用户名: 密码: 验证码:
轴对称偏振光激励表面等离子体共振及金属纳米颗粒增强荧光辐射的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文是在国家重点基础研究发展计划(973)项目,No.2006cb302905;国家自然科学基金重点项目,60736037;国家自然科学基金,10704070的资助下完成的。主要从理论和实验上研究了轴对称偏振光束激励表面等离子体共振在特殊结构中的性质和应用,以及发光层厚度对金属增强荧光辐射的影响。
     本论文主要的研究工作和成果和创新点如下:
     1.对径向偏振光聚焦光斑进行了理论计算。研究发现只有经透镜折射后的光线与光轴的最大夹角超过70度时,聚焦光斑直径才小于同样聚焦条件下线偏振光在其偏振方向的聚焦光斑直径,但仍大于线偏振光垂直于偏振方向的聚焦光斑。通过在光路中加入光阑的方法,能进一步减小径向偏振光的聚焦光斑直径。如在聚焦数值孔径为NA=1.4,加入光阑的大小为NA=1时,聚焦光斑的直径只有加光阑前的0.64倍。同样的方法应用于线偏振光聚焦也能减小聚焦光斑垂直于偏振方向的光斑直径,但沿偏振方向的光斑会增大。径向偏振光只能在一定范围内在一维方向减小聚焦光斑的直径。
     2.我们研究了径向偏振光照明的光纤SPR传感器的传感特性。由于径向偏振光光束截面上偏振态中心对称分布的特性,可以更有效的激励SRP,具有更高的灵敏度。理论与实验结果表明与线偏振光照明的情况相比,径向偏振光照明的光纤SPR传感器能够提高3倍的灵敏度。
     3.研究了轴对称偏振光束在泄露辐射模显微镜激励SPR的应用。首先通过SPR泄露场的成像观察,研究了泄露辐射模显微镜激励SPR的特点。利用轴对称偏振光束照明的泄露辐射模显微镜激励SPR,在物镜后焦面成像测量样品的空间傅立叶光谱信息,可以准确的测量超薄有机膜(小于100nm)的厚度。并利用角向偏振光在不同空间位置偏振方向不一样的特点,测量介质双折射。实验中利用角向偏振光照明泄露辐射模显微镜激励波导模共振的方式测量了双折射率差为Δn≈0.005的偶氮聚合物的双折射特性。
     4.理论分析了发光层厚度变化对金属增强荧光辐射的影响。计算结果表明,随发光层厚度的增加,MEF先是急剧增大,然后变缓,最后缓慢减小。实验中我们获得发光层厚度变化在15nm-70nm的薄膜并测量了其荧光增强因子,结果与理论分析基本一致,实验中获得大约5倍的荧光辐射增强因子。
The research work within this dissertation is supported by the National Key Basic Research Program of China (No.2006CB302905), the Key Program of National Natural Science Foundation of China (No.60736037), the National Natural Science Foundation of China (No.10704070) and so on. The applications of cylindrical vector beams in some special structure to excite surface plasmon resonance and the effects of metal enhanced fluorescence with different emission film thickness are studied experimentally and theoretically.
     The main research works and highlights are as following:
     1. By study the focal character of radially polarized beams and linear polarized beams, we find that only when the angle between refract light and optical axis larger than 70 degree, the focal spot size of radially polarized beams is smaller than the linear polarized beams focal spot along the polarization direction. But it is still larger than the spot in perpendicular direction. By the method of add in an aperture diaphragm, the spot size of radially polarized beams can be reduce. The focal spot with an aperture diaphragm of diameter N.A=1 is smaller than the spot without aperture diaphragm of 0.64 times under the focal N.A=1.4. This method is not suit for linear polarized beams situation. By using radially polarized beams, the focal spot size can be reduced along one direction in a certain range.
     2. We study the sensing properties of fiber-optic surface plasmon resonance using radially polarized beams. Because of the rotational symmetry of sensing fiber, radially polarized beams have high efficiency to excite surface plasmon and have high sensitivity. Both the experiment and simulation result show the sensitivity of radially polarized beams is about 3 times higher than that of linear polarized beam.
