用户名: 密码: 验证码:
甘蓝型油菜细胞核雄性不育恢复基因BnMs5~α的克隆
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Rs1046AB是派生于宜3A的细胞核雄性不育系,遗传分析表明Rs1046AB的育性受一个复等位基因位点控制,它们的显隐性关系为恢复基因型(BnMs5a)>不育基因型(BnMs5b)>保持基因型(BnMs5c)(洪登峰,2006)。利用Rs1046AB中的不育株Rs1046A与其恢复系19514A杂交构建的一个F2作图群体,本课题组已将BnMs5位点定位于标记SCD8和SC6之间1.1cM的遗传区间内。并以BnMs5两侧最近标记SCD8和SC6为探针筛选了甘蓝型油菜Tapidor(在BnMs5位点基因型为BnMs5c) BAC文库,获得了可能覆盖目标基因区段的29个阳性克隆。为了克隆该不育基因位点并解析其育性遗传的分子机理,本研究对上述阳性克隆分组和测序,开发出一个与BnMs5紧密连锁的标记,从而将BnMs5定位在一个BAC克隆上约21-kb的物理区段内,并最终通过遗传互补实验证实其中一个候选基因即为BnMs5位点的目标基因。其主要结果如下:
     1. BnMs5位点起源。利用12个与BnMs5连锁标记的序列比对白菜和甘蓝全基因组序列,发现绝大多数标记能够在白菜MF2亚基因组及甘蓝subgenome Ⅱ亚基因组的鉴定出高度同源区,且这些同源区在白菜或甘蓝基因组上的排列顺序与上述标记在BnMs5附近的排列顺序基本一致。与BnMs5连锁的标记SCD2亦可定位在甘蓝型油菜TNDH群体(Long et al,2007)的A8染色体上。因此,推测BnMs5位点起源于白菜MF2亚基因组。
     2.目标BAC克隆鉴定。利用7组位于候选基因区段的亚基因组特异或保守的PCR引物将可能包含BnMs5位点的29个阳性克隆分为6组。在获得第1组中编号为JBnB007P02的BAC克隆的插入片段序列后,开发出BnMs5一侧最近且在F2群体中呈共显性遗传的标记BE10。利用BE10重新分析上述6组BAC克隆后确认目标BAC克隆位于第1II组中,而第1组克隆中的JBnB007P02则是和目标区段高度同源的拷贝。
     3.候选基因预测。以白菜已测序BAC克隆KBrB111O21的序列为参考,从第1II组编号为JBnB034L06的BAC克隆中分离了两侧最近标记SCD8-2和BE10之间的完整序列。基因预测显示该21-kb的候选基因区段包含8个潜在的开放读码框。除ORF2和ORF3为反转录转座子相关基因外,其余6个开放读码框都可能为BnMs5的候选基因。
     4.亲本中候选基因序列分离。参考JBnB034L06的可利用信息,从定位群体亲本Rs1046A和19514A中分离出候选区段内的大部分序列及部分目标拷贝特异的标记。利用上述标记锚定的长片段PCR(以预测的全长基因为单位)成功的从两亲本中分别克隆到包含ORF4、ORF5、ORF6、ORF7和ORF8完整基因的序列。
     5.候选基因的遗传转化与功能互补。将上述分离的各候选基因片段分别克隆到表达载体pFGC5941中构建互补载体,采用农杆菌介导的方法转化相应的受体材料(全不育系或临保系)。对T0代阳性单株的表型鉴定表明,从恢复系亲本19514A中分离到的一个候选基因ORFna能够恢复全不育系的育性;阳性单株自交的T1代育性观察发现该转基因与育性恢复共分离,证实ORFna就是BnMs5位点的恢复基因BnMs5a。
The rapeseed (Brassica napus L.) line Rs1046AB carries the genetic male sterility locus derived from a spontaneous mutation in Yi-3A. Systematic genetic analyses have indicated that the sterility of Rs1046AB is controlled by a triallelic locus, with the dominance relationship of BnMs5a (the restorer type)□BnMs5b (the male-sterile type)□BnMs5c (the normal male-fertile type). According to the triallelic model, the BnMs5locus has been delimited to a1.1cM genetic fragment between marker SCD8and SC6via the (Rs1046A×19514A) F2mapping population. Furthermore, JBnB BAC library has been screened by using the probes of SCD8and SC6, and29positive BAC clones have been identified, In order to isolate the BnMs5locus and elucidate the molecular mechanism involved in fertility control, we grouped the above positive BAC clones and sequenced one of them. A codominant marker linked with BnMs5was successfully developed based on the BAC sequence, which further narrows the candidate genomic region to a21-kb region. We finally validated that one of the candidate ORFs from19514A could restore the fertility of the all-sterile lines in T0and T1positively transformed plants. The main results were displayed as follows:
     1. Determination of the BnMs5-originated subgenome. The sequences of12BnMs5-linked markers were used to query the rough genome sequences of B. rapa and B. oleracea, respectively. Most of the markers could identify homologues with highest similarity both from the MF2subgenome of B. rapa and subgenome Ⅱ of B. oleracea. Moreover, the genetical arrangement of markers around BnMs5was consistent with the physical distribution of those homologues on B. rapa or B. oleracea subgenome. In combination with the localization of a BnMs5-associated maker SCD2on the TNDH A8chromosome, we speculated that the ancestor of BnMs5should evolve from the B. rapa MF2subgenome.
