用户名: 密码: 验证码:
基于宁洱地震场地地震动反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先对中国地震台网收集的2007年6月3日5时34分56秒宁洱6.4级地震中获得的三分量加速度记录进行了初步分析。在此次地震记录中,中国数字强震动台网云南区域台网有20多个强震动台站记录到此次地震产生的地面运动。记录的最大峰值加速度为:431.2 cm/s2。而且有近一半的加速度记录的断层距小于100km。
     本文对此次地震记录分析,建立宁洱地区地震动衰减模型,然后利用场地土层响应分析,从而得出场地地震动理论值,为震害分析做出理论支撑。本文主要从地震动衰减与土层动力反应两方面进行了以下工作。
     在地震动衰减方面,首先依据强震记录,对宁洱地震强震动特性进行了回归分析,给出了此次地震断层距附近地区的PGA衰减规律、加速度反应谱等地震动特性。同时考虑到此次强震记录在数据数量上的局限所致误差,故在基于地震地质环境地及地震动观测资料的分布情况,将云南划分为三个区,并采用能反映衰减速率与震级关系的衰减模型,依据历年来的地震动记录进行分析,建立宁洱地区的地震动峰值衰减关系。
     另外,考虑到结构在强烈地震作用下,一般会进入非线性工作状态,其地震总输入能主要由结构的非弹性变形和阻尼来耗散。因此,能量才是对结构物进行非弹性设计或对结构物进行地震破坏评估的最合理参数。目前,基于能量的性态设计方法及理论也是地震工程中一个热门的研究课题。本文将进行一些探讨。
     工程场地是地震波传播的载体,地震波在不同场地中传播特性存在着差异,场地条件对地震波的传播有重要影响已成为公认的事实。对于建筑结构,因体积庞大、质量巨大,如果建造于非基岩上,其上、下部结构动力相互作用将是一个不容忽视的影响因素,则结构的输入地震动也将大大有别于自由场地震动。因此,对高层建筑结构进行地震反应分析时采用的地震动输入需仔细讨论。
     本文,利用理论分析方法——等效线性化土层地震反应分析方法进行分析处理。即先进行完全性弹性土层地震反应分析,然后对线性土体进行等效线性化处理,最后总结其计算程序框图。
     另外,文中进行了松软夹层在土层结构中的影响浅析,在前人研究的基础上,对其震害调查做了总结性分析。
Firstly the record of 3 component acceleration from Ms6.4 Ning'er Earthquake at 05:34:56 on June 3,2007, which are collected by Chinese earthquake station net, is analyzed preliminarily in this paper. In this earthquake record, Chinese station net of digital strong earthquake motion in Yunan has collected more than 20 pieces of records of surface motion. The max acceleration of this record is 431.2 cm/s2. And almost half pieces of acceleration records come form fault distance which is less than 100km.
     Analyzing this earthquake record, establishing the model of Ning'er ground motion attenuation and using ground response of soil analysis are to get ground notion theoretical value and prepare for earthquake disaster. Major tasks of this paper are two parts of ground motion attenuation and dynamic response of soil.
     In ground motion attenuation aspect, by regression analysis of Ning'er strong earthquake motion characteristic, PGA attenuation rule of earthquake fault distance arrounding this earthquake area and acceleration respone spectrum are given. Meanwhile considering about the limitation from the data quantity of this earthquake record made error, Yunan is divided to 3 parts based on distribution situation of geologic circumstance and observation data of earthquake motion. And then attenuation model that can response attenuation speed and seismicity relation is used. According to analyzing historical earthquake record, the relationg of Ning'er earthquake motion peak attenuation is established.
     Besides, a structure generally is put into non-linear state under the strong earthquake action. The earthquake in-put energy is dissipated by the damp and inelastic distortion. Hence, the energy is the best reasonable parameter when a structure is inelastic designed or evaluated for seismic hazard. Presently, the ultimate-state seismic design based on energy has been concerned in the field of earthquake engineering as a hot subject study.
     Engineering site are the carrier of seismic wave propagation, seismic waves at different venues in the existence of differences in propagation characteristics, site conditions on seismic wave propagation has a significant impact has become an accepted fact. For building structures, large, quality great, if the construction to non-bedrock, and its on the lower part of the structure will be a dynamic interaction of the influencing factors can not be ignored, then the structure of the input ground motion will also be significantly different from the free space vibration. Therefore, high-rise building structure seismic response analysis using the input ground motion to be discussed in detail.
     In this paper, utilizing theoretical analysis method, which means equivalent linear seismic response analysis of soil analysis of treatment methods, is that the first complete analysis of seismic response of elastic layer, and then carried out on the linear soil equivalent linearization, and finally summing up the calculation process diagram.