     3. We study the application of cylindrical vector beams in leaky radiation mode microscope excitation structure. First we study the character of SPR excitation of leaky radiation mode microscope by imaging the SPR leaky mode. Then we observe the image on back focal plane of objective lens to get the information of sample. By using radially polarized beams illumination, it can measure the thickness of thin film accurately (smaller than 100nm). The azimuthally polarized beams have different polarization in different spatial location. Using of this character, we can measure the birefringence. In experiment, we measure the birefringence ofΔn≈0.005 by using the waveguide mode resonance excited by leaky radiation mode microscope with azimuthally polarized beams illumination.
     4. The influence of emission film thickness to metal enhanced fluorescence is analyzed theoretical. Calculation results show that when the emission film thickness increase, MEF increased quickly at first. Then the increasing of MEF slows down. Finally, the MEF reduced as emission film thickness increase. In experiment we change the emission film from 15nm to 70nm and obtain the enhancement of 5-fold. The experimental results are coincident qualitatively to the predictions of an integral enhanced fluorescent mode.
引文
1. Lakowicz JR. Radiative decay engineering:Biophysical and biomedical applications. Analytical Biochemistry.2001 Nov 1;298(1):1-24.
    2. Geddes CD, Lakowicz JR. Metal-enhanced fluorescence. J Fluoresc.2002 Jun; 12(2):121-9.
    3. Malshukov AG Surface-Enhanced Raman-Scattering-the Present Status. Physics Reports-Review Section of Physics Letters.1990 Oct;194(5-6):343-9.
    4. Homola J. Present and future of surface plasmon resonance biosensors. Analytical and Bioanalytical Chemistry.2003 Oct;377(3):528-39.
    5. Raether H. Surface Plasmons. Berlin:Springer.1988.
    6. Wood R. On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Phil Magm.1902;4:396-402.
    7. OTTO A. Excitation of Nonradiative Surface Plasma Waves in Silver by the Method of Frustrated Total Reflection. Zeitschrift ffir Physik 1968;216:398-410.
    8. E. Kretschmann HR, Z. Radiative decay of non-radiative surface plasmons excited by light. Naturforsch.1968;23A:2135-6.
    9. www.biacore.com.
    10. Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, et al. T-cell-receptor affinity and thymocyte positive selection. Nature.1996;381(6583):616-20.
    11. Aizpurua J, Hanarp P, Sutherland DS, Kall M, Bryant GW, de Abajo FJG Optical properties of gold nanorings. Physical Review Letters.2003;90(5).
    12.玻恩和沃耳夫.光学原理[M].北京:电子工业出版社.2006.
    13. H.Raether. Surface Plasmons. Berlin:Springer.1988.
    14. Agranovich VM. Surface Polaritons. Amsterdam:North-Holland.1982.
    15. Salomon L, Bassou G, Aourag H, Dufour JP, de Fornel F, Carcenac F, et al. Local excitation of surface plasmon polaritons at discontinuities of a metal film:Theoretical analysis and optical near-field measurements. Physical Review B.2002 Mar 15;65(12):-.
    16. Hecht B, Bielefeldt H, Novotny L, Inouye Y, Pohl DW. Local excitation, scattering, and interference of surface plasmons. Physical Review Letters.1996 Aug 26;77(9):1889-92.
    17. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B. 2003;107(3):668-77.
    18. Moskovits M. Surface-enhanced spectroscopy. Rev Mod Phys.1985 July;57(3):783-826.
    19. Mills DL. Theory of STM-induced enhancement of dynamic dipole moments on crystal surfaces. Phys Rev B.2002 Mar 15;65(12):-.
    20. Mackowski S, Wormke S, Maier AJ, Brotosudarmo THP, Harutyunyan H, Hartschuh A, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Letters. 2008 Feb;8(2):558-64.
    21. Pompa PP, Martiradonna L, Della Torre A, Della Sala F, Manna L, De Vittorio M, et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nat Nanotechnol. 2006 Nov;1(2):126-30.
