用户名: 密码: 验证码:
井中裂缝的定量表征及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界油气勘探的发展,裂缝性储层中发现了相当一批高产油气藏,已经成为国内外油气勘探关注的焦点。在裂缝性储层油气勘探当中,裂缝参数的求取和裂缝性储层的评价至关重要,也是裂缝性油气藏勘探研究中的一个难点。
     裂缝的发育使得碳酸盐岩、岩浆岩、变质岩和泥岩等几类重要的岩石都能成为储层,并且在深层的低渗透砂岩储层中起着重要的作用。据不完全统计,世界上已探明总储量的一半为裂缝性油藏。裂缝不但是重要的流体渗滤通道,也是流体的储集空间。裂缝在致密的砂岩油藏中可以大大改善低孔低渗透储层的生产能力,主要作为渗流通道存在;在碳酸盐岩地层中,裂缝还控制其溶孔、溶洞的发育,同时地层中原始流体的分布状况和泥浆侵入特性也会受到影响;在火成岩地层中,裂缝是地层产能的最重要、最直接的影响因素。
     裂缝参数的表征是研究裂缝以及裂缝性储层的基础。裂缝参数的表征包括岩石力学的裂缝参数表征、岩心描述的裂缝参数表征、成像测井的裂缝参数表征以及实验室的裂缝参数表征。岩石力学参数的表征是从岩石力学角度出发,对裂缝的体密度、面密度以及裂缝开度等参数进行研究。岩心描述的裂缝参数表征是以岩心观测的宏观裂缝和微观裂缝为基础进行裂缝参数表征研究的。成像测井的裂缝参数表征是以成像测井识别出的裂缝为基础进行裂缝参数表征研究的。实验室裂缝表征是通过实验的方式对岩心的裂缝进行表征研究的。
     裂缝性储层的储集空间类型的多样性和复杂性,使得对不同岩性裂缝性储层进行统一的裂缝识别和裂缝性储层的评价很难,必须开展系统的、全面的研究工作,建立适当的计算方法和评价理论,才能使得适用于多种岩性储层的裂缝参数求取与裂缝性储层评价工作有所突破。本文分为以下几个部分:
     1.裂缝参数的表征
     本文从裂缝信息来源的不同将裂缝参数分为了三类,分别为岩心裂缝参数表征、地质露头的裂缝参数表征和成像测井的裂缝参数表征。本次研究所表征的参数有裂缝密度、裂缝长度、裂缝开度、裂缝倾角,每类表征参数所采用的计算方法各不相同。
     2.裂缝性储层测井响应特征及其发育程度的评价指标
     首先参考国内外裂缝测井响应的文献,并对储层裂缝的测井响应特征加以总结,给出了一般储层裂缝发育层段的测井响应特征,其中包括裂缝发育层段的常规测井响应特征、核磁测井响应特征、偶极横波测井响应特征以及成像测井响应特征。
     其次对裂缝发育程度的评价指标进行了研究,本文中裂缝发育程度的评价指标主要有裂缝发育程度分维、裂缝发育概率。由于裂缝具有统计意义上的自相似性即自仿射性。所以可以将分形用于裂缝的研究之中。
     由于各种测井方法对裂缝的敏感程度并非完全相同,加之某些非裂缝因素也可能引起与裂缝相同的异常响应。所以,用一、二种测井方法判别裂缝往往很难作出确切的回答,在井眼条件较差时尤其如此,而多种测井方法综合反映裂缝的可能性明显增大,用多种测井方法综合判别裂缝更趋合理。利用测井特征判断裂缝发育的概率,多种测井方法加权计算,最后构成一条裂缝概率曲线,对裂缝进行综合判。
     3.储层裂缝的识别
     裂缝的存在对储层的电性、弹性、放射性等各种物理性质均有不同程度的影响,可在测井曲线上造成异常响应,因此出现了多种常规测井资裂料识别缝的方法,如双侧向幅度差、放射性铀峰、椭圆形井眼等依据单条或两条测井曲线识别裂缝的方法。
     小波变换方法是一种窗口大小即窗口面积固定、但窗口的形状可变、时间窗和频率窗都可改变的时频局部化分析方法,很适于探测正常信号中突变信号的成分。并且它具有多分辨特性,也叫多尺度特性,可以由粗到精地逐步观察信号。只要适当地选择基小波,就可以使小波变换在时域和频域都具有表征信号局部特征的能力。
     本文首先对测井曲线进行能量分析,由于裂缝在测井上的响应一般会出现在能量高的部分,所以能量分析的目的在于找出高能量所对应的频段;然后对测井曲线进行小波变换,通过常规测井曲线的小波变换与裂缝的对比研究,寻找到适合于裂缝的基小波,再将常规测井曲线在这个基小波下的小波变换与曲线变化率法相结合建立裂缝指示曲线来识别裂缝发育段和评价裂缝密度,而电成像测井的二维小波变换可以很好的增强图像上的裂缝信息,从而可以提高电成像测井识别裂缝的准确度。最后从图像处理角度,应用蚂蚁聚类算法对其裂缝进行增强和追踪处理,效果良好。
     4.裂缝参数的求取
     裂缝参数是评价裂缝性储层的基础。在“三孔隙结构”模型的基础上应用常规测井对裂缝孔隙度、次生孔隙度、裂缝密度和裂缝面积孔隙度进行研究,并对裂缝数据进行统计处理及分析。由于小波变换的优点和曲线变化率的优点可以进行互补,所以通过常规测井曲线中的密度曲线的小波变换与其曲线变化率对储层中的裂缝密度进行了相对准确的求取;并建立了裂缝指示曲线,进而研究了指示曲线与裂缝面积孔隙度之间的关系。其次利用全井眼地层微电阻率成像测井(FMI)连续性、方位性、直观性和高分辨率的优势,将电阻率数值转化为孔隙度,可获得孔隙度频率分布曲线进而求出基质及缝洞孔隙度。
     5.裂缝性储层分级综合评价
     由于不是每口井都存在成像测井资料,所以将裂缝发育程度的综合评价分为两个部分:
     ①存在成像测井的研究区,以成像测井为基础对裂缝性储层进行分级,然后对研究区中的其他井进行处理,进而对裂缝性储层进行分级综合评价。
