用户名: 密码: 验证码:
城市垃圾填埋场地下水有机污染物迁移模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
垃圾渗滤液是垃圾在堆放和填埋过程中由于压实、发酵等生物化学降解作用,在降水作用下产生的一种高浓度的有害液体。其主要污染成分是有机污染物、氨氮和重金属离子等,并具有种类复杂性、危害性、隐蔽性、长期性、难以逆转性等特点。垃圾渗滤液一旦进入含水层中,将会使含水层受到污染。大多数垃圾渗滤液中含有苯。苯是一种毒性很大的致癌物质,也是一种易溶的具有较强迁移能力的物质,很容易进入地下水系统,污染地下水环境。因此,本文选择长安垃圾填埋场渗滤液中苯作为研究对象,研究其迁移规律具有重要的理论现实意义。
     本文通过野外调查,结合前人的地质、水文地质资料,分析了研究区含水层的特征。通过室内静态苯的吸附试验,发现固液比为1:1时,苯的分配系数Kd为0.5873;在固液比为2:1的条件下,Kd为0.85。通过渗透系数为0.4m/d、0.4m/d及1.2m/d,高度分别为30cm,30cm,60cm不同介质的三个土柱,发现苯在同样土柱高度条件下,两种不同含水介质粘土和细砂中迁移,粘土的吸附性比细砂大0.15mg/l;相同的入渗方式下,粘土穿透曲线的峰值比砂土滞后76min;相同介质中,通过的土柱距离不同:20cm、40cm、60cm,对苯的吸附量不同,分别为0.07 mg/l、1.19 mg/l、1.42 mg/l。在苯迁移物理模型的基础上,建立动力学数学模型,应用MODFLOW软件,对研究区地下水流场进行了模拟,应用MT3D软件对垃圾渗滤液中的苯在含水层中的迁移进行了10天、100天、1000天、5000天、20000天的模拟,结果发现随着时间的推移,地下水中苯迁移范围也逐渐增大,污染程度随着时间的增加逐渐加重,污染路径呈条带状,逐渐由南向北部迁移;在20000天后,污染晕的纵向迁移距离扩大为6500m左右,形成狭长浓度带至长安河。
Landfill leachate is high concentration of hazardous liquid by precipitation, the process of compaction, fermentation and biochemical degradation. The main pollutants are organic pollutant, nitrogen and heavy metal ions, with some characteristics: complexity of the type, fatalness, concealment, long-term, difficulty to reverse and so on. Once the landfill leachate entering the aquifer, the aquifer will be contaminated. Most landfill leachate contains benzene. Benzene is a toxic carcinogen, and is also a soluble material, with strong ability to migrate that it can easily into the groundwater system and pollute underground water. Therefore, this choice of benzene of Chang-an Landfill Leachate as a object to study its migration, will take on important theoretical and practical significance.
     Through field survey, combined with previous geological and hydro-geological data, this paper analyze the characteristics of the aquifer of the study area. Through indoor static assay of benzene, we found that Kd is 0.5873 when the solid-liquid ratio is 1:1; Kd is 0.85 in the condition of the solid-liquid ratio is 2:1. Through three soil columns, with the columns’K value are 0.4m/d, 0.4m/d and 1.2m/d respectively, and columns’height are 30cm, 30cm, 60cm respectively, we found that sorption capacity of clay is 0.15mg / l larger than sand, in the condition of same height soil column, with two different media of clay and sand. The peak of breakthrough curves of clay is 76 minutes behind sand with the same way of infiltration. In the same medium, through different height of the soil column: 20cm, 40cm, 60cm, the adsorption of benzene are 0.07 mg/l, 1.19 mg/l, 1.42 mg/l respectively. Setting up mathematical model which is based on the physical model of benzene migration, we simulate groundwater flow of study area by MODFLOW software, and use the MT3D software to forecast 10 days, 100 days, 1000 days, 5000 days, 20,000 days migration of benzene of landfill leachate in the aquifer, and found that as time goes by, benzene in groundwater is increasing, so do the pollution, and the pollution path strips were gradually migration from south to the north area. The longitudinal migration of contamination will expand to 6500m or so, and the concentration will reach Chang-an River in 20,000 days’time.
引文
[1]季成富,方映,肖波.固体废物管理技术进展.上海环境科学.1994,13(8):36-37;
    [2]赵珊,池勇志等.垃圾渗滤液处理技术研究进展[J].环境与保护.2004,6:38-41.
    [3]钱丽萍,赵士德,王逊.哈尔滨市区垃圾堆放场环境地质条件适宜性评价.地质科技情报.2005,24(4):79-83
    [4]王翊虹,赵勇胜.北京北天堂地区城市垃圾填埋对地下水的污染.水文地质工程地质.2002,6:45-48.