     2. Characterization of the target BAC clones. We designed a series of PCR primers according to the genomic sequences of B. rapa MF2subgenome and B. oleracea subgenome II genes delimited by flanking markers SCD8-2and SC6. Empolyment of these primers enabled us to effectively group the29BAC clones into six groups. One BAC clone JBnB007P02, from Group-I was initially shotgun-sequenced. A co-dominant marker BE10developed from this sequence was then mapped as the closest marker on one side of BnMs5. Further comparision of the PCR products from all the clones suggested that the BnMs5locus could be anchored to the Group-Ⅲ BAC clones, while the Group-I clone JBnB007P02is a highly homologous copy of the target one.
     3. Prediction of the candidate genes. By using the sequence of a B. rapa BAC clone KBrB111O21as a reference, we obtained the complete sequence between BnMs5-flanking closest markers from a Group-Ⅲ BAC clone JBnB034L06. Gene prediction of this21-kb DNA fragment showed that it contains8putative open reading frames (ORF). Except for the two ORFs (ORF2and ORF3) individually annotated as a reverse transcriptase and a RNase-H protein, the other six ORFs could not be excluded as the candidate of BnMs5according to the available annotation information.
     4. Isolation of the candidate sequences from two mapping parents. Most of the candidate sequences were respectively amplified from Rs1046A and19514A with the assistance of a long-PCR method by using the known genomic sequence of JBnB034L06as a reference. Comparison of the multiple orthologues enabled to generate several target copy-specific markers, which were further used to specifically anchor the complete genomic sequences encompassing each candidates, such as ORF4, ORF5, ORF6, ORF7and ORF8.
     5. Function complementation test of the candidates. The target genomic sequences from each candidate were cloned into the binary expression plasmid pFGC5941. Agrobacterium-mediated genetic transformations of the candidate restorer allele of BnMs5a into all-sterile plants and the male-sterile allele of BnMs5b into temporary maintainer plants, produced some independent transformants. Among them, the restorer allele from one candidate could restore the fertility of male-sterile plants in positive To plants and T1families, therefore demonstrating that it is the restorer allele of the BnMs5locus.
