用户名: 密码: 验证码:
生防芽孢杆菌对作物耐盐性的影响及其抗盐机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芽孢杆菌(Bacillus spp.)是土壤和植物微生态的优势微生物种群之一,具有很强的抗逆能力和抑菌防病增产作用,且其中的许多菌株能够产生植酸酶。目前已发现,在磷限量条件下施加微生物来源的植酸酶能够促进植物生长,但关于土壤生防微生物胞外植酸酶对植物耐盐性的影响尚未见报道。
     本文从作物根际土壤及本实验室已有的生防细菌中筛选出高产植酸酶且对小麦纹枯病菌及其它多种植物病原真菌具有拮抗作用的生防芽孢杆菌,并对其产生的胞外植酸酶在增强植物耐盐性中的作用进行了研究,具体结果如下:
     1.通过盆栽试验研究了在土壤中直接施用高产植酸酶的广谱拮抗生防芽孢杆菌(Bacillus subtilis)T2对作物耐盐性的影响。盆栽试验结果显示:无盐胁迫及180 mmol·L~(-1)、360 mmol·L~(-1)、540 mmol·L~(-1) NaCl胁迫条件下,土壤施加产胞外植酸酶芽孢杆菌菌悬液可促进小麦幼苗的生长,小麦株高、鲜重、可溶性糖含量、脯氨酸含量、过氧化物酶(POD)活性和过氧化氢酶(CAT)活性均得以不同程度的增高;无盐胁迫及180 mmol·L~(-1) NaCl胁迫条件下小麦叶片叶绿素含量增高;180 mmol·L~(-1)、360 mmol·L~(-1)、540 mmol·L~(-1) NaCl胁迫下植株超氧化物歧化酶(SOD)活性升高,MDA含量降低。表明土壤中施加具有胞外植酸酶活力的生防芽孢杆菌可增强作物对一定浓度范围内盐胁迫的耐受能力。
     2.为进一步明确芽孢杆菌胞外植酸酶在其增强作物耐盐性过程中的作用和地位,本研究进行了胞外植酸酶突变菌株的诱变选育。以T2为出发菌株,经微波(Microwave)和硫酸二乙酯(DES)诱变,得到遗传特性稳定的植酸酶正负突变株。酶活力测定结果显示:与出发菌株相比,培养72 h的正突变株M15胞外植酸酶活力提高31.7%,负突变株M3植酸酶活力降低93.3%。
     3.利用水培试验研究了出发菌株与负突变株对作物耐盐性的不同影响。采用有效磷限量、含NaCl 150 mmol L~(-1)的植物生长水培液对小麦进行盐胁迫,在植酸存在的条件下,水培液中施加T2发酵液或植酸酶均可促进盐胁迫下小麦幼苗的生长,小麦株高、鲜重、叶片叶绿素含量和根系活力分别提高7.7%、2.5%,39.4%、19.3%,12.2%、2.1%和178.3%、173.9%。而植株丙二醛(MDA)含量分别降低85.1%和70.2%。失去植酸酶活力的负突变株M3发酵液则不具有提高小麦株高鲜重和叶绿素含量的作用,对根系活力的提高和对MDA含量的降低程度也均低于T2发酵液处理。上述结果表明生防芽孢杆菌胞外植酸酶活力在其增强小麦耐盐性过程中起了重要作用。
     4.将突变株在平板上连续传10代,考察其遗传稳定性。结果显示:突变株产酶能力无明显变化,表明获得的突变株具有良好的遗传稳定性。这对于该菌株在各种生态环境中长期稳定地发挥作用具有重要意义,并为将来高效菌肥的进一步开发奠定了基础。
Bacillus species, which are both resistant to adverse environment and usually against bacterial and fungal pathogens, are among the dominant microorganisms in the soil and plant microecological systems. Bacillus spp. is one of the important sources of phytase applied in industry. However, little is known about the role of phytase in the alleviation of the effect of salt stress to plant produced by Bacillus strains.
     Therefore, in order to evaluate whether the phytase secreted by Bacillus spp. can enhance the saline tolerance of plant, Bacillus strains, which were potential biocontrol agent against a broad spectrum of plant pathogenic fungi with the ability to produce extracellular phytase, were isolated. The objectives of this study were:
     (1) to reveal whether Bacillus strains can enhance the saline tolerance of plant in edaphic culturing experiment,
     (2) to obtain phytase mutants by means of DES and Microwave treatments,
     (3) to further investigate the activity of increasing resistance of wheat to salt stress of mutants and the wild type,
     (4) to identify the genetic stability of phytase mutants.