    22. Neal TD, Okamoto K, Scherer A. Surface plasmon enhanced emission from dye doped polymer layers. Optics Express.2005 Jul 11;13(14):5522-7.
    23. Mie G Beitrage zur optik triiber Medien, speziell kolloidaller Metalosungen. Ann Phys. 1908;25:337-445.
    24. Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. Journal of Physical Chemistry B.1999 May 27; 103(21):4212-7.
    25. El-Sayed MA. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research.2001;34(4):257-64.
    26. Waterman PC. Symmetry, Unitarity, and Geometry in Electromagnetic Scattering. Physical Review D.1971;3(4):825.
    27. Novotny L, Pohl DW, Hecht B. Scanning near-Field Optical Probe with Ultrasmall Spot Size. Optics Letters.1995 May 1;20(9):970-2.
    28. Moreno E, Erni D, Hafner C, Vahldieck R. Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. J Opt Soc Am A.2002 Jan;19(1):101-11.
    29. Purcell EMP, C. R. Scattering and Absorption of Light by Nonspherical Dielectric Grains. Astrophysical Journal.1973;186:705-14.
    30. Draine BT. The discrete-dipole approximation and its application to interstellar graphite grains. Astrophysical Journal.1988;333:848-72.
    31. Draine BTG, J. Beyond Clausius-Mossotti-Wave propagation on a polarizable point lattice and the discrete dipole approximation. Astrophysical Journal.1993;405:685-97.
    32. Draine BT, Flatau PJ. Discrete-Dipole Approximation for Scattering Calculations. J Opt Soc Am A.1994 Apr; 11 (4):1491-9.
    33. Youngworth KS, Brown TG Focusing of high numerical aperture cylindrical-vector beams. Optics Express.2000 Jul 17;7(2):77-87.
    34. Biss DP, Youngworth KS, Brown TG Dark-field imaging with cylindrical-vector beams. Applied Optics.2006 Jan 20;45(3):470-9.
    35. Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, Sasada H. Novel optical trap of atoms with a doughnut beam. Physical Review Letters.1997 Jun 23;78(25):4713-6.
    36. Zhan WCaQ. Optimal plasmonic focusing with radial polarization. Proc SPIE. 2007;6450:64500D.
    37. Chen WB, Zhan QW. Numerical study of an apertureless near field scanning optical microscope probe under radial polarization illumination. Optics Express.2007 Apr 2; 15(7):4106-11.
    38. Moh KJ, Yuan XC, Bu J, Zhu SW, Gao BZ. Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams. Optics Express.2008 Dec 8;16(25):20734-41.
    39. Dorn R, Quabis S, Leuchs G Sharper focus for a radially polarized light beam. Physical Review Letters.2003 Dec 5;91(23):-.
    40. Zhan QW. Trapping metallic Rayleigh particles with radial polarization. Optics Express. 2004 Jul 26;12(15):3377-82.
    41. Zhao YQ, Zhan QW, Zhang YL, Li YP. Creation of a three-dimensional optical chain for controllable particle delivery. Optics Letters.2005 Apr 15;30(8):848-50.
    42. Novotny L, Beversluis MR, Youngworth KS, Brown TG. Longitudinal field modes probed by single molecules. Physical Review Letters.2001 Jun 4;86(23):5251-4.
    43. Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ. Orientational imaging of subwavelength au particles with higher order laser modes. Nano Letters.2006 Jul 12;6(7):1374-8.
    44. Zhan QW. Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam. Optics Letters.2006 Jun 1;31(11):1726-8.
    45. Zhang DG, Yuan XC, Bouhelier A, Yuan GH, Wang P, Ming H. Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film (vol 95,101102, 2009). Appl Phys Lett.2009 Oct 26;95(17):-.
    1. Zhan Q. Cylindrical vector beams:from mathematical concepts to applications. Advances in Optics and Photonics.2009;1:1-57.
    2. Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams. Optics Communications.2002 Mar 1;203(1-2):1-5.
