用户名: 密码: 验证码:
涝渍对三个树种生长及生理生化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应用室外盆栽土培试验方法,采用完全随机试验设计,从生长、光合特性、荧光动力学参数、特异蛋白质表达、孔隙度和渗漏氧等方面,研究了涝渍对落羽杉(Taxodium distichum)、乌桕(Sapium sebiferum)、薄壳山核桃(Carya illinoensis)1年生实生苗的影响。研究成果对于揭示3个树种的耐涝机理、丰富耐涝理论以及耐涝树种的选择等均具有重要的意义。主要结论如下:
     (1)涝渍处理显著地抑制了3个树种的生物量生长(落羽杉在部分渍水处理下生物量增加),但不定根的数量显著增加;从相对生长率来判断,落羽杉耐涝性最强,其次为乌桕,薄壳山核桃耐涝性最弱。
     (2)涝渍处理下,3个树种的净光合速率(Pn)、气孔导度(Gs)、最大光化学量子效率(Fv/Fm)均显著降低,涝渍程度越强,其下降幅度越大。
     (3)涝渍处理显著增加了3个树种根、茎和叶的孔隙度,落羽杉、乌桕、薄壳山核桃的根孔隙度分别增加了4.0%-15.0%、3.2%-8.3%和0.4%-3.0%,茎孔隙度分别增加了0.3%-9.6%、1.8%-9.3%和14.0%-17.7%,叶孔隙度分别增加了1.2%-7.7%、0.4%-4.3%和0.4%-3.0%。涝渍程度越深,孔隙度增幅越大;各树种孔隙度随涝渍时间的延长呈上升趋势。
     (4)涝渍处理显著增加了落羽杉和乌桕根系的渗漏氧,这与孔隙度的变化相一致。涝渍程度也影响了落羽杉根系渗漏氧的多少,其中落羽杉在涝渍各阶段的渗漏氧值均为淹水处理>渍水处理>部分渍水处理。
     (5)建立了一套相对适宜于3个树种叶片蛋白分析的电泳体系,经过SDS-PAGE及双向电泳分析,在落羽杉淹水、渍水、部分渍水和对照4个处理的叶片蛋白图谱所匹配的201个不同蛋白点中,有37个特异性表达蛋白点、41个特异性上调表达蛋白点;乌桕的4个处理叶片蛋白所匹配的223个不同的蛋白点中有38个特异性表达点和36个特异性上调表达蛋白点。
     (6)综合比较分析表明,林木耐涝性与产生不定根的数量、孔隙度和渗漏氧以及特异性蛋白的表达有密切关系。
With the completely randomized experiment design, the outdoor bonsai soil culture experiment was conducted to study the influence of waterlogging on the one-year-old seedlings which is Taxodium distichum, Sapium sebiferum and Carya illinoensis from the aspects of the growth, photosynthetic characteristics, chlorophyll fluorescence, expression of specific proteins, porosity and radial oxygen loss under waterlogging treatment. The research result has a great significance to reveal the Waterlogging mechanism, enrich tree waterlogging theories and select waterlogging tree species. The main results were as follows:
     1) Waterlogging treatments inhibited the biomass growth of the three species markedly (except the mild waterlogging treatment of Taxodium distichum), but the number of adventitious roots increased significantly. To judge from the relative growth of the three species, T. distichum showed the strongest waterlogging tolerance, followed by S. sebiferum and then C. illinoensis.
     2) Waterlogging treatments significantly reduced net photosynthetic rate (Pn), Stomatal conductance (Gs) and Chla fluorescence maximum quantum efficiency (Fv/Fm) of the three tree species. The higher the degree of waterlogging is, the greater they decrease.