引文
1. 余凤群,傅廷栋.甘蓝型油菜几个雄性不育系花药的细胞形态学观察.武汉植物研究,1990,8:209-216
    2. 杨光圣,瞿波,傅廷栋.甘蓝型油菜显性细胞核雄性不育系宜3A花药发育的解剖学研究.华中农业大学学报,1999a,18:405-408
    3. 谢彦周.甘蓝型油菜隐性细胞核雄性不育上位抑制基因的精细定位. [博士学位论文].武汉:华中农业大学图书馆,2010
    4. 吴建勇.甘蓝型油菜显性细胞核雄性不育差异表达基因及雄配子发育研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    5. 文].武汉:华中农业大学图书馆,2008
    6. 王通强,田筑萍,黄泽素,魏忠芬,邵明波.甘蓝型双低油菜细胞核显性核不育系黔油2AB的选育.贵州农业科学,1999,27:14-18
    7. 王晶,孟金陵.芸薹属作物基因组研究进展及其在育种中的意义.分子植物育种.2010,8:837-845
    8. 王道杰,田建华,王灏,胡选萍,李殿荣,郭蔼光.油菜单显性核不育及其不育基因的RAPD标记.西北植物学报,2003,23:1556-1560
    9. 万丽丽.油菜细胞核雄性不育的细胞学研究以及育性相关基因的克隆与功能分析.[博士学位论文].武汉:华中农业大学图书馆,2010
    10.孙思龙.白菜、甘蓝与拟南芥比较基因组分析.[硕士学位论文].北京:中国农业科学院,2011
    11.宋来强,傅廷栋,杨光圣,涂金星,马朝芝.1对复等位基因控制的油菜(Brassica napus L.)显性核不育系609AB的遗传验证.作物学报,2005,31:869-875
    12.陆光远.甘蓝型油菜显性细胞核雄性不育基因和上位抑制基因的分子标记及其应用. [博士论文].武汉:华中农业大学图书馆,2003
    13.刘俊.甘蓝型油菜显性细胞核雄性不育基因及其恢复基因的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    14.李树林,周熙荣.显性核不育油菜的遗传与利用.作物研究,1990,4:27-32
    15.李树林,钱玉秀,吴志华.甘蓝型油菜细胞核雄性不育性的遗传规律探讨及其应用.上海农业学报,1985,1:1-12
    16.李殿荣.甘蓝型油菜三系选育初报.陕西农业科学,1980,1:26-29
    17.孔芳,蒋金金,吴磊,王幼平.利用原位杂交及CAPS标记分析芸薹属A、B、C基因组间的关系.作物学报,2008,34:1188-1192
    18.康俊根.四种类型甘蓝雄性不育系花药败育特征及基因表达谱分析.[博士学位论文].北京:中国农业科学院,2006
    19.胡胜武,于澄宇,赵惠贤.甘蓝型油菜新型不育源的发现及其初步研究.西北农业学报,2000,9:90-94
    20.胡胜武,于澄宇,赵惠贤,路明,张春红,俞延军.甘蓝型油菜核不育材料Shaan-GMS恢复基因的筛选及其遗传分析.西北农林科技大学学报(自然科学版),2004,32:9-12
    21.贺浩华,刘宜柏,蔡跃辉,余秋英,李季能,刘建萍.水稻显性核不育及其恢复性的遗传规律研究.中国水稻科学,1999,13:143-146
    22.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论文].武汉:华中农业大学图书馆,2008
    23.何俊平.甘蓝型油菜隐性细胞核雄性不育基因ms3的精细定位.[博士学位论
    24.傅廷栋.中国油菜生产和品种改良的现状与前景.安徽农学通报,2000b,6:2-8
    25.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版社,2000a
    26.傅廷栋.杂交油菜的育种与利用.武汉:湖北科学技术出版杜,1995
    27.傅廷栋,涂金星.油菜杂种优势利用的现状与展望.见:刘后利主编,作物育种学论丛.北京:中国农业大学出版社,2002
    28.董振生,刘创社,景军胜,庄顺琪,冉隆贵.白菜型油菜(B. campestris L.)双显性核不育896AB的选育.作物学报,1998,24:188-192
    29.董振生,刘创社,景军胜,冉隆贵,张修森.白菜型油菜(B. campestris L.)双显性核不育896AB的选育.西北植物学报,1997,6:35-38
    30.曾芳琴.油菜S45AB隐性核不育分子机理与应用研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    31. Aarts G M, Dirkse W G, Stiekema W J. Transposon tagging of a male sterility gene in Arabidopsis. Nature,1993,363:715-717
    32. Albertsen M C, Fox T W, Trimnell M R. Tagging, cloning and characterizing a male fertility gene in maize. Am J Bot,1993,80:16
    33. Atanassova B. Functional male sterility (ps2) in tomato (Lycopersicon esculentum Mill.) and its application in breeding and hybrid seed production. Euphytica,1999, 107:13-21
    34. Attia T, Robbelen G. Cytogenetic relationship with cultivated Brassica analyzed in amphihaploids from the three diploid ancestors. Can J Genet Cytol,1986,28: 323-329
    35. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana:complexity of the comparative map. Mol Genet Genomics,2003,268: 656-665
    36. Bailey M F. A cost of restoration of male fertility in a gynodioecious species, Lobelia siphilitica. Evolution,2002,56:2178-2186