     In addition, the paper conducted a soft interlayer in the structure of the impact of soil Analysis, in previous studies, based on its investigation to do a summary of damage analysis.
引文
[01]胡聿贤.地震工程学[M].北京:地震出版社,1988.
    [02]工程地震文献选集:第一集[C].北京:建筑工业出版社,1985.
    [03]吴从晓,等.广州大学云南普洱6.4级地震考查报告[R].广州:广州大学公共安全与防灾减灾研究中心,2007.
    [04]Anderson J G. Nonparametric description of peak acceleration above a subduection trust[J].1997, Seismological Res. Lett.,68(1)
    [05]崔建文,李世成,高东,赵永庆,包一峰.云南分区地震动衰减关系[J].地震研究,2006,29(4):386-391.
    [06]Barker J S, et al. Modeling ground-motion attenuation in eastern North America[A].see:proc. Symp. On Seismic. Hazard, Ground Motion.1988, Soil-Liquefaction and Engineering Practice in Eastern North America
    [07]周云,宗兰,张文芳.抗震工程学[M].北京:科学技术出版社,2005.
    [08]耿淑伟.抗震设计中的地震动输入参数的研究[D]:[工学博士学位论文].中国哈尔滨:中国地震局工程力学研究所,2005
    [09]崔建文,李世成,高东,等.2007年宁洱6.4级地震强震动观测记录[J].地震研究,2007,30(4):384-387.
    [10]谢英情,李岩峰,张建国,等.2007年宁洱6.4级地震发震构造分析[J].地震研究,2007,30(6):388-391.
    [11]Toro G, Mcguice RI. Model of strong ground motion from earthquakes in Central and Eastern North America:Best estimates and uncertainties [J]. Seismological Researth Letter,68(1).
    [12]卢永坤曾应青周光全等.2007年宁洱6.4级地震震害综述[J].地震研究,2007,30(4)pp:364-372.
    [13]陈棋福.大尺度地震灾害损失预测评估方法研究[D].中国地震局地球物理所博士论文,1997.
    [14]Y.Li,S. T.Mau.Learning from Recorded Earthquake Motion of Buildings[J] Journal of Structrual Engineering, ASCE,1997,123(1) pp:62-69.
    [15]汪素云,俞言祥,高阿甲,等.中国分区地震动衰减关系的确定[J].中国地震,2000,16(2)pp:15-21.
    [16]胡聿贤.地震安全性评价技术教程[M].北京:地震出版社,1999
    [17]王培德,陈运秦,王鸣,等.中国西南地区近震源强地面运动特征[M].北京:地震出版社,1993
    [18]Burger R W, Somerville P G, Hermann R B. The effect of crustal structure on strong ground motion attenuation in eastern North America [J].BSSA,77
    [19]Donovan N C, Bornstein A E. Uncertainties in seismic risk procedures [A].1987.See:proc. Am. Soc. Civil Eng.,J. Geotech. Eng. Div.104
    [20]王亚勇,黎加佑,刘小弟.澜沧——耿马强震地面运动特征研究[J].地震工程与工程振动,1991,11(2)pp:11-19
    [21]向建光,高东.云南地区基岩水平峰值加速度衰减规律[J].中国地震,1992,3(8)
    [22]Abrahamson N A, Silva W J. Empirical response spectral attenuation relations for shallow crustal earthquake[J].1997, Seismological Res. Lett., 68(1)
    [23]Idriss I M. Evaluating seismic risk in engineering practice [A] .1985. See:proc.11th Inter. Conf. on Soil Mech.and Foundation Eng (1)
    [24]朱云士,基于强震观测记录的建筑结构抗震性能研究.硕士学位论文.南京:南京工业大学,2004
    [25]刘恢先.唐山大地震震害(二)[M].地震出版社,1986.
    [26]Shakal,A.,etalCSMIP strong—motion records from the Northridge, California earthquake Of 17 January 1994[R]. Report No.OSMS94-07, California Strong Motion Instrumentation Program,California Depautment of Conservation,1994
    [27]李鸿晶,朱士云,Mehmet Celebi.强震观测建筑结构的地震反应分析地震[J].地震工程与工程振动,2003,23(6)pp:31-35.
    [28]王海江,中小地震地震动衰减关系研究.硕士学位论文.哈尔滨:中国地震局工程力学研究所,2003.
    [29]李秀领,土层结构对地震动影响.硕士学位论文.哈尔滨:中国地震局工程力学研究所,2003.
    [30]刘曾武,朱镜清,陶夏新,等,场地土层的某些参数对地面振动反应的影响,中国科学院工程力学研究所地震工程研究报告集(四).北京,科学出版社,1981,pp:68-7.