     ②在没有成像测井的研究区中,以岩心描述中存在裂缝描述的资料为基础,对岩心描述的裂缝资料进行量化处理,在对裂缝性储层进行分级,最后对研究区中的其他井进行处理,进而对研究区的裂缝性储层进行分级综合评价。
     6.实际应用
     本次研究分别在松辽盆地南部的火山岩裂缝储层和川西的致密砂岩裂缝储层中进行了应用,取得了良好的效果。
With the development of the oil and gas exploration in the world, a considerable number of high production oil and gas reservoirs were found in fractured reservoir. It has become the focus of oil and gas exploration at home and abroad. Calculation of fracture parameters and the evaluation of fractured reservoirs are essential in the exploration of fractured reservoirs, and difficult in the research of fractured reservoirs.
     It's possible that some kind of rocks become reservoirs because of the development of fracture such as carbonate rock, magnetic rock, metamorphic rock and mud rock, and the development of fracture plays an important role in the deep low permeability sandstone reservoir. According to incomplete statistics, half of the world's total proven reserves is the fractured reservoir. Fracture is not only important channel of fluid infiltration, but also the reservoir space of fluid. In the tight sandstone reservoirs, fracture can improve the production capacity of low permeable reservoir greatly, and exist primarily as a flow channel. In the carbonate reservoirs, fracture control the development of corroded hollow and limestone cave. At the same time, the distribution of fluid in the original formation and the characteristics of mud invasion will be affected. In igneous rock reservoirs, fracture is the most important and direct factor of formation capacity.
     The characterization of fracture parameters is the basis of fracture and fractured reservoir. Characterization of fracture parameters includes the characterization of fracture parameters of rock mechanics, core description, FMI and laboratory. The characterization of fracture parameters of rock mechanics is based on the perspective of rock mechanics for studying fracture density, surface density and fracture aperture. The characterization of fracture parameters of core description is based on micro-fractures and macro-fractures of core observation for studying fracture parameters. The characterization of fracture parameters of FMI is based on FMI for studying fracture parameters. The characterization of fracture parameters of laboratory is based on experiments to studying fracture parameters.