    37. Bentolila S, Alfonso A A, Hanson M R. A pentatricopeptide repeat-containing gene restores fertility to cytoplasmic male-sterile plants. Proc Natl Acad Sci USA,2002, 99:10887-10892
    38. Bentolila S, Hanson M R. Identification of a BIBAC clone that co-segregates with the petunia restorer of fertility (Rf) gene. Mol Genet Genomics,2001,266:223-230
    39. Brunei D, Froger N, Pelletier G. Development of amplified consensus genetic markers (ACGMs) in Brassica napus from Arabidopsis thaliana sequences of known biological function. Genome,1999,42:387-402
    40. Brunner S, Keller B, Feuillet C. Molecular mapping of the Rph7.g leaf rust resistance gene in barley (Hordeum vulgare L.). Theor Appl Genet,2000,101: 783-788
    41. Budar F, Touzet P, De Paepe R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica,2003,117:3-16
    42. Cavell A C, Lydiate D J, Parkin I A P, Dean C, Trick M. Collinearity between a 30-centimorgan segment of Arabidopsis thaliana chromosome 4 and duplicated regions within the Brassica napus genome. Genome,1998,41:62-69
    43. Cheng F, Liu SY, Wu J, Fang L. BRAD, the genetics and genomics database for Brassica plants. BMC Plant Biology,2011,11:131-136
    44. Cheung F, Trick M, Drou N, Lim YP, Park JY, Kwon SJ, Kim JA, Scott R, Pires JC, Paterson AH, Town C, Bancroft I. Comparative analysis betweer homoeologous genome segments of Brassica napus and its progenitor species reveals extensive sequence-level divergence. Plant Cell,2009,21:1912-1928
    45. Chu Zhaohui, Yuan Meng, Ge Xiaojia, Xu Caiguo, Zhang Qifa, Wang Shiping.Promoter mutations of an essential gene for pollen development result in disease resistance in rice. Genes & Development,2006,20:1250-1255
    46. Churchill G A, Giovannoni J J, Tanksley S D. Pooled-sampling makes highresolution mapping practical with DNA markers. Proc Natl Acad Sci USA,1993, 90:16-20
    47. Coe E H, McCormick S M, Modena S A. White pollen in maize. J Herederity,1981, 72:31-320
    48. Cook RK, Christensen S, Deal J, Coburn R. The generation of chromosomal deletions to provide extensive coverage and subdivision of the Drosophila melanogaster genome. Genome Biol,2012,13:R21
    49. Cui X, Wise R P, Schnable P S. The rf2 nuclear restorer gene of male-sterile T-cytoplasm maize. Science,1996,272:1334-1336
    50. Dang VT, Kassahn KS, Marcoset. Identification of human haploinsufficient genes and their genomic proximity to segmental duplications. Eur.J. Hum. Genet,2008,16, 1350-1357
    51. Dawson J, Wilson Z A, Aarts M G M, Braithwaite A F, Briaty L G, Mulligan B J. Microspore and pollen development in six male-sterile mutants of Arabidopsis thaliana. Can J Bot,1993,71:629-638
    52. Desloire S, Gherbi H, Laloui W, Marhadour S, Clouet V, Cattolico L, Falentin C, Giancola S, Renard M, Budar F, Small I, Caboche M, Delourme R, Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep,2003,4:588-594