    3. Quabis S, Dorn R, Eberler M, Glockl O, Leuchs G. Focusing light to a tighter spot. Optics Communications.2000 May 25;179(1-6):1-7.
    4. Hao B, Leger J. Experimental measurement of longitudinal component in the vicinity of focused radially polarized beam. Optics Express.2007 Mar 19;15(6):3550-6.
    5. Dorn R, Quabis S, Leuchs G. Sharper focus for a radially polarized light beam. Physical Review Letters.2003 Dec 5;91(23):-.
    6. Youngworth KS, Brown TG. Focusing of high numerical aperture cylindrical-vector beams. Optics Express.2000 Jul 17;7(2):77-87.
    7. Zhan QW. Trapping metallic Rayleigh particles with radial polarization. Optics Express. 2004 Jul 26;12(15):3377-82.
    8. Zhao YQ, Zhan QW, Zhang YL, Li YP. Creation of a three-dimensional optical chain for controllable particle delivery. Optics Letters.2005 Apr 15;30(8):848-50.
    9. Zhan WCaQ. Optimal plasmonic focusing with radial polarization. Proc SPIE. 2007;6450:64500D.
    10. Sendur K, Challener W, Mryasov O. Interaction of spherical nanoparticles with a highly focused beam of light. Optics Express.2008 Mar 3;16(5):2874-86.
    11. Novotny L, Beversluis MR, Youngworth KS, Brown TG. Longitudinal field modes probed by single molecules. Physical Review Letters.2001 Jun 4;86(23):5251-4.
    12. Failla AV, Qian H, Qian H, Hartschuh A, Meixner AJ. Orientational imaging of subwavelength au particles with higher order laser modes. Nano Letters.2006 Jul 12;6(7):1374-8.
    13. Arimoto R, Saloma C, Tanaka T, Kawata S. Imaging Properties of Axicon in a Scanning Optical-System. Applied Optics.1992 Nov 1;31(31):6653-7.
    14. Leiserson I, Lipson SG, Sarafis V. Superresolution in far-field imaging. Optics Letters.2000 Feb 15;25(4):209-11.
    15. Brown KSYaTG. Inhomogeneous Polarization in Scanning Optical Microscopy. Proceedings of SPIE.2000;3919:605-7422/00/.
    16. Zhan QW, Leger JR. Microellipsometer with radial symmetry. Applied Optics.2002 Aug 1;41(22):4630-7.
    17. Lieb MA, Meixner AJ. A high numerical aperture parabolic mirror as imaging device for confocal microscopy. Optics Express.2001 Mar 26;8(7):458-74.
    18. Quabis S, Dorn R, Eberler M, Glockl O, Leuchs G. The focus of light-theoretical calculation and experimental tomographic reconstruction. Appl Phys B-Lasers O.2001 Jan;72(1):109-13.
    19. Jia BH, Gan XS, Gu M. Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD. Optics Express.2005 Sep 5;13(18):6821-7.
    20. Wolf E. Electromagnetic diffraction in optical systems 1 An integral representation of the image field.1959.
    21. E. Wolf BR. Electromagnetic diffraction in optical systems2. Structure of the image field in an aplanatic system.1959.
    22. Biss DP, Brown TG Cylindrical vector beam focusing through a dielectric interface. Optics Express.2001 Nov 5;9(10):490-7.
    23. Lerman GM, Levy U. Effect of radial polarization and apodization on spot size under tight focusing conditions. Optics Express.2008 Mar 31;16(7):4567-81.
    24. Zhan QW, Leger JR. Focus shaping using cylindrical vector beams. Optics Express.2002 Apr 8;10(7):324-31.
    1. RC Jorgenson SY. A fiber-optic chemical sensor based on surface plasmon resonance. Sensors and Actuators B:Chemical,.1993.
    2. Zhan Q. Cylindrical vector beams:from mathematical concepts to applications. Advances in Optics and Photonics.2009; 1:1-57.