     3) Waterlogging stress significantly increased porosity of root, stem and leaf of the three tree species. The porosity in root of T.distichum, S.sebiferum and C. illinoensis had increased by 4.0%~15.0%,3.2%~8.3% and 0.4%~3.0%, and 0.3%~9.6%,1.8%~9.3%,14.0%~17.7% in stem, and 1.2%~7.7%,0.4%~4.3%, 0.4%~3.0% in leaf, respectively. The higher the degree of waterlogging is, the greater the porosity increases. The porosity in the three tree species shows an up trend when the waterlogging time increases.
     4) Waterlogging treatments significantly increased radial oxygen loss of T. distichum and S. sebiferum and it was consistent with the porosity. The degree of waterlogging treatment could also affected the level of root radial oxygen loss. Radial oxygen loss of T. distichum was flooding treatment> waterlogging treatment> mild waterlogging treatment.
     5) Based on the establishment of a set of electrophoresis system suitable for the three tree species, leaf protein expression patterns were studied through SDS-PAGE and dimensional electrophoresis. There were 37 waterlogging stress-specific protein spots and 41 specific waterlogging stress-up-regulate protein spots in the 201 different spots, and there were 38 waterlogging stress-specific protein spots and 36 specific waterlogging stress-up-regulate protein spots in the 223 different spots which were matched with the four treatments of analysis system of T. distichum and S. sebiferum respectively.
     6) Through comprehensive comparative analysis, it shows that tree waterlogging is closely linked to the number of adventitious roots, porosity and radial oxygen loss and the expression of specific proteins.
引文
[1]van Bodegom PM, Sorrell BK, Oosthoek A, et al. Separating the effects of partial submergence and soil oxygen demand on plant physiology[J]. Ecology,2008,89:193-204.
    [2]谭淑端,朱明勇,张克荣,等.植物对水淹胁迫的响应与适应[J].生态学杂志,2009,28(9):1871-1877.
    [3]高兰阳,李洪泉,陈涛,等.植物对涝渍响应的研究进展[J].草业与畜牧,2010,2:1-4.
    [4]朱桂才,罗春梅.淹水胁迫下禾本科植物解剖结构研究进展[J].安徽农学通报,2008,14(18):166,195.
    [5]刘春风.淹水对15个树种苗木生长和形态特征的影响[D].南京林业大学硕士学位论文,2009,10.
    [6]Ponnamperuma FN. Effects of flooding on soils[J]. In:Kozlowski TT(ed). Flooding and Plant Growth. Orland:Academic Press Inc,1984,9-42.
    [7]刘志宽,马青兰,牛快快.湿地植物根系泌氧及其在湿地处理中的应用[J].海南师范大学学报(自然科学版),2010,23(1):84-86,92.
    [8]Cronk JK, Fennessy MS. Wetland plants biology and ecology[M]. CRC Press LLC, Washington DC,2001.
    [9]Stolzy LH, Sojka RE. Effects of flooding on plant diseases. In:kozlowski TT(ed). Flooding and plant Growth[J]. Orlando Academic press Inc,1984,221-256.
    [10]卓仁英,陈益泰.木本植物抗涝性研究进展[J].林业科学研究,2001,14(2):215-22.
    [11]曹福亮.水分(水淹)胁迫与林木适应性[M].北京:中国林业出版社,2003,227-242.
    [12]侯嫦英.水分胁迫对青檀等树种的生长及生理生化研究[D].南京:南京林业大学.2006.
    [13]Pezeshki SR. Wetland plant responses to soil flooding[J]. Environmental and Experimental Botany,2001,46:299-31.
    [14]Laan P, Berrevoets MJ, Lythe S, et al. Root morphology and aerenchyma formation as indicators of the flooded-tolerance of Rumex species[J]. Ecology,1989,77:693-703.
    [15]Visser EJW, Heijink CJ, Van H, et al. Regulatory role of auxin in adventitious root formation in two species of Rumex species, differing in their sensitivity to waterlogging[J]. Physiol Plant,1995,93:116-122.
    [16]Batzli JM, Dawson JO. Physiological and morphological responses of red alder and sitka alder to flooding[J]. Physiologia Plant arum,1997,99 (4):653-663.