    53. Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci USA,2012,109(7):2654-2659
    54. Ding Y-H, Liu N-Y, Tang Z-S, Liu J, Yang W-C. Arabidopsis GLUTAMINE-RICH PROTEIN23 is essential for early embryogenesis and encodes a novel nuclear PPR motif protein that interacts with RNA polymerase Ⅱ subunit Ⅲ. The Plant Cell, 2006,18:815-830
    55. Driscoll C J. XYZ system of producing hybrid wheat. Crop Sci,1972,12:516-517
    56. Dun X L, Zhou Z F, Xia S Q, Wen J, Yi B, Shen J X, Ma C Z, Tu J X, Fu T D. BnaC.Tic40, a plastid inner membrane translocon originating from Brassica oleracea, is essential for tapetal function and microspore development in Brassica napus. Plant J,2011,68:532-545
    57. Fan C C, Yu S B, Wang C R, Xing Y Z. A causal C-A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. TheorAppl Genet,2009,118:465-472
    58. Fendrych M, Synek L, Pecenkova'. The exocyst complex is involved in cytokinesis and cell plate maturation.2010, The Plant Cell,22:3053-3065
    59. Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA,2003,100:15253-15258
    60. Formanova N, Stollar R, Geddy R, Mahe L, Laforest M, Landry B S, Brown G G. High-resolution mapping of the Brassica napus Rfp restorer locus using Arabidopsis-derived molecular markers. Theor Appl Genet,2010,120:843-851
    61. Fujii S, Toriyama K. Suppressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc Natl Acad Sci USA,2009,106(23):9513
    62. Fujisawa M, Takita E, Misawa N. Pathway engineering of Brassica napus seeds using multiple key enzyme genes involved in ketocarotenoid formation. J Exp Bot, 2009,60(4):1319-1332
    63. Gorguet B, Schipper D, van Lammeren A, Visser R G, van Heusden A W. ps-2, the gene responsible for functional sterility in tomato, due to non-dehiscent anthers, is the result of a mutation in a novel polygalacturonase gene. Theor Appl Genet,2009, 118:1199-1209
    64. Grant I, Beversdorf W. Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Canadian journal of genetics and cytology,1985, 27:472-478
    65. Grelon M, Budar F, Bonhomme S, Pelletier G. Ogura cytoplasmic male-sterility(CMS) associated orf138 is translated into a mitochondrial membrane polypeptide in malesterile Brassica napus. Mol Gen Gene,1994,243:540-547
    66. Ha'la M, Cole R, Synek L. An exocyst complex functions in plant cell growth in arabidopsis and tobacco. The Plant Cell,2008,20:1330-1345
    67. Handa H. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.):comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucleic Acids Res, 2003,31:5907-5916
    68. Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell,2004,16 Suppl:S154-169
    69. Hanson M R, Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell,2004,16 Suppl:S154-169
    70. Hong DF, Wan LL, Liu PW, Yang GS, He Q B. AFLP and SCAR markers linked to the suppressor gene (Rf) of a dominant genetic male sterility in rapeseed(Brassica napus L.). Euphytica,2006,151:401-409