    [31]李小军,彭青.不同类别场地地震动参数的计算分析.地震工程与工程振动,2001,21(1).
    [32]薄景山,李秀领,刘红帅.土层结构对地表加速度峰值的影响.地震工程与工程振动,2003,23(3).
    [33]李小军.一维土层地震反应线性化计算程序.1989,地震小区划—理论与实践,地震出版社.
    [34]李小军.场地土层对地震地面运动影响的分析方法.1992,世界地震工程,2期.
    [35]李小军.土的动力本构关系的一种简单函数表达式.1992,岩石工程学报,14(5).
    [36]Shakal, A. etal.CSMIP. Strong-motion records from the Northridge, California Earthquake of 17 January 1994, Response No. OSMS94-07, CSMIP California Departmento of conservation,1994.
    [37]胡聿贤,孙平善,章在墉,等.场地条件对震害和地震动的影响.地震工程与工程震动,1980(1),pp:34-41.
    [38]黄玉龙,郭迅,袁一凡,等.软泥夹层对香港软土场地地震反应的影响,自然灾害学报,2000,9(1),pp:109-116
    [39]孙静.非均等固结下土的动剪切模量对地面运动影响的初步研究.中国地震局工程力学研究所,2001,硕士学位论文,哈尔滨
    [40]王松涛,陈向东,魏钢,赵均.超软弱土层对场地地震反应的影响,第四届全国地震工程会议论文,哈尔滨,1994,pp:1-79~1-85
    [41]日本阪神大地震考察,地震出版社,1995.
    [42]苏经宇,卞谭健.工程场地选择中的几个问题,工程抗震,1990,6.
    [43]刘曾武,朱镜清,陶夏新,等.场地土层的某些参数对地面振动反应的影响,中国科学院工程力学研究所地震工程研究报告集(四),北京,科学出版社,1981,pp:68-78.
    [44]谢君斐,石兆吉.地面运动的反演及其在震害分析中的应用,地震工程与工程振动,1981,1(2),pp:9-24.
    [45]苏经宇,王广军.典型土层剖面的地震反应分析,工程抗震,1985(4),pp:16-20.
    [46]王广军.场地条件影响和抗震设计反应谱的若干问题.工程抗震,1992(3),pp:28-32.
    [47]Zarlnic, R and Tomazevic, M., Study of the Behavior of Masonry Infilled R. C. Frames Subjected to Seismic Loading-Part One, Institute for Testing and Research in Materials and Structures. Ljubljiana,Yugoslavia, ZRMK/IKPI—84/04.
    [48]熊章强,陈少华,李修忠.工程场地土层地震反应模型实例分析.物探与化探,2004,28(2).
    [49]Shakal, A., etalCSMIP strong—motion records from the Northridge California earthquake Of 17 January 1994[R].Report No.OSMS94-07,California Strong Motion Instrumentation Program, California Depautment of Conservation,1994.
    [50]Y. Li, S. T. Mau. Learning from Recorded Earthquake Motion of Buildings [J] Journal of Structrual Engineering, ASCE,1997,123(1):62-69.
    [51]Kahn, L. F. and Hamon, R. D., Infdled Walls for Earthquake Strengthening, ASCE Structural Divison Journal, Feb.,1979, Vol.106,283—296.
    [52]Y Li,S.T. Mau. A Case Study of MIMO System Identification Applied to Building Seismic Records[J]. Earthquake Engineering and Structural Dynamics, 1991,20 (5):1045-1064.
    [53]江静贝,符圣聪,崔卫国,《从两种场址的动力反应分析看设计谱的确定》,《抗震设计规范学术讨论会论文集》,1993
    [54]Govind on, P. et al., Ductility of Infillled Frames, Journal of American Concrete Institute, July—Aug.,1986,567-576. [55] M.D. Trifunac.70th Anniversary of Biot Spectrum[C].23rd ISET, 2003, Paper. No.19.
    [56]P. Bazzurro and C. A. Correll, Seismic hazard analysis of nonlinear structures Methodology[J]. Journal of Struct. Eng, ASCE,1994, 120(11):3320-3344.
    [57]SEAOC. Vision 2000, Performance based seismic engineering of buildings. Structural Engineers Association of California, Sacramento, CA.1995.
    [58]陈棋福.大尺度地震灾害损失预测评估方法研究[D].中国地震局地球物理所博 1997.
    [59]Ellingwood B. Reliability-based performance concept for building construction[J]. Structural Engineering Worldwide 1998, Paper T178-4, Elsevie (CD-ROM),1998.
    [60]Ghobarah, A. Performance-based design in earthquake engineering:state of development. Engineering.2001,111 (4):722-739.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700