    3. T Erdogan OK, GW Wicks, DG Hall. Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser. Applied Physics.1992;60.
    4. Shih C. Radial polarization laser resonator. US Patent 1994.
    5. Pohl D. Operation of a ruby laser in the purely transverse electric mode TE01. Appl Phys Lett. 1972.
    6. DJ Armstrong MP, AV Smith. Generation of radially polarized beams with an image-rotating resonator. Applied optics.2003.
    7. Oron R, Blit S, Davidson N, Friesem AA, Bomzon Z, Hasman E. The formation of laser beams with pure azimuthal or radial polarization. Appl Phys Lett.2000 Nov 20;77(21):3322-4.
    8. Fridman M, Machavariani G, Davidson N, Friesem AA. Fiber lasers generating radially and azimuthally polarized light. Appl Phys Lett.2008 Nov 10:93(19):-.
    9. Niziev VG, Chang RS, Nesterov AV. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer. Applied Optics.2006 Nov 20;45(33):8393-9.
    10. Tidwell SC, Ford DH, Kimura WD. Generating Radially Polarized Beams Interferometrically. Applied Optics.1990 May 20;29(15):2234-9.
    11. Grosjean T, Suarez M, Sabac A. Generation of polychromatic radially and azimuthally polarized beams. Appl Phys Lett.2008 Dec 8;93(23):-.
    12. Stalder M, Schadt M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters. Optics Letters.1996 Dec 1;21(23):1948-50.
    13. Lerman GM, Levy U. Generation of a radially polarized light beam using space-variant subwavelength gratings at 1064 nm. Optics Letters.2008 Dec 1;33(23):2782-4.
    14. Moh KJ, Yuan XC, Bu J, Low DKY, Burge RE. Direct noninterference cylindrical vector beam generation applied in the femtosecond regime. Appl Phys Lett.2006 Dec 18;89(25):-.
    15. Moh KJ, Yuan XC, Bu J, Burge RE, Gao BZ. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Applied Optics.2007 Oct 20;46(30):7544-51.
    16. Viswanathan NK, Inavalli VVGK. Generation of optical vector beams using a two-mode fiber. Optics Letters.2009 Apr 15;34(8):1189-91.
    17. Grosjean T, Courjon D, Spajer M. An all-fiber device for generating radially and other polarized light beams. Optics Communications.2002 Mar 1;203(1-2):1-5.
    18. Volpe G, Petrov D. Generation of cylindrical vector beams with few-mode fibers excited by Laguerre-Gaussian beams. Optics Communications.2004 Jul 1;237(1-3):89-95.
    19. Zhan QW, Leger JR. Microellipsometer with radial symmetry. Applied Optics.2002 Aug 1;41(22):4630-7.
    20.叶培大.光波导技术基本理论[M]人民邮电出版社.1981.
    21. Sharma AK, Gupta BD. Absorption-based fiber optic surface plasmon resonance sensor:a theoretical evaluation. Sensors and Actuators B-Chemical.2004 May 15;100(3):423-31.
    22. Sharma AK, Gupta BD. Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Applied Optics.2006 Jan 1;45(1):151-61.
    23. Yan J, Lu YH, Wang P, Gu C, Zheng RS, Chen Y, et al. Improving the sensitivity of fiber-optic SPR sensor via radially polarized beam excitation. Chin Opt Lett.2009 Oct 10;7(10):909-11.
    1. Benno Rothenhausler WK. surface plasmon microscopy. Nature.1988;332:14.
    2. Giebel KF, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, et al. Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophysical Journal.1999 Jan;76(1):509-16.
    3. Knobloch H, vonSzadaBorryszkowski G, Woigk S, Helms A, Brehmer L. Dispersive surface plasmon microscopy for the characterization of ultrathin organic films. Appl Phys Lett.1996 Oct 14;69(16):2336-7.
    4. Hook F, Kasemo B, Nylander T, Fant C, Sott K, Elwing H. Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking:A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical Chemistry.2001 Dec 15;73(24):5796-804.