    [17]Chen H, Qualls RG, Miller GC. Adaptive responses of Lepidium latifolium to soil flooding:biomass allocation, adventitious rooting, aerenchyma formation and ethylene production[J]. Environmental and Experimental Botany,2002,48:119-128.
    [18]李凤英,唐绍清,王任翔,等.中国蜘蛛抱蛋属植物营养器官的解剖学研究[J].广西植物,2004,2(43):239-242.
    [19]胡田田,康绍忠.植物淹水胁迫响应的研究进展[J].福建农林大学学报(自然科学版),2005,3(41):18-23.
    [20]Colmer TD, Cox MC, Voesenek LA. Root aeration inrice (Oryza sativa):Evaluation of oxygen, carbon dioxide, and ethylene as possible regulators of root acclimatizations[J]. New Phytologist,2006,170:767-777.
    [21]Armstrong W. Polarographic oxygen electrodes and their use in plant aeration studies[J]. Proceedings of the Royal Society of Edinburghh,1994,102B:511-527.
    [22]Armstrong J. Phragmites die-back:sulphide and acetic acid induced bud and root death, lignifications and blockages within aeration and vascular systems[J]. New Phytologist,1996,134:601-614.
    [23]孔妤,王忠,顾蕴洁,等.植物根内通气组织形成的研究进展[J],植物学通报,2008,25(2):248-253.
    [24]Armstrong W. Aeration in higher plants[J]. Adv Bot Res,1979,7:225-331.
    [25]Pezeshki SR, De Laune RD. Responses of seedlings of selected woody species to soil oxidation reduction conditions[J]. Environmental and Experimental Botany,1998,40 (2):123-133.
    [26]Armstrong W, Cousins D, Armstrong J, et al. Oxygen distribution in wetland plant roots and permeability barriers to gas-exchange with the rhizosphere:a microelectrode and modeling study with phragmites australis[J]. Ann Bot,2000,86, 687-703.
    [27]Schwartz BW, Yeung EC, Meinke DW. Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis[J]. Development,1994,120,3235-3245.
    [28]Visser EJW. Bogemann GM. Measurement of porosity in very small samples of plant tissue[J]. Plant and Soil,2003,253: 81-90.
    [29]Thomson CJ, Armstrong W, Waters I, et al. Aerenchyma formation and associated oxygen movement in seminal and nodal roots of wheat[J]. Plant Cell Environ.1990,13,395-403.
    [30]Jackson MB, Armstrong W. Formation of Aerenchyma and the Processes of Plant Ventilation in Relation to Soil Flooding and Submergence[J]. Plant Biology.1999,1 (3):274-287.
    [31]Armstrong J, Armstrong W, Beckett PM. Phragmites australis:Venturi-and humidity-induced convections enhance rhizome aeration and rhizosphere oxidation[J]. New Phytologist,1992,120:197-207.
    [32]Christine L, Oliver H, Michael H. Environmental factors regulating the radial oxygen loss from roots of Myriophyllum spicatum and Potamogeton crispus[J]. Aquatic Botany,2006 (84):333-340.
    [33]Caffrey JM, Kemp WM. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina[J]. Aquat Bot,1991,40:109-128.
    [34]Sorrell BK. Effect of external oxygen demand on radial oxygen loss by Juncus roots in titanium citrate solutions[J]. Plant Cell and Environment,1999,22:1587-1593.
    [35]Connell EL, Colmer TD, Walker DI. Radial oxygen loss from intact roots of Halophil a ovalis as a function of distance behind the root tip and shoot illumination[J]. Aquat Bot,1999,63:219-228.
    [36]Li S, Pezeshki SR, Shields FD. Partial flooding enhances aeration in adventitious roots of black willow (Salix nigra) cuttings[J]. Journal of Plant Physiology,2005,163 (6):619-628.