     The main conclusions of this paper are as follows:
     1. To reveal whether Bacillus strains T2 with phytase activity can alleviate the salt stress effect of NaCl to wheat seedlings in soil, physiological and biochemical activities of wheat under NaCl stress were studied by edaphic culture. The results showed that Bacillus subtilis had positive effect on wheat growth under free salt stress and salt stress. Compared to free Bacillus subtilis treatment, Bacillus subtilis accelerated the increase of plant height, plant fresh weight, total leaf chlorophyll content, soluble sugar content, praline content and enhanced the activities of protective enzymes, such as SOD, POD and CAT, but decreased the content of MDA under free NaCl stress, 180 mmol·L~(-1) NaCl, 360 mmol·L~(-1) NaCl and 540 mmol·L~(-1) NaCl stress. Significant increases in total leaf chlorophyll content were observed under free NaCl stress and 180 mmol·L~(-1) NaCl stress. Simultaneously, increase in SOD activities and decrease in content of MDA were observed under 180 mmol·L~(-1) NaCl, 360 mmol·L~(-1) NaCl and 540 mmol·L~(-1) NaCl stress. These may provide strong evidence that B. subtilis with phytase activity is effective for the increasing resistance of wheat to salt stress in soil.
     2. Strain Bacillus subtilis T2 was a potential biocontrol agent against a broad-spectrum plant pathogenic fungi with the ability to produce extracellular phytase.To improve its saline stress alleviating capacity, mutagenetic program was undertaken for the construction of extracellular phytase derivates. Two phytase mutants with genetic stability were obtained by means of DES and Microwave treatments. It was revealed that extracellular phytase activity of the positive mutant M15 was elevated by 31.7% and the negative mutant M3 decreased by 93.3% after 72 h cultivation compared to the wild type T2.
     3. To further evaluate whether the phytase secreted by T2 can enhance the saline tolerance of plant, hydroponic culturing experiment was undertaken. A phytase minus mutant M3 with genetic stability was obtained by means of DES treatment. The results of biochemical experiments revealed that the culture filtrates of wild-type strain T2 with phytase activity and purified phytase stimulated growth of wheat seedlings under phosphate limitation in the presence of 150 mmol·L~(-1) NaCl and phytate. Significant increases in plant height, fresh weight, total leaf chlorophyll content and TTC reducing power and decrease in content of MDA were observed in response to addition of phytase and culture filtrates of T2 to culture liquids. However, culture filtrates obtained from phytase-negative mutant strain M3 did not stimulate wheat seedlings growth under salt stress. These may provide strong evidence that phytase activity of B. subtilis is important for the increasing resistance of wheat to salt stress under phosphate limitation.
     4. It is important for the mutants with genetic stability to function normally in various environments. Two phytase mutants were taken to inherit from generation to generation. The result showed that the capacity of enzyme production and the salt stress alleviation effect did not change significantly compared to the wild type. So, they can be applied into practice stably.
引文
[1]刘晶,周树峰,陈华等.农杆菌介导的双价抗盐基因转化番茄的研究[J].中国农业科学,2005,38(8):1636-1644.
    [2]杨松杰,张富春,刘世贵.盐渍化土壤改良利用新方法——植物耐盐基因的遗传转化[J].世界林业研究,2006,19(01): 14-19.
    [3]贺学礼,赵丽莉,李英鹏等. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报,2005,25(01): 188-193.
    [4]尹汉文,郭世荣,刘伟等.枯草芽孢杆菌对黄瓜耐盐性的影响[J].南京农业大学学报,2006,29(3): 18-22.
    [5]王波,宋凤斌,张金才等.植物耐盐性研究进展[J].农业系统科学与综合研究,2007,23(02): 212-216.
    [6]赵明范.世界土壤盐渍化现状及研究趋势[J].世界林业研究,1994,7(01): 84-86.
    [7]戴高兴,彭克勤,皮灿辉.钙对植物耐盐性的影响[J].中国农学通报,2003,19(3): 97-101.
    [8]孟凤轩,马兴旺,罗新湖等.伊犁河流域新垦区盐渍化土壤的改良培肥[J].新疆农业科学,2008,45(B10):29-32.