    5. Berger CEH, Kooyman RPH, Greve J. Resolution in Surface-Plasmon Microscopy. Rev Sci Instrum.1994 Sep;65(9):2829-36.
    6. Kano H, Knoll W. A scanning microscope employing localized surface-plasmon-polaritons as a sensing probe. Optics Communications.2000 Aug 1;182(1-3):11-5.
    7. Kano H. Excitation of surface plasmon polaritons by a focused laser beam. Top Appl Phys. 2001;81:189-206.
    8. Watanabe K, Horiguchi N, Kano H. Optimized measurement probe of the localized surface plasmon microscope by using radially polarized illumination. Applied Optics.2007 Aug 1;46(22):4985-90.
    9. Zhan Q. Cylindrical vector beams:from mathematical concepts to applications. Advances in Optics and Photonics.2009;1:1-57. 10. www.biacore.com.
    11. A.Maier S. Plasmonics:Fundamentals and Applications, pring Science+Business Media LLC, UK.2007.
    12. Hohenau A, Krenn JR, Stepanov AL, Drezet A, Ditlbacher H, Steinberger B, et al. Dielectric optical elements for surface plasmons. Optics Letters.2005 Apr 15;30(8):893-5.
    13. Heather J. Patrick RA, Bryan M. Barnes and Thomas A. Germer,. Scatterfield microscopy using back focal plane imaging with an engineered illumination field. SPIE.2006;6152.
    14. E. Wolf BR. Electromagnetic diffraction in optical systems2. Structure of the image field in an aplanatic system.1959.
    15. Moh KJ, Yuan XC, Bu J, Burge RE, Gao BZ. Generating radial or azimuthal polarization by axial sampling of circularly polarized vortex beams. Applied Optics.2007 Oct 20;46(30):7544-51.
    16. Evans SD, Flynn TM, Ulman A. Self-Assembled Multilayer Formation on Predefined Templates. Langmuir.1995 Oct;11(10):3811-4.
    17. Duschl C, Liley M, Lang H, Ghandi A, Zakeeruddin SM, Stahlberg H, et al. Sulphur-bearing lipids for the covalent attachment of supported lipid bilayers to gold surfaces:A detailed characterisation and analysis. Mat Sci Eng C-Biomim.1996 Mar;4(1):7-18.
    18. Jordan CE, Frutos AG, Thiel AJ, Corn RM. Surface plasmon resonance imaging measurements of DNA hybridization adsorption and streptavidin/DNA multilayer formation at chemically modified gold surfaces. Analytical Chemistry.1997 Dec 15;69(24):4939-47.
    19. Kano H, Knoll W. Locally excited surface-plasmon-polaritons for thickness measurement of LBK films. Optics Communications.1998 Aug 1;153(4-6):235-9.
    20.王沛,明海,梁忠诚.偶氮侧链聚合物液晶薄膜光致双折射及其光存储实验.量子电子学报.2002:19.
    21. Maitland DJ, Walsh JT. Quantitative measurements of linear birefringence during heating of native collagen. Laser Surg Med.1997;20(3):310-8.
    22. deBoer JF, Milner TE, vanGemert MJC, Nelson JS. Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Optics Letters.1997 Jun 15;22(12):934-6.
    23. Wang BL, Oakberg TC. A new instrument for measuring both the magnitude and angle of low level linear birefringence. Rev Sci Instrum.1999 Oct;70(10):3847-54.
    24. Sato T, Araki T, Sasaki Y, Tsuru T, Tadokoro T, Kawakami S. Compact ellipsometer employing a static polarimeter module with arrayed polarizer and wave-plate elements. Applied Optics.2007 Aug 1;46(22):4963-7.
    25. Justin Wolfe RC. High Speed Imaging Polarimeter. Proceedings of SPIE.2003;5158.
    26. Schmitt JM. Optical coherence tomography (OCT):A review. Ieee J Sel Top Quant.1999 Jul-Aug;5(4):1205-15.
    27. Zhang DG, Yuan XC, Bouhelier A, Yuan GH, Wang P, Ming H. Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film (vol 95,101102, 2009). Appl Phys Lett.2009 Oct 26;95(17):-.