    [37]Colmer TD. Long-distance transport of gases in plants:a perspective on internal aeration and radial oxygen loss from roots[J]. Plant, cell and environment,2003,26:17-36.
    [38]邓泓,叶志鸿,黄铭洪.湿地植物根系泌氧的特征[J].华东师范大学学报(自然科学版),2007,6:69-76.
    [39]刘志宽,牛快快,马青兰,等.8种湿地植物根部泌氧速率的研究[J].贵州农业科学,2010,38(4):47-50.
    [40]叶勇,卢昌义,谭凤仪.木榄和秋茄对水演的生长与生理反应的比较研究[J].生态学报,2001,12(10):1654-1661.
    [41]钟雪花,杨万年,吕应堂.淹水胁迫下对烟草、油菜某些生理指标的比较研究[J].武汉植物学研究,2002,20(5):395-398.
    [42]李德明,张秀娟,陈娟.涝渍对植物光合作用的影响及其生理危害[J].北方园艺2010(5):210-212.
    [43]曹 晶,姜卫兵.夏秋季干旱胁迫对红叶石楠光合特性的影响[J].园艺学报,2007,34(1):163-172.
    [44]张宪法,丁贤昌.土壤水分对温室黄瓜结果期生长与生理特性的影响[J].园艺学报,2002,29(4):343-347.
    [45]Montree I, Ma QF, David WT. Photosynthetic and growth response of juvenile Chinese Kale(Brassica oleraceavar.alboglabra) and Caisin (Brassicarapasubsp.parachinensis) to waterlogging and water deficit [J]. Scientia Horticulture,2007,111 (2): 107-113.
    [46]赖齐贤,包志毅,朱祝军,等.干旱胁迫对转基因非洲菊光合作用的影响[J].园艺学报,2007,24(1):157-162.
    [47]王文泉,张福锁.高等植物厌氧适应的生理及分子机制[J].植物生理学通讯,2001,37(1):63-70.
    [48]Crawford RMM, Braendle R. Oxygen deprivation stress in a changing environment[J]. Jour Exp Bot,1996,47 (295): 145-159.
    [49]Good AG, Muench DG Long term anaerobic metabolism in root tissue:Metabolic products of pyruvate metabolism[J]. Plant Physiol,1993,101:1163-1168.
    [50]Sakano K. Revision of biochemical PH state:Involvement of alternative pathway metabolisms[J]. Plant Cell Physiol,1998, 39 (5):467-473.
    [51]Johson J, Cobb BG, Drew MC. Hypoxic induction of anoxia tolerance in root tips Zeamays[J]. Plant Physiol,1989,91: 837-841.
    [52]Joly CA. Flooding tolerance:a reinterpretation of Crawford's metabolic theory[J]. Proc of the Roy Soc of Edinburgh,1994, 102B:343-354.
    [53]Panda D, Sharma SG, Sarkar RK. Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.) [J]. Aquatic Botany,2008,88: 127-133.
    [54]Blokhina 0, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress:A review[J]. Annals of Botany,2003,91:179-194.
    [55]Smirnoff N, The role of active oxygen in the response of plants to water deficit and desiccation[J], New Phytologist. 1993,125:27-58.
    [56]姜斌,戴秋杰,刘晓忠,等.玉米叶片涝渍伤害过程中超氧自由基的积累[J].植物学报,1995,37(9):738-744.
    [57]张志远,郭巧生,邵清松.淹水胁迫对药用菊花苗期生理生化指标的影响[J].中国中药杂志,2009,34(18):2285-2289.
    [58]汤玉喜,刘友全,吴敏,等.淹水胁迫对美洲黑杨无性系保护酶系统的影响[J].中南林业科技大学学报,2008,28(3):1-3.
    [59]樊明寿,张福锁.植物通气组织的形成过程和生理生态学意义[J].植物生理学通讯,2002,38(6):611-615.