    [9]徐鲜钧,沈宝川,祁建民.植物耐盐性及其生理生化指标的研究进展[J].亚热带农业研究,2007,3(4): 275-280.
    [10]罗秋香,管清杰,金淑梅等.植物耐盐性分子生物学研究进展[J].分子植物育种,2006,4(6S): 57-64.
    [11]廖岩,彭友贵,陈桂珠等.植物耐盐性机理研究进展[J].生态学报,2007,27(05): 2077-2089.
    [12]王遵亲.中国盐渍土[M].北京:科学出版社,1993:157-159.
    [13]朱志华,胡荣海.盐胁迫对不同小麦品种种子萌发的影响[J].作物品种资源,1996,(4):25-29.
    [14]颜宏,赵伟,秦峰梅等.盐碱胁迫对碱地肤、地肤种子萌发以及幼苗生长的影响[J].东北师大学报:自然科学版,2006,38(4): 117-123.
    [15]赵旭,王林权,周春菊等.盐胁迫对不同基因型冬小麦发芽和出苗的影响[J].干旱地区农业研究,2005,23(4): 108-112.
    [16]Jamil M,Lee K B,Jung K Y,et al. Salt stress inhibits germination and early seedling growth in cabbage (Brassica oleracea capitata L.)[J]. Pakistan journal of biological sciences: PJBS,2007,10(6): 910-914.
    [17]Jamil M,Rha E S. Response of transgenic rice at germination and early seedling growth under salt stress[J]. Pakistan journal of biological sciences: PJBS,2007,10(23): 4303-4306.
    [18]马翠兰,刘星辉,杜志坚.盐胁迫对柚、福橘种子萌发和幼苗生长的影响[J].福建农林大学学报:自然科学版,2003,32(3): 320-324.
    [19]谢德意,王惠萍.盐胁迫对棉花种子萌发及幼苗生长的影响[J].中国棉花,2000,27(9): 12-13.
    [20]张海燕. NaCl胁迫对耐旱性不同的小麦生长及溶质含量的影响[J].植物研究,2002,22(01): 37-41.
    [21]许兴,米海莉等. NaCl胁迫对小麦幼苗生长、叶绿素含量及Na+、K+吸收的影响[J].西北植物学报,2002,22(2): 278-284.
    [22]冯固,李生秀.施磷和接种AM真菌对玉米耐盐性的影响[J].植物资源与环境学报,2000,9(2): 22-26.
    [23]Munns R. Physiological processes limiting plant growth in saline soils: some dogmas and hypotheses[J]. Plant ,Cell and Environment,1993,(16): 15-24.
    [24]杨晓慧,蒋卫杰,魏珉等.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报:自然科学版,2006,37(02): 302-305,308.
    [25]Romero-Aranda R,Soria T,Cuartero J. Tomato plant-water uptake and plant-water relationships under saline growth conditions[J]. Plant science (Shannon,Ireland),2001,160(2): 265-272.
    [26]Kao W-Y,Tsai H-C,Tsai T-T. Effect of NaCl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species,Kandelia candel (L.) Druce [J]. Journal of Plant Physiology,2001,158(7): 841-846.
    [27]龚明,丁念诚,贺子义等.盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系[J]. Journal of Integrative Plant Biology,1989,31(11):841-846.
    [28]柯玉琴,潘廷国. NaCl胁迫对甘薯叶片叶绿体超微结构及一些酶活性的影响[J].植物生理学报,1999,25(3): 229-233.
    [29]郑文菊,沈禹颖.几种盐地生植物器官的超微结构研究[J].电子显微学报,1999,18(5): 507-512.
    [30]王桂君,张丽辉,赵骥民等.盐性条件下的AM真菌以及AM真菌提高植物耐盐性研究[J].长春师范学院学报:自然科学版,2004,23(4): 64-68.
    [31]利容千,王建波.植物逆境细胞及生理学[M].武汉大学出版社,2002.
    [32]Cramer G R,Lauchli A,Polito V S. Displacement of Ca by Na from the Plasmalemma of Root Cells : A Primary Response to Salt Stress[J]. Plant physiology,1985,79(1): 207-211.
    [33]常红军,秦毓茜.植物的盐胁迫生理[J].安阳师范学院学报,2006,(5):149-152.