    28. Tanaka T, Kawata S. Real-time observation of birefringence by laser-scanning surface plasmon resonance microscope. Optics Express.2005;13(18):6905-11.
    29. T Todorov NT, L Nikolova. High-sensitivity material with reversible photo-induced anisotropy. Optics communications.1983; 47:22,:123-6.
    30. Hagen R, Bieringer T. Photoaddressable polymers for optical data storage. Advanced Materials.2001 Dec; 13(23):1805-10.
    31. Hirose T, Omatsu T, Kato R, Hoshino K, Harada K, Watanabe T, et al. Azo-benzene polymer thin-film laser amplifier with grating couplers based on light-induced relief hologram. Optics Communications.2003 Dec 15;228(4-6):279-83.
    32. Lee SS, Garner S, Steier WH, Shin SY. Integrated optical polarization splitter based on photobleaching-induced birefringence in azo dye polymers. Applied Optics.1999 Jan 20;38(3):530-3.
    33. Teng CC, Mortazavi MA, Boudoughian GK. Origin of the Poling-Induced Optical Loss in a Nonlinear-Optical Polymeric Wave-Guide. Appl Phys Lett.1995 Feb 6;66(6):667-9.
    34. Kim DY, Tripathy SK, Li L, Kumar J. Laser-Induced Holographic Surface-Relief Gratings on Nonlinear-Optical Polymer-Films. Appl Phys Lett.1995 Mar 6;66(10):1166-8.
    35. Rochon P, Batalla E, Natansohn A. Optically Induced Surface Gratings on Azoaromatic Polymer-Films. Appl Phys Lett.1995 Jan 9;66(2):136-8.
    36. Paterson J, Natansohn A, Rochon P, Callender CL, Robitaille L. Optically inscribed surface relief diffraction gratings on azobenzene containing polymers for coupling light into slab waveguides. Appl Phys Lett.1996 Nov 25;69(22):3318-20.
    37. Wu YL, Ikeda T, Zhang QJ. Three-dimensional manipulation of an azo polymer liquid crystal with unpolarized light. Advanced Materials.1999 Mar 4;11(4):300-2.
    1. A. Zukauskas MSS, and R. Gaska. Introduction to Solid-State Light. New York:Wiley.
    2. Koike M, Shibata N, Kato H, Takahashi Y. Development of high efficiency GaN-based multiquantum-well light-emitting diodes and their applications. Ieee J Sel Top Quant.2002 Mar-Apr; 8(2):271-7.
    3. Govorov AO, Bryant GW, Zhang W, Skeini T, Lee J, Kotov NA, et al. Exciton-plasmon interaction and hybrid excitons in semiconductor-metal nanoparticle assemblies. Nano Letters. 2006 May;6(5):984-94.
    4. Geddes CD, Lakowicz JR. Metal-enhanced fluorescence. J Fluoresc.2002 Jun; 12(2):121-9.
    5. Zhang YX, Aslan K, Previte MJR, Geddes CD. Metal-enhanced fluorescence from copper substrates. Appl Phys Lett.2007 Apr 23;90(17):-.
    6. Mackowski S, Wormke S, Maier AJ, Brotosudarmo THP, Harutyunyan H, Hartschuh A, et al. Metal-enhanced fluorescence of chlorophylls in single light-harvesting complexes. Nano Letters. 2008 Feb;8(2):558-64.
    7. Sun G, Khurgin JB, Soref RA. Practical enhancement of photoluminescence by metal nanoparticles. Appl Phys Lett.2009 Mar 9;94(10):-.
    8. Gerard D, Wenger J, Devilez A, Gachet D, Stout B, Bonod N, et al. Strong electromagnetic confinement near dielectric microspheres to enhance single-molecule fluorescence. Optics Express. 2008 Sep 15;16(19):15297-303.
    9. Lakowicz JR. Radiative decay engineering:Biophysical and biomedical applications. Analytical Biochemistry.2001;298(1):1-24.
    10. Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T, Scherer A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nature Materials.2004 Sep;3(9):601-5.