    [60]Fukao T, Bailey-Serres J. Ethylene:A key regulator of submergence responses in rice[J]. Plant Science,2008,175:43-51.
    [61]Ackson MB. Ethylene-promoted elongation:An adaptation to submergence stress[J]. Annals of Botany,2008,101:229-248.
    [62]Rzewuski G, Sauter M. Ethylene biosynthesis and signaling in rice[J]. Plant Science,2008,175:32-42.
    [63]冯道俊.植物水涝胁迫研究进展[J].中国水运,2006,10(6):252-254.
    [64]Ahmed S, Nawata E, Sakuratani T. Changes of endogenous ABA and ACC, and their correlations to photosynthesis and water relations in mungbean (Vigna radiate (L.) Wilczak cv. KPS1) during waterlogging[J]. Environmental and Experimental Botany,2006,57:278-284.
    [65]石翠翠,高雷更,惠颖,等.植物类受体蛋白激酶的研究进展[J].河北师范大学学报,自然科学版,2010,34(2):216-220.
    [66]杜琳,张荃.植物谷胱甘肽与抗氧化胁迫[J].山东科学,2008,21(2):27-32.
    [67]徐小万,雷建军,李颖,等.园艺植物耐湿涝伤害与适应机理研究进展[J].灌溉排水学报,2009,28(6):130-132.
    [68]陈儒钢,巩振辉,逯明辉,等.植物抗逆反应中的转录因子网络研究进展[J].农业生物技术学报,2010,18(1):126-134.
    [69]Huang S, Greenway H, Colmer TD, et al. Protein Synthesis by Rice Coleoptiles During Prolonged Anoxia:Implications for Glycolysis,Growth and Energy Utilization[J], Annals of Botany,2005,96 (4):703-715.
    [70]韦朝领,衷家明.植物抗逆境的分子生物学研究进展[J].安徽农业大学学报,2000,27(2):204-208.
    [71]Sachs MM, Subbaiah CC, Saab IN. Anaerobic gene expression and flooding tolerance in maize[J]. J. Exp. Bot,1996,47(1): 1-15.
    [72]曾建军,时明芝.植物涝害生理研究进展[J].聊城大学学报,2004,17(3):54-56.
    [73]刘新宇,黄玉碧.低氧胁迫对玉米根尖蛋白表达影响的研究[J].西南农业学报,2004,17(3):318-323.
    [74]Lindow SE. Theory and application of genetic engineering for resistance and avoidance[J]. Hort Sci,1994,29:581-587.
    [75]李义良,苏晓华,张冰玉,等.转vgb基因银腺杂种杨的耐涝性[J].林业科学,2009,45(7):26-31.
    [76]Dong JZ, Dunstan DI. Endochitinase and beta-1,3-glucanase genes are developmentally regulated during somatic embryo genesis in Piceaglauca[J]. Planta,1997,201 (2):189-194.
    [77]Subbaiah CC, Sachs MM. Molecular and Cellular Adaptations of Maize to Flooding Stress[J]. Annals of Botany,2003, 90:119-127.
    [78]Choi WG, Roberts DM. Arabidopsis NIP2;1, a Major Intrinsic Protein Transporter of Lactic Acid Induced by Anoxic Stress[J]. Biol. Chem.2007,282 (33):24209-24218.
    [79]Miyashita Y, Good AG Contribution of the GABA shunt to hypoxia-induced alanine accumulation in roots of Arabidopsis thaliana[J]. Plant Cell Physiol,2008,49 (1):92-102.
    [80]Ookawara R, Satoh S, Yoshioka T, et al. Expression of a-expansin and xyloglucan endotransglucosylase/hydrolase genes associated with shoot elongation enhanced by anoxia, ethylene and carbon dioxide in arrowhead (Sagittaria pygmaea Miq.)tubers[J]. Annals of Botany,2005,96:693-702.
    [81]曹福亮,方升佐.水分(淹水)胁迫与林木适应性[M].北京:中国林业出版社,2003,2.