    [34]张新春,李自超,等.植物耐盐性研究进展[J].玉米科学,2002,10(1): 50-56.
    [35]邴雷,赵宝存,沈银柱等.植物耐盐性及耐盐相关基因的研究进展[J].河北师范大学学报:自然科学版,2008,32(2): 243-248.
    [36]李怀军,刘忠海,郝建成等.德州市土壤盐渍化概况及改良利用的研究[J].山东农业科学,2008,(6)70-72.
    [37]杨青川,康俊梅,郭文山等.轮回选择培育紫花苜蓿耐盐新品系[J].中国畜牧兽医,2008,35(5): 9-13.
    [38]李敏,辛华,郭绍霞等. AM真菌对盐渍土壤中番茄、辣椒生长和矿质养分吸收的影响[J].莱阳农学院学报,2005,22(1): 38-41.
    [39]Yano-Melo a M,Orivaldo JoséSaggin J,Maia L C. Tolerance of mycorrhized banana (Musa sp. cv. Pacovan) plantlets to saline stress[J]. Agriculture,Ecosystems and Environment 2003,95(2003): 343–348.
    [40]贺学礼,赵丽莉,李英鹏,et al. NaCl胁迫下AM真菌对棉花生长和叶片保护酶系统的影响[J].生态学报, 2005, 25(01): 188-193.
    [41]吉云秀,黄晓东.植物促生菌对燕麦初生苗盐分胁迫下的促生效应[J].大连海事大学学报:自然科学版,2007,33(3): 86-89.
    [42]吉云秀,黄晓东.不同盐分条件下植物促生菌对燕麦和黑麦草幼苗的促生效应[J].中国土壤与肥料,2008,(2)65-68.
    [43]Mayak S,Tirosh T,Glick B R. Plant growth-promoting bacteria confer resistance in tomato plants to salt stress[J]. Plant Physiol Biochem,2004,42(6): 565-572.
    [44]莫文萍,郑元元,岳海涛等.棉花解盐促生菌的筛选及其作用机理的初步研究[J].石河子大学学报,2006,24(1): 79-82.
    [45]平淑珍,Mali K A.固氮粪产碱菌的耐盐特性及在盐胁迫下与宿主水稻的相互作用[J].农业生物技术学报,1996,4(1): 87-92.
    [46]El-Komy H M,Abdel-Samad H M,Hetta a M,et al. Possible roles of nitrogen fixation and mineral uptake induced by rhizobacterial inoculation on salt tolerance of maize[J]. Polish journal of microbiology / Polskie Towarzystwo Mikrobiologow = The Polish Society of Microbiologists,2004,53(1): 53-60.
    [47]Bandou E,Lebailly F,Muller F,et al. The ectomycorrhizal fungus Scleroderma bermudense alleviates salt stress in seagrape (Coccoloba uvifera L.) seedlings[J]. Mycorrhiza,2006,16(8): 559-565.
    [48]黄艺,姜学艳,梁振春等.外生菌根真菌接种和施磷对油松苗抗盐性的影响[J].生态环境,2004,13(4): 622-625.
    [49]Waller F,Achatz B,Baltruschat H,et al. The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance,disease resistance,and higher yield[J]. Proceedings of the National Academy of Sciences of the United States of America,2005,102(38): 13386-13391.
    [50]姜学艳,黄艺.菌根真菌增加植物抗盐碱胁迫的机理[J].生态环境,2003,12(3): 353-356.
    [51]Berta G,Fusconi A,Trotta A. Morphogenetic modifications induced by the mycorrhizal fungus strain E3 in the root system of Allium porrum L[J]. New Phytol,1990,114(2)207-215.
    [52]Davies F T,Porter J R,Linderman R G. Drought resistance of mycorrhizal pepper plants-independent of leaf phosphorus concentration,response in gas exchange,and water relations[J]. Physiologia plantarum,1993,(87):45-53.
    [53]冯固,李晓林. VA菌根提高植物耐盐性研究进展[J].西北农业大学学报,1999,27(3): 94-100.
    [54]姚艳玲,冯固. NaCl胁迫下VA菌根对玉米耐盐能力的影响[J].新疆农业科学,1999,(1):20-22.
    [55]Guttay A J R. Impact of deicing salt upon the endomycorrhizae of roadside sugar maples[J]. Soil Sci Soc Amer J,1976,40:952-952.