    [5]赵勇胜,洪梅,董军.城市垃圾填埋场地下环境污染及控制对策.长春工业大学学报.2007,7(28):136-139
    [6]张澄博.垃圾卫生填埋结构对地质环境效应的控制研究.地质灾害与环境保护.1999,10:68-72.
    [7] Paul J. S.,Maclael J.M. and Wayne W .L. Volatile organic compounds in untreated ambient groundwater of the United States 1985-1995, Environ. Sci. Technical. 1999,33(3): 4176-4187.
    [8]周文敏,傅德黔,孙宗光.水中优先控制污染物黑名单[J]中国环境监测,1990,6(40):1-3.
    [9]王正萍.环境有机污染物监测分析[M].2002,北京:化学工业出版社.
    [10]朱振岗.饮用水有机污染物致癌危险性研究进展/环境卫生学进展[M].北京:人民卫生出版社,1987:67-76.
    [11]李振声,李新中,有机物定性分析在观测生活垃圾卫生填埋场对地下水污染中的应用环境卫生2004. 2
    [12]朱振岗.饮用水有机污染物致癌危险性研究进展/环境卫生学进展[M].北京:人民卫生出版社,1987:67-76.
    [13]张澄博.垃圾卫生填埋结构对地质环境效应的控制研究.地质灾害与环境保护.1999,10:68-72.
    [14]王东辉陈晓枫.浅层地下水有机污染研究,化学工程师,2001,82(1): 60-61。
    [15]戚爱萍和侯继梅.济南地区岩溶地下水有机物污染状况调查,预防医学文献信息, 2001,7(6):637,700.
    [16]陈鸿汉,何江涛,刘苯,刘立才,李炳华.太湖流域某地区浅层地下水有机污染特征,地质通报, 2005, 24(8): 735-739.
    [17]王焰新,李义连,付素蓉,蔡鹤生,Broder Merkel3 ,Dana Ihm.武汉市区第四系含水层地下水有机污染敏感性研究.地球科学—中国地质大学学报, 2002,27(5): 616-620.
    [18]王翊虹,赵勇胜.北京北天堂地区城市垃圾填埋对地下水的污染.水文地质工程地质.2002,6:45-48.
    [19]夏立江.垃圾渗滤液对土壤铁锰有效性及地下水质的影响.土壤与环境.2002,11(1):6-9.
    [20]亢宇,鲁安怀,周平,李博文,李金洪.北京市六里屯垃圾填埋场的粘土矿物学特征及其对苯的吸附研究.中国非金属矿工业导刊.2004,1:34-38.
    [21] Leeheer J. A. and Huffman E.W.D. Classification of organic solutes in water using macroreticular resins. J. Geol. Educ. 1977.
    [22] Oregon State University. Disposal of environmentally hazardous wastes. Task Force Rept. Environ. Health Sci. Center Oregon State Univ. 1974.
    [23] Malcolm R.L., and Leenheer. The usefulness of organic carbon parameters in water quality investigations. Inst. Environ. Sci. Proc., Anaheim, Calif., 1973, 19: 336-340.
    [24] Shackelford W.M., and Keith L. H. Frequency of organic compounds identified in water. Water resources res., 1976,12: 65-70.
    [25] Mckee J.E. Oily substances and their effects on the benefical uses of water. State Water Pollution Control Board Publ. 1956,16, Sacramento, Calif.
    [26] Kay B. D., and Elrick D.L. Adsorption and movement of lindane in soils. J.Irr.Drain., 1967, 314-322.
    [27] Hamaker J. W., and Thompson J. M. Physicochemical relationships of organic chemicals in soils-adsorption. Organic chemicals in the Soil Environment, 1972, 49. Ed. C. A. Goring and J. W. Hamahu. Marcel Dekker, New York.
    [28] Davison C. A. A hydrogeochemical investigation of a brine disposal lagoon-aquifer system, Esterhazy, Saskatchewan. Unpublished Master’s thesis, University of Waterloo, 1976.
    [29] Hague R., Schmedding D.W. and Freed V.H. Aqueous solubility, adsorption, and vapour behaviour ofpolychlorinated bipheryl arochor 1254. J Environ. Sci. Technol., 1974, 8(2): 139-142.
    [30] Iliff N. A. Organic chemicals in global aspects of chemistry. Toxicology and technology as applied to the Environment. 1973, 2: 64. Ed. F. Coulson and F. Korte. Academic Press, New York.
    [31] Ineson J. and Packham R. F. Contamination of water by petroleum products. The joint Problems of the oil and water Industry , 1967, 97-16. Ed. Peter Hepple. Proc. Symp. Brighton, England, Inst. Petrol.