    [82]周佳辰..不同楸树无性系苗期生长特性比较研究[D].南京林业大学硕士学位论文,2010,06.
    [83]Garcia AB, Almeida EJ, Iyer S, et al. Effects of osmoprotectants upon NaCl stress in rice[J]. Plant Physiol,1997,115: 156-169.
    [84]Suralta RR, Yamauchi A. Root growth, aerenchyma development, and oxygen transport in rice genotypes subjected to drought and waterlogging[J]. Environmental and Experimental Botany,2008,64:75-82.
    [85]郭尧君.蛋白质电泳实验技术(第二版)[M].北京:科学出版社,2005,5.
    [86]Ramagli LS. Quantifying protein in 2-D PAGE solubilization buffers[J]. Methods Mol Biol,1999,112:99-103.
    [87]历朝龙.生物化学与生物分子实验技术[M],浙江大学出版社,1999,22-23.
    [88]郭红彦.银杏营养贮藏蛋白质的分离鉴定及特性研究[D].南京林业大学博士学位论文,2007,6.
    [89]Candiano G, Bruschi M, Musante L, et al. Blue silver:a very sensitive colloidal Coomassie G-250 staining forproteome analysis [J]. Electrophoresis,2004,25:1327-1333.
    [90]欧祖兰.银杏热适应机理及耐热优良核用无性系选择[D].南京林业大学博士学位论文,2009,6.
    [91]陆健.蛋白质纯化技术及应用[M].北京:化学工业出版社,2005:280-281.
    [92]吴庆丰,王崇英,王新宇,等.山黧豆叶片蛋白质双向电泳技术的建立[J].西北植物学报,2006,26(7):1330-1336.
    [93]於朝广,殷云龙,落羽杉属杂交良种‘落羽杉中山302'和‘中山杉118’,林业科学,2010,46(5):181-182.
    [94]汪贵斌,曹福亮,张晓燕,等.涝渍胁迫对不同树种生长和能量代谢酶活性的影响[J].应用生态学报,2010,21(3):590-596.
    [95]申登峰,周晓雷,闫月娥,等.绿洲防护林体系主要造林树种蒸腾特征研究[J].甘肃林业科技,2003,28(1):1-6.
    [96]Lee RW. Physiological adaptations of the invasive cordgrass Spartina anglica to reducing sediments:rhizome metabolic gas fluxes and enhanced O2 and H2S transport[J]. Mar. Biol,2003,143,9-15.
    [97]Maricle BR, Lee RW. Root respiration and oxygen flux in salt marsh grasses from different elevational zones[J]. Mar. Biol. 2007,151,413-423.
    [98]杜丽萍,沈听,陈少良,等.细胞壁重构关键酶木葡聚糖内转糖苷酶/水解酶(XTH)的研究进展[J].农业生物技术学报,2010,18(3):604-609.
    [99]杜丽萍.胡杨木葡聚糖内转糖苷酶基因PeXET的克隆及功能分析[D].北京林业大学硕士学位论文,2009,11.
    [100]刘保才,王俊琪,刘浩峰,等.水分、温度的短期联合胁迫作用对温棚蔬菜生长的影响[J].上海蔬菜,2004(5):47-51.
    [101]韩亚琦,唐宇丹.盐胁迫抑制槲栎2变种光合作用机理研究[J].西北植物学报,2007,27(3):583-587.
    [102]曾永,陈希媛,渠康,等.水质监测新技术与实践[M].黄河水利出版社,2006,1.
    [103]李虎,邱建军,王立刚.农田土壤呼吸特征及根呼吸贡献的模拟分析[J].农业工程学报,2008,24(4):14-19.
    [104]Klok EJ, Wilson IW, Wilson D, et al.2002. Expression profile analysis of the low-oxygen response in Arabidopsis root cultures[J]. The Plant Cell,14:2481-2494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700