    [56]刘润进,郝文英. VA菌根真菌对植物水分代谢的影响[J].土壤学报,1994,31(增刊):46-53.
    [57]冯固,李晓林.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,2000,11(4): 595-598.
    [58]Rosendahl C N,Rosendahl S. Influence of vesicular-arbuscular mycorrhizal fungi (Glomus spp.) on the response of cucumber(Cucumis sativus L.) to salt stress[J]. Environ Exp Bot,1991,3(31): 313-318.
    [59]Jindal V,Atwal A,Sekson B S. Effect of vesicular-arbuscular mycorrhizae on metabolism of moong plants under NaCl salinity[J]. Plant Physiol Biochem,1993,(31):475-481.
    [60]Duke E R,Johnson C R,Koch K E. Accumulation of phosphorus,dry matter and betaine during NaCl stress of slip-root citus seedlings colonized with vasicular-arbuscular mycorrhizal fungi on zero,one or two halves[J]. New Phytol,1986,104:583-590.
    [61]刘国红,林乃铨,林营志等.芽孢杆菌分类与应用研究进展[J].福建农业学报,2008,23(1): 92-99.
    [62]Baker K F. Evolving concepts of biological control of plant pathogens[J]. Ann Rev Phytopathol,1987,25: 67~85.
    [63]Asllka O,Shoda M. Biocontrol of Rhizoctonia solani damping-off of tomato with Bacillus subtilis RB14[J]. Appl Environ Microbiol,1996,62(11): 4081~4085.
    [64]李锋,潘晓华.植物适应缺磷胁迫的根系形态及生理特征研究进展[J].中国农学通报,2002,18(5): 65-69,76.
    [65]李绍长.低磷胁迫对植物光合和呼吸作用的影响[J].石河子大学学报(自然科学版),2003,7(2): 157.
    [66]潘晓华,郭进耀,王永锐.无机磷对植物叶片光合作用的影响及其机理的研究进展[J].植物营养与肥料学报,1997,3(3): 201.
    [67]潘瑞炽.植物生理学(第4版)[M].北京:高等教育出版社,2001.
    [68]倪宏波,曲进,石星明等.植酸酶的分子生物学特性及应用前景研究进展[J].黑龙江八一农垦大学学报,2005,17(3): 62-65.
    [69]陈红霞.植酸酶的研究进展[J].生物技术通讯,2005,16(5): 591-593.
    [70]Mullaney E J,Ullah a H. The term phytase comprises several different classes of enzymes[J]. Biochemical and biophysical research communications,2003,312(1): 179-184.
    [71]Idriss E E,Makarewicz O,Farouk A,et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect[J]. Microbiology (Reading,England),2002,148(Pt 7): 2097-2109.
    [72]李然.枯草芽孢杆菌胞外蛋白酶突变株的筛选及其拮抗作用[D].济南,山东师范大学,2008.
    [73]浙江农业大学遗传育种教研组.作物遗传育种简明教程[M].北京:农业出版社,1984.
    [74]韩丽丽,刘敏.诱变方法在微生物育种中的应用[J].酿酒,2008,35(3): 16-18.
    [75]王付转,梁秋霞,等.诱变和筛选方法在微生物育种中的应用[J].洛阳师范学院学报,2002,21(2): 95-99.
    [76]马迪根杨文等.微生物生物学[M].北京:科学出版社,2001.
    [77]曹友声,刘仲敏.现代工业微生物学[M].长沙:湖南科学技术出版社,1998.
    [78]李然,邢介帅,韩立英等.枯草芽孢杆菌胞外蛋白酶突变株的筛选及其拮抗作用[J].应用与环境生物学报,2008,14(2): 231-234.
    [79]王洲,杨超英,薛正莲.紫外辐照对产α-ALDC枯草芽孢杆菌的诱变效应[J].中国农学通报,2007,23(4): 95-97.
    [80]白兰芳,徐小敏,等.西罗莫司产生菌Streptomyces hygroscopicus WY—93的诱变育种与代谢研究[J].中国抗生素杂志,2001,26(1): 35-38.
    [81]马惠平,赵永亮.诱变技术在作物育种中的应用[J].遗传,1998,20(4): 48-50.
    [82]Leifert C,Li H,Chidburee S,et al. Antibiotic production and biocontrol activity by Bacillus subtilis CL27 and Bacillus pumilus CL45[J]. The Journal of applied bacteriology,1995,78(2): 97-108.