    71. Hu S W, Fan Y F, Zhao H X, Guo X L, Yu C Y, Sun G L, Dong C H, Liu S Y, Wang H Z. Analysis of MS2Bnap genomic DNA homologous to MS2 gene from Arabidopsis thaliana in two dominant digenic male sterile accessions of oilseed rape (Brassica napus L.). Theor Appl Genet,2006,113:397-406
    72. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish(Raphanus sativus L.). Mol Genet Genomics,2003,269:388-394
    73. Imai R, Koizuka N, Fujimoto H, Hayakawa T, Sakai T, Imamura J. Delimitation of the fertility restorer locus Rfkl to a 43-kb contig in Kosena radish(Raphanus sativus L.). Mol Gen Genomics,2003,269:388-394
    74. Itabashi E, Iwata N, Fujii S, KazamaT, Toriyama K. The fertility restorer gene, Rf2, for Lead Rice type cytoplasmic male sterility of rice encodes a mitochondria-lglycine-rich protein. Plant J,2011,65(3):359-367
    75. Jing B, Heng S, Tong D, Wan Z, Fu T, Tu J, Ma C, Yi B, Wen J, Shen J. A male sterility-associated cytotoxic protein ORF288 in Brassica juncea causes aborted pollen development. JExp Bot,2012,63(3):1285-1295
    76. Jones D A, Hatzixanthis K, Ganal M W, Tanksley S D, Jones J D G. High resolution mapping of the physical location of the tomato Cf-2 gene. Mol Plant-Microbe Interact,1995,8:200-206 332-338
    77. Jones HA, Clarke AE. Inheritance of male sterility in the onion and the production of hybrid seed. Proc Natl Acad Sci USA,1943,43:189-194
    78. Kaul M L H. Male sterility in higher plants. Berlin Heidelberg New York:Springer, 1988,4-9
    79. Kaul MLH. Male Sterility in Higher Plants. Springer, Berlin,1988
    80. Komori T, Ohta S, Murai N, Takakura Y, Kuraya Y, Suzuki S, Hiei Y, Imaseki H, Nitta N. Map-based cloning of a fertility restorer gene, Rf-1, in rice (Oryza sativa L.). Plant J,2004,37:315-325
    81. Lagercrantz U, Lydiate D. Comparative genome analysis in Brassica. Genetics,1996, 144:1903-1909
    82. Landgren M, Zetterstrand M, Sundberg E, Glimelius K. Alloplasmic male-sterile Brassica lines containing B. tournefortii mitochondria express an ORF 3'of the atp6 gene and a 32 kDa protein. Plant Mol Biol,1996,32:879-890
    83. Lei S L, Yao X Q, Yi B, Chen W, Ma C Z, Tu J X, Fu T D. Towards map-based cloing:fine mapping of the recessive genie male-sterile gene (Bnms2) in Brassica napus L. and syntenic region identification based on the Arabidopsis thaliana genome sequences. Theor Appl Genet,2007,115:643-651
    84. L'homme Y, Stahl R J, Li X Q, Hameed A, Brown G G. Brassica nap cytoplasmic male sterility is associated with expression of a mtDNA region containing a chimeric gene similar to the pol CMS-associated orf224 gene. Current genetics, 1997,31(4):325-335
    85. Li J, Hong D F, He J P. Map-based cloning of a recessive genie male sterility locus in Brassica napus L. and development of its functional marker.Theoretical and Applied Genetics,2012,125:223-224.