    [32] Schwille F. Petroleum contamination of the subsoil—a hydrological problem. The Joint Problems of the Oil and water Industries, 1967, 23-53. Ed. Peter Hepple. Elsevier, Amsterdam.
    [33] Van am J. The migration of hydrocarbons in a water bearing stratum. The Joint Problems of the Oil and water Industries, , 1967. Ed. Peter Hepple. Institute of Petroleum, London.
    [34] Dietz D. N. Pollution of permeable strata by oil components. Water pollution by oil,, 1971, 128-141, Ed. Peter Hepple. Elsevier, Amsterdam.
    [25] Christopher J. D. and David B. Dimension reduction and source identification for multispecies groundwater contamination. Journal of Contaminant Hydrology, 2001,48: 151–165.
    [36] Holt M. S. Sources of Chemical Contaminants and Routes into the Freshwater Environment, Food and Chemical Toxicology 2000, 38: S21-S27
    [37] Edgar P.J., Davies I.M. , Hursthouse A.S. and Matthews J.E. The Biogeochemistry of PolychlorinatedBiphenyls (PCBs) in the Clyde: Distribution and Source Evaluation, Marine Pollution Bulletin, 1999, 38(6): 486-496.
    [38] James B. F. Source-identification investigations of petroleum contaminated groundwater in the Missouri Ozarks. Engineering Geology, 1999, 52: 3–13.
    [39] Henry E.J. and Smith J.E. The effect of surface-active solutes on water flow and contaminant transport in variably saturated porous media with capillary fringe effects. Journal of Contaminant Hydrology, 2002, 56: 247- 270.
    [40] Kleineidam S., Ru¨gner H. and Grathwohl P. Influence of petrographic composition organic matter distribution of fluvial aquifer sediments on the sorption of hydrophobic contaminants. Sedimentary Geology, 1999, 129: 311–325.
    [41] Mark E. Z., Cynthia T., Judith C. Pennington R. Attenuation mechanisms of N-nitrosodimethylamine at an operating intercept and treat groundwater remediation system Douglas Gunnison, Journal of Hazardous Materials B73, 2000, 179-197.
    [42] Steven F. T. , David N. L. and Steven A. B. Assessing the natural attenuation of organic contaminants in aquifers using plume-scale electron and carbon balances: model development with analysis of uncertainty and parameter sensitivity. Journal of Contaminant Hydrology, 2001, 53: 199- 232.
    [43] Lizette R. C. and Jeannette M. F. Correlation model to predict residual immiscible organic contaminants in sandy soils. Journal of Hazardous Materials B72, 2000,39-52.
    [44] Gregory D. F., Eldon C. R., Barry G. and David J. V. Hydrogeochemistry and transport of organic contaminants in an urban watershed of Chesapeake Bay (USA). Applied Geochemistry, 2000, 15: 901-915.
    [45] Zhu K., Chen H., Li G. and Liu Z. In situ remediation of petroleum compounds in groundwater aquifer with chlorine dioxide, Water Research, 1998, 32( 5): 1471-1480.
    [46] Connell D. W., Wu R. S. S., Richardson B. J., Leung K., Lam P. S. K. and Connell P. A. Occurrence of Persistent Organic Contaminants and Related Substances in Hong Kong Marine Areas: an Overview, Marine Pollution Bulletin, 1998, 36( 5): 376-384.
    [47] Setarge B., Danzer J., Klein R. and Grathwohl P. Partitioning and Interfacial Tracers to Characterize Non-Aqueous Phase Liquids (NAPLs) in Natural Aquifer Material, Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 1999, 24( 6): 501-510.
    [48] Steven F. T., Sean Q., Michael J. S., Steven A. B., Simon B. and David N. L. Processes controlling the distribution and natural attenuation of dissolved phenolic compounds in a deep sandstone aquifer, Journal of Contaminant Hydrology, 2001, 53( 3-4): 233-267 .
    [49] Mayer K. U., Benner S. G., Frind E. O., Thornton S. F. and Lerner D. N. Reactive transport modeling of processes controlling the distribution and natural attenuation of phenolic compounds in a deep sandstone aquifer, Journal of Contaminant Hydrology, 2001, 53( 3-4): 341-368.
    [50]Beeman R. E. and Bleckmann C. A. Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results, Journal of Contaminant Hydrology, 2002, 57( 3-4): 147-159.
    [51] Leenheer J .A., Hsu J. and Barber L. B. Transport and fate of organic wastes in groundwater at the Stringfellow hazardous waste disposal site, southern California, Journal of Contaminant Hydrology, 2001, 51( 3-4):163-178.
    [52]中华人民共和国卫生部,国家标准化管理委员会.生活饮用水卫生标准(报批稿) [S]. GB/T14848—93地下水质量标准
    [53]陈崇喜,唐仲华.地下水流动问题数值方法[M].中国地质大学出版社.1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700