    [83]田黎,顾振芳,等.海洋细菌B—9987菌株产生的抑菌物质及对几种植物病原真菌的作用[J].植物病理学报,2003,33(1): 77-80.
    [84]林小杰,李崎,顾国贤.产β-葡聚糖酶淀粉液化芽孢杆菌的选育[J].食品与生物技术学报,2005,24(3): 57-60.
    [85]邱玉棠,施庆珊. 60Coγ射线辐照选育肌苷高产菌株CMI—741的研究[J].核农学报,1995,9(3): 175-178.
    [86]诸葛健,沈微.工业微生物育种学[M].北京:化学工业出版社教材出版中心,2006.
    [87]陈晓明,谭碧生,郑春等.快中子辐照对枯草芽孢杆菌DNA损伤研究[J].高能物理与核物理,2007,31(10): 972-977.
    [88]吴松刚,施巧琴.工业微生物育种学[M].北京:科学出版社,2003.
    [89]方尚玲,李世杰,李晓辉.弹性蛋白酶产生菌的化学诱变选育[J].食品研究与开发,2006,27(11): 14-18.
    [90]陈新征,吴兆亮,赵静波等.化学诱变法选育D-核糖高产菌株工艺研究[J].微生物学杂志,2005,25(2): 107-109.
    [91]吴学超,曹新江,冀志霞等.聚γ-谷氨酸高产菌的选育与培养基优化[J].微生物学通报,2008,35(10): 1527-1531.
    [92]王瑞霞,刘红彦,刘玉霞等.枯草芽孢杆菌B-903菌株的诱变选育[J].微生物学通报,2005,32(5): 10-13.
    [93]邓毛程,宋炜,张远平.γ-聚谷氨酸高产菌株的选育和发酵培养基的初步优化[J].四川理工学院学报:自然科学版,2006,19(3): 47-51.
    [94]卢燕回,黎起秦,林纬等.西瓜枯萎病生防菌枯草芽孢杆菌B11菌株高产拮抗物质的诱变选育[J].广西农业生物科学,2006,25(4): 300-304.
    [95]金志华,林建平,梅乐和.工业微生物遗传育种学原理与应用[M].北京:化学工业出版社,2006.
    [96]尚晨,李集临,张月学等.空间诱变及其地面模拟诱变方法综述[J].黑龙江农业科学,2007,(06): 98-101.
    [97]李金国,蒋兴村.空间条件对棘孢小单孢菌的诱变效应[J].航天医学与医学工程,1995,8(2): 113-116.
    [98]贾士芳,许怡.空间条件对芽孢杆菌的超氧化物歧化酶物和其它性质的影响[J].航天医学与医学工程,1995,8(1): 12-14.
    [99]陈继红,张利平,郭立格等.多杀菌素产生菌株航天育种效果研究[J].安徽农业科学,2008,36(12): 4951-4952.
    [100]崔艳红,李培庆.新型诱变源及其在微生物育种上的研究进展[J].河南科技学院学报:自然科学版,2005,33(4): 5-9.
    [101]余增亮,邱励俭.离子注入生物效应及育种研究进展[J].安徽农学院学报,1991,18(4): 251-257.
    [102]赵丛,殷向斌,张敏等. N+离子注入技术在中性蛋白酶高产菌株选育中的应用[J].原子能科学技术,2008,42(12): 1130-1134.
    [103]李德全,陈志谊,刘永锋等.生防菌Bs-916离子注入突变高效菌株筛选及抑菌防病效果[J].植物保护学报,2006,33(2): 141-145.
    [104]汪杏莉,李宗伟,陈林海等.工业微生物物理诱变育种技术的新进展[J].生物技术通报,2007,(2)114-118.
    [105]胡卫红,陈有为.激光辐照微生物的研究概况[J].激光生物学报,1999,8(1): 66-69.
    [106]彭益强,张燕,庄月娥等.激光诱变在热稳定植酸酶筛选中的应用[J].激光生物学报,2006,15(4): 405-408.
    [107]李豪,车振明.微波诱变微生物育种的研究[J].山西食品工业,2005,(2):5-6.
    [108]颜贤仔,余莉莉,张凤英.微波对枯草芽孢杆菌诱变效应的研究[J].江西农业大学学报,2005,27(6): 857-860.