    86. Li Y, Fan C, Xing Y, Jiang Y, Luo L, Sun L, Shao D, Xu C, Li X, Xiao J, He Y, Zhang Q. Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet,2011,43(12):1266-1269
    87. Liu R, Qian W, Meng J. Association of RFLP markers and biomass heterosis in trigenomic hybrids of oilseed rape (Brassica napus x B. campestris). Theor Appl Genet,2002,105:1050-1057
    88. Lu GY, Yang GS, Fu TD. Molecular mapping of a dominant genic male sterility gene Ms in rapeseed(Brassica napus L.). Plant Breeding,2004,123:262-265
    89. Lukens L, Zou F, Lydiate D, Parkin I, Osborn T. Comparison of Brassica oleracea genetic map with the genome of Arabidopsis thaliana. Genetics,2003,164:359-372
    90. Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg R B. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature,1990,347: 737-741
    91. Mariani C, Gossele V, De Beuckeleer M, De Blcok M, Goldberg M, De Greef R, Leemans J. A chimaeric robonuclease inhibitor gene restores fertility to male sterile plants. Nature,1992,357:384-387
    92. Mason A. Creating allohexaploid plants from tetraploid Brassica species through unreduced gametes. In:abstract of the 13th International Rapeseed Congress,2011, Prague Congress Centre, Czech Republic, p 107
    93. MATHIAS R. A new dominant gene for male sterility in rapeseed, Brassica napus L. Zeitschrift fur Pflanzenzuchtung,1985,94:170-173
    94. Mayerhofer R, Wilde K, Mayerhofer M, Lydiate D, Bansal V K, Good A G, Parkin I A P. Complexities of chromosome landing in highly duplicated genome:toward map-based cloning of a gene controlling blackleg resistance in Brassica napus. Genetics,2005,171:1977-1988
    95. McGrath JM, Quiros CE. Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea. Theor Appl Genet,1991,82:668-673
    96. Mercier R, Vezon D, Bullier E, Motamayor J C, Sellier A, Lefevre F, Pelletier G, Horlow C. Switchl (SWII):a novel protein required for the establishment of sister chromatid cohesion and for bivalent formation at meiosis. Gene Dev,2001, 15:1859-1871
    97. Moffatt B A, Somerville C. Positive selection for male-sterile mutants of Arabidopsis lacking adene phosphoribosyl transferase activity. Plant Physiol,1988, 86:1150-1154
    98. Morinaga T. Interspecific hybridization in Brassica Ⅱ. The cytology of F1 hybrids of B. cernua and various other species with 10 chromosomes. Jap J Bot,1929,4: 277-289
    99. Morinaga T. Interspecific hybridization in Brassica VI. The cytology of F1 hybrids of B. juncea and B. nigra. Cytologia,1931,6:62-67
    100. Motamayor J C, Vezon D, Bajon C, Sauvanet A, Grandjean O, Marchand M, Bechtold N, Pelletier G, Horlow C. Switch (swil), an Arabidopsis thaliana mutant affected in the female meiotic switch. Sex Plant Reprod,2000,12:209-218
    101. Muller, H. J. Further studies on the nature and causes of gene mutations. In Proceedings of the Sixth International Congress of Genetics (Vol.1),1932, pp:213-255
    102. Nonomura K I, Miyoshi K, Eiguchi M, Suzuki T, Miyao A, Hirochika H, Kurata N.The MSP1 gene is necessary to restrict the Number of cells entering into male and female sporogenesis and to initiate anther wall formation in rice. Plant Cell,2003, 15:1728-1739
    103. Notsu Y, Masood S, Nishikawa T, Kubo N, Akiduki G, Nakazono M, Hirai A, Kadowaki K. The complete sequence of the rice (Oryza sativa L.); mitochondrial genome:frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol Genet Genomics,2002,268:434-445
    104. O'Neill CN, Bancroft I. Comparative physical mapping of segments of the genome of Brassica oleracea var. alboglabra that are homoeologous to sequenced regions of chromosomes 4 and 5 of Arabidopsis thaliana. Plant J,2000,23:233-243
    105. Ogura H. Studies on the new male sterility in Japanese Radish, with special references to the utilization of this sterility towards the practical raising of hybrid seed. Mem Fac Agric Kagoshima Univ,1968,6(2):39-78
    106. Pan S, Czarnecka-Verner E, Gurley W. Role of the TATA binding protein-transcription factor IIB interaction in supporting basal and activated transcription in plant cells. Plant Cell,2000,12,125-136
    107. Papuga J, Hoffmann C, Dieterle M. Arabidopsis LIM proteins:a family of actin bundlers with distinct expression patterns and modes of regulation. The Plant Cell, 2010,22:3034-3052
    108. Parkin I A, Sharpe AG, Lydiate DJ. Patterns of genome duplication within the Brassica napus genome. Genome,2003,46:291-303
    109. Preuss D, Rhee SY, Davis RW. Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science,1994,264:1458-1460
    110. Qian W, Chen X, Fu D, Zou J, Meng J. Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet,2005,110:1187-1194
    111. Reddy T V, Kaur J, Agashe B, Sundaresan V, Siddiqi I. The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. Development,2003,130:5975-5987
    112. Rhee S Y, Somerville C R. Tetrad pollen formation in quartet mutants of Arabidopsis thaliana is associated with persistence of pectic polysaccharides of the pollen mother cell wall. Plant J,1998,15:79-88
    113. Rozen S, Skaletsky H J. Primer3 on the WWW for general users and for biologist programmers. In:Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ,1999,365-386
    114. Ryder C D, Smith L B, Teakle G R, King G J. Contrasting genome organisation: two regions of the Brassica oleracea genome compared with collinear regions of the Arabidopsis thaliana genome. Genome,2001,44:808-817
    115. Saumitou-Laprade P, Cuguen J, Vernet P. Cytoplasmic male sterility in plants: molecualr evidence and the nucleocytoplasmic conflict. Trends Ecol Evol,1994, 9:43-435
    116. Schiefthaler U, Balasubramanian S, Sieber P, Chevalier D, Wisman E and Schneitz K. Molecular analysis of NOZZLE, a gene involved in pattern formation and early sporogenesis during sex organ development in Arabidopsis thaliana. Proc Natl Acad Sci USA,1999,96:11664-11669
    117. Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci,1998,3:75-180
    118. Schranz ME, Lysak MA, Mitchell-Olds T. The ABC's of comparative genomics in the Brassicaceae:building blocks of crucifer genomes. Trends of Plant Science, 2006,11:535-542.