    11. Ray K, Badugu R, Lakowicz JR. Distance-dependent metal-enhanced fluorescence from Langmuir-Blodgett monolayers of alkyl-NBD derivatives on silver island films. Langmuir.2006 Sep 26;22(20):8374-8.
    12. Zhang JA, Fu Y, Lakowicz JR. Emission behavior of fluorescently labeled silver nanoshell: Enhanced self-quenching by metal nanostructure. Journal of Physical Chemistry C.2007 Feb 8;111(5):1955-61.
    13. Bene L, Szentesi G, Matyus L, Gaspar R, Damjanovich S. Nanoparticle energy transfer on the cell surface. Journal of Molecular Recognition.2005 May-Jun;18(3):236-53.
    14. Ray K, Badugu R, Lakowicz JR. Sulforhodamine adsorbed Langmuir-Blodgett layers on silver island films:Effect of probe distance on the metal-enhanced fluorescence. Journal of Physical Chemistry C.2007 May 17;111(19):7091-7.
    15. Ray K, Badugu R, Lakowicz JR. Polyelectrolyte layer-by-layer assembly to control the distance between fluorophores and plasmonic nanostructures. Chemistry of Materials.2007 Nov 27;19(24):5902-9.
    16. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B.2003 Jan23;107(3):668-77.
    17. Tessler N, Medvedev V, Kazes M, Kan SH, Banin U. Efficient near-infrared polymer nanocrystat light-emitting diodes. Science.2002 Feb 22;295(5559):1506-8.
    18. Lakowicz JR, Shen YB, D'Auria S, Malicka J, Gryczynski Z, Gryczynski I. Radiative decay engineering:Biophysical applications. Biophysical Journal.2002 Jan;82(1):426a-a.
    19. Corrigan TD, Guo SH, Szmacinski H, Phaneuf RJ. Systematic study of the size and spacing dependence of Ag nanoparticle enhanced fluorescence using electron-beam lithography. Appl Phys Lett.2006 Mar 6;88(10):-.
    20. Kulakovich O, Strekal N, Yaroshevich A, Maskevich S, Gaponenko S, Nabiev I, et al. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Letters.2002 Dec;2(12):1449-52.
    21. Komarala VK, Rakovich YP, Bradley AL, Byrne SJ, Gun'ko YK, Gaponik N, et al. Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots. Appl Phys Lett.2006 Dec 18;89(25):-.
    22. Pons T, Medintz IL, Sapsford KE, Higashiya S, Grimes AF, English DS, et al. On the quenching of semiconductor quantum dot photoluminescence by proximal gold nanoparticles. Nano Letters.2007 Oct;7(10):3157-64.
    23. Chen Y, Munechika K, Plante IJL, Munro AM, Skrabalak SE, Xia Y, et al. Excitation enhancement of CdSe quantum dots by single metal nanoparticles. Appl Phys Lett.2008 Aug 4;93(5):-.
    24. Koichi Okamoto aIN, and Axel Scherer. Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy. APL.2005.
    25. Pillai S, Catchpole KR, Trupke T, Zhang G, Zhao J, Green MA. Enhanced emission from Si-based light-emitting diodes using surface plasmons. Appl Phys Lett.2006 Apr 17;88(16):-.
    26. Wedge S. Surface plasmon-polariton mediated emission of light from top-emitting organic light-emitting diode type structures. science Direct.2007.
    27.阎杰,王沛,鲁拥华,郑荣升,谢志国.利用表面等离子体增强发光二极管发光效率的研究进展.量子电子学报.2009;26:1-9.
    28. PC Lee DM. Adsorption and surface-enhanced Raman of dyes on silver and gold. J Phys Chem,.1982;86:3391-5.
    29. Seitz O, et al. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2003;218:225.
    30. http://omlc.ogi.edu/spectra/PhotochemCAD/html/rhodamineB.html.
    31. Walsh CB, Franses El. Ultrathin PMMA films spin-coated from toluene solutions. Thin Solid Films.2003 Apr 1;429(1-2):71-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700