    [109]邸胜苗,阚振荣.α-乙酰乳酸脱羧酶产生菌的微波诱变[J].生物技术,2006,16(4): 23-25.
    [110]胡勇,王红宁,吴琦等.枯草芽孢杆菌WHNB 02植酸酶的酶学性质研究[J].西南农业大学学报,2005,27(06): 770-773,784.
    [111]潘晓华,王永锐.无机磷对植物叶片光合作用的影响及其机理的研究进展[J].植物营养与肥料学报,1997,3(3): 201-208.
    [112]李绍长.低磷胁迫对植物光合和呼吸作用的影响[J].石河子大学学报,2003,7(2): 157-160.
    [113]潘瑞炽.植物生理学[M].北京:高等教育出版社,2004.
    [114]Bucbanan B B,Gruissen W,Joones R L. Biochemistry and molecular biology of plants[M]. Beijing:The American Society of Plant Physiologist,2000.
    [115]Ruiz-Lozano J M,Azcon R,Gomez M. Alleviation of salt stress by arbuscular-mycorrhizal Glomus species in Lactuca sativa plants[J]. Physiologia plantarum,1996,98:767-772.
    [116]Stabl P D,Williams S E,Christensen M. Effect of native vesicular-arbuscularmycorrhizal fungi after severe soil disturbance[J]. New Phytol,1988,110:347-353.
    [117]冯固,李晓林.盐胁迫对VA菌根形成及接种VAM真菌对植物耐盐性的效应[J].应用生态学报,1999,10(1): 79-82.
    [118]Sigh R,Sengupya M,Goswami N. Role of phosphate in saline soil in relation to soil properts and crop growth[J]. J India Society of Soil Sci,1988,36:766-773.
    [119]Hirrel M C,Gerdemann J W. Improved growth of onion and dell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi [J]. Soil Sci Soc Amer J,1980,44:654-655.
    [120]Poss J A,Pond E,Menge J A. Effect of salinity on myrrhizal onion and tomato in soil with and without additional phosphate[J]. Plant and Soil,1985,88:307-319.
    [121]杨艳芳,张成林,蔡鸿杰等.植酸酶促进玉米生长的研究[J].天津师范大学学报:自然科学版,2005,25(4): 24-27.
    [122]Li X,Wu Z,Li W,et al. Growth promoting effect of a transgenic Bacillus mucilaginosus on tobacco planting[J]. Applied microbiology and biotechnology,2007,74(5): 1120-1125.
    [123]王学奎.植物生理生化实验原理和技术(第2版)[M].北京:高等教育出版社,2006.
    [124]武汉大学化学与分子科学学院实验中心.分析化学实验[M].武汉:武汉大学出版社,2002.
    [125]任仁.化学与环境[M].北京:化学工业出版社,2001.
    [126]Yan X X, Zhao T F,Hu Y G. Effect of moderate salt stress on cellls in toot lips of barley [J]. Acta Agriculture Boreali-Sinica,1994,9(supplement):61-64.
    [127]张兆英,于秀俊.植物抗盐性评价生理指标的分析[J].沧州师范专科学校学报,2006,22(4): 51-53.
    [128]罗广华,王爱国,邵从本.超氧化物歧化酶(SOD)在大都下胚轴线粒体内的定位[J].植物学报,1987,29:171-177.
    [129]陈少裕.膜脂过氧化对植物细胞的毒害作用[J].植物生理学通讯,1991,(2): 84.
    [130]王爱国.丙二醛作为脂质过氧化指标的探讨[J].植物生理学通讯,1986,(2): 55-57.
    [131]王弋博,刘向阳,李三相等.用紫外诱变及紫外+硫酸二乙酯复合诱变方法选育高产异淀粉酶菌株[J].青海大学学报:自然科学版,2003,21(4): 7-10.
    [132]Greiner R,Haller E,Konietzny U,et al. Purification and characterization of a phytase from Klebsiella terrigen[aJ]. Archives of biochemistry and biophysics,1997,341(2): 201-206.
    [133]庞小燕,王吉瑛,等.构建直接发酵淀粉产生酒精的酵母融合菌株的研究[J].生物工程学报,2001,17(2): 165-169.
    [134]Zhang W,Gruszewski H A,Chevone B I,et al. An Arabidopsis purple acid phosphatase with phytase activity increases foliar ascorbate[J]. Plant physiology,2008,146(2): 431-440.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700