    119. Sernyk J, Stefansson B. Heterosis in summer rape (Brassica napus L.). Can. J. Plant Sci,1983,63:407-413
    120. Shull G. The Composition of a Field of Maize. Am Breeders Assoc Rep.1908, 4:296-301
    121. Singh M, Brown G G. Suppression of cytoplasmic male sterility by. nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell,1991, 3:1349-1362
    122. Singh M, Brown G G. Suppression of cytoplasmic male sterility by nuclear genes alters expression of a novel mitochondrial gene region. Plant Cell,1991, 3:1349-1362
    123. Song L Q, Fu T D, Tu J, Ma C Z, Yang G S. Molecular validation of multiple allele inheritance for dominant genie male sterility gene in Brassica napus L. Theor Appl Genet,2006,113:55-62
    124. Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Trends Genet,1995,11: 63-68
    125. Tanksley S D, Ganal M W, Martin G B. Chromosome landing:a paradigm for map-based gene cloning in plants with large genomes. Elseveiver Science Lid,1995, 11:63-68
    126. Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ, Vigouroux M, Trick M, Bancroft I. Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss, fragmentation, and dispersal after polyploidy. Plant Cell,2006,18:1348-1359
    127. U N. Genomic analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jap J Bot,1935,7: 389-452
    128. Veitia, R.A. Exploring the etiology of haploinsufficiency. Bioessays,2002, 24:175-184
    129. Wang J, Long Y, Wu B D, Liu J, Jiang C C, Shi L, Zhao J W, King G J, Meng J L. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks. BMC Evolutionary Biol,2009,9:271
    130. Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Ba i Y, Mun J H, Bancroft I, Cheng F. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet,2011, 43(10):1035-1039
    131. Wang Z, Zou Y, Li X, Zhang Q, Chen L, Wu H, Su D, Chen Y, Guo J, Luo D, Long Y, Zhong Y, Liu Y G. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by a cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell,2006,18:676-687
    132. Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X. Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell research,2008,18(12):1199-1209
    133. Wicker T, Sabot F, Hua-Van. A unified classification system for eukaryotic transposable elements. Nature Reviews Genetics,2007,973-982
    134. Wu J Z, Mizuno H, Hayashi-Tsugane M et al. Physical maps and recombination frequency of six rice chromosomes. Plant J,2003,36:720-730
    135. Xie Y Z, Dong F M, Hong D F, Wan L L, Liu P W, Yang G S. Exploiting comparative mapping among Brassica species to accelerate the physical delimitation of a genie male-sterile locus (BnRf) in Brassica napus. Theor Appl Genet,2012, DOI: 10.1007/s00122-012-1826-6
    136. Y. Long, J. Shi, D. Qiu, R. Li, C. Zhang, J. Wang and J Meng. Flowering Time Quantitative Trait Loci Analysis of Oilseed Brassica in Multiple Environments and Genomewide Alignment with Arabidopsis. Genetics,2007,177:2433-2444
    137. Yahiaoui N, Srichumpa P, Dudler R, Keller B. Genome analysis at different ploidy levels allows cloning of powdery mildew resistance gene Pm3b from hexaploid wheat. Plant J,2004,37:528-538
    138. Yang C Y, Spielman M, Coles J P, Li Y, Ghelani S, Bourdon V, Brown R C, Lemmon B E, Scott R J, Dickinson H G. TETRASPORE encodes a kinesin required for male meiotic cytokinesis in Arabidopsis. Plant J,2003a,34:229-240
    139. Yang M, Hu Y, Lodhi M, McCombie W R, Ma H. The Arabidopsis SKP1-LIKE1 gene is essential for male meiosis and may control homologue separation. Proc Natl Acad Sci USA,1999b,96:11416-11421
    140. Yang TJ, Kim JS, Kwon SJ, Lim KB, Choi BS, Kim JA, Jin M, Park JY, Lim MH, Kim HI, Lim YP, Kang JJ, Hong JH, Kim CB, Bhak J, Bancroft I, Park BS. Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell,2006,18:1339-1347
    141. Yang W C, Ye D, Xu J, Sundaresan V. The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein. Gene Dev,1999a,13:2108-2117
    142. Yang X, Makaroff C A, Ma H. The Arabidopsis MALE MEIOCYTE DEATHI gene encodes a PHD-finger protein that is required for male meiosis. Plant Cell,2003b, 15:1281-1295
    143. Yi B, Chen Y N, Lei S L, Tu J X, Fu T D. Fine mapping of the recessive genie male-sterile gene (Bnmsl) in Brassica napus. Theor Appl Genet,2006,113(4): 643-650
    144. Yi B, Zeng F Q, Lei S L, Chen Y N, Yao X Q, Zhu Y, Wen J, Shen J X, Ma C Z, Tu J X, Fu T D. Two duplicate CYP704B1-homologous genes BnMs1 and BnMs2 are required for pollen exine formation and tapetal development in Brassica napus. Plant J,2010,63:925-938
    145. Zhou K J, Wang S H, Feng Y Q, Liu Z X, Wang G X. The 4E-ms system of producing hybrid wheat. Crop Sci,2006,46:250-255

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700