells of Bacillus subtilis:a continuous length of incorporated DNA.Journal of Bioscience and Bioengineering.2006,101(3):257-262
    102.Shih I L,Van Y T,Chang Y N.Application of statistical experimental methods to optimize production of poly(γ-glutamic acid) by Bacillus licheniformis CCRC 12826.Enzyme and Microbial Technology,2002,31:213-220
    103.Shih I L,Van Y T.The production of poly(γ-glutamic acid) from microorganisms and its various application.Bioresources Technology,2001,79:207-225
    104.Sung H Y,Jin H D,SANG Y L,et al.Production of poly-γ-glutamic acid by fed-batch culture of Bacillus licheniformis.Biotechnology Letters,2000,22:585-588()
    105.Suzuki T,Yasutaka T.Characterization of the Bacillus subtilis ywtD gene,whose product is involved in γ-polyglutamic acid degradation.Journal of Bacteriology,2003,185(7):2379-2382
    106.Tahara Y,Ogawa Y,Yamaguchi F,Yuasa K.Efficient production of γ-polyglutamic acid by Bacillus subtilis(natto) in jar fermenters.Bioscience Biotechnology Biochemistry,1997,61:1684-1687
    107.Tanimoto H,Mori M,Motoki M,et al.Natto mucilage containing poly(γ-glutamic acid) increases soluble calcium in the rat small intestine.Bioscience Biotechnology Biochemistry,2001,65:516-521
    108.Tsai P S,Kallio P T,Bailey J E.Fnr,the global transcriptional regulator of Escherichia coli,activates the Vitreoscilla hemoglobin(VHb) promoter and intracellular VHb expression increases cytochrome promoter activity.Biotechnology Progress,1995,11:288-293
    109.Tyree B,Webster DA.The binding of cyanide and carbon monoxide to cytochrome o purified from Vitreoscilla.Evidence for subunit interaction in the reduced protein.Journal of Biology Chemistry,1978,253:6988-6991
    110.Urushibata Y,Shinji T,Yasutaka T.Difference in transcription levels of cap genes for γ-polyglutamic acid production between Bacillus subtilis IFO16449 and Marburg 168.Journal of Bioscience and Bioengineering,2002,93(2):252-254
    111.Vagner V,Ehrlich S D.Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome.Journal of Bacteriology,1988,170(9):3978-3982
    112.Wittenberg J B.The molecular mechanism of hemoglobin-facilitated oxygen diffusion.Journal of Biology Chemistry,1966,241:104-114
    113.Wu J M,Hsu T A,Lee C K.Expression of the gene coding for bacterial hemoglobin improves β-galactosidase production in a recombinant Pichia pastoris.Biotechnology Letters,2003,25:1457-1462
    114.Xue G P,Johnson J S,Dalrymple B P.High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis.Journal of Microbiological Methods,1999,34:183-191
    115.Yoon S H,Do J H,Lee SY,Chang H N.Production of poly-γ-glutamic acid by fed-batch culture of Bacillus Licheniformis.Biotechnology Letters,2000,22:585-588
    116.Zhang L,Li Y J,Wang Z N,Xia Y.Recent developments and future prospects of Vitreoscilla hemoglobin application in metabolic engineering.Biotechnology Advances,2007,25:123-136

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700