     As diverse and complex types of fractured reservoir of storage space, it is difficult to unified identification of fracture and unified evaluation of fractured reservoirs of different lithologv. we must carry out systematic and comprehensive research work, establish appropriate evaluation methods and theoretical calculations can allow for multiple fractures in the reservoir rock and fractured reservoirs parameters of evaluation of a breakthrough. This article is divided into the following sections:
     1. The characterization of fracture parameters
     The fracture parameter is divided into three types in this paper according to different sources of fracture information, and they are the characterization of fracture parameters of core, geology outcrop and FMI. Several fracture parameters are studied in the paper, such as fracture density, fracture length, fracture aperture and fracture dip.
     2. Response characteristics of fractured reservoir and the development degree of fracture of evaluation indicators
     First, logging response characteristics of fractured reservoir are summarized by refering domestic and foreign literature. Such as conventional logging response characteristics of fractured interval, nuclear magnetic logging response characteristics of fractured interval dipole shear wave logging response characteristics of fractured interval and FMI response characteristics of fractured interval.
     Second, evaluation indicators of fracture development are studied in this paper. Including the fractal dimension of fracture development and fracture probability, fracture has self-similarity of statistical significance, so the fractal can be used for studying the fracture.
     A variety of logging methods are not identical to the sensitivity of fracture, and some non-fracture factors may also cause the same abnormal response with fracture. So it is difficult to distinguish fracture using one or two methods definitely, especially poor conditions exist in the borehole. However, it is reasonable to combin a variety of logging comprehensives to distinguish the fracture. We can use logging feature to determine the probability of fracture, a variety of logging methods constitute a fracture probability curve though weighting, and comprehensively distinguish the fracture.
     3. Identification of reservoir fracture
     Fracture has different effects on various physical properties of the reservoir, such as electrical reservoir, flexible, radioactive, etc., and there is abnormal response in well -logging response. Therefore, there are a variety of conventional logging methods for fracture identification, such as amplitude difference of dual later log. peak U of radioactivity, oval hole. etc.
     Wavelet transform is a kind of time-frequency localization analytical method with fixed size and variable shape of window, variable time window and frequency window. It is suitable for detecting abrupt signal in the normal signal. Wavelet transform has the characteristic of multiresolution (multiscale). and could observe the signal from roughly to fine. The wavelet transform will have the ability of characterizing local feature of signal in both time domain and frequency domain with choosing mother wavelet appropriately
     First, this paper analyzes the energy of well logging curve. In well logging the response of fracture will appear in the part of the high energy, so the purpose of energy analysis is to find frequency band which correspond to high-energy.
     Second, the paper does wavelet transform of logging well curve by establishing fracture indicator curve through combining the method of wavelet transform and the differential curves of convention log, such as acoustic, neutron and density, the fracture interval has been further identified more accurately. At the end of the paper, an indicator function which could be used to precisely evaluate the fracture density is thus established by linearly combining the wavelet decomposed signal and the differential curve.
     Finally, this paper enhances the fracture information of FMI using ant clustering algorithm, and achieve good results.
     4. Calculation of fracture parameters
     Fracture parameters are the basis of evaluation of fractured reservoir. The paper is aim to study fracture porosity, secondary porosity, fracture density and area of porosity of fracture using "three-pore structure" model, and statistical processing and analyze on fracture parameter data. Advantages of wavelet transform and advantages of curve ratio can be complementary. Therefore, fracture density can be relatively accurate calculated though wavelet transform of convention well logging and curve ratio. We establish a fracture indicative curve to study the relationship between the indicative curve and area of porosity of fracture. FMI image log has the advantage of continuity, azimuthally, intuitive and high resolution, so we can convert the resistivity values into porosity frequency distribution curves and figure out the matrix and fracture-vug porosity.
     5. Comprehensive evaluation of fractured reservoirs
     Comprehensive evaluation of fractured reservoirs is divided into two parts according to the existence of imaging logging data.
     1)In the presence of imaging logging of study area. Comprehensive evaluation of fractured reservoirs is based on imaging logging using grading. method
     2)In the non-presence of imaging logging of study area. Comprehensive evaluation of fractured reservoirs is based on fracture description of core using grading method.
     This study was applied in volcanic reservoir of Songnan basin and tight sandstone reservoir of Sichuan basin, and achieved good results.
引文
[1]Pollard D D.Aydin A.Progress in Understanding Jointing over the Past Century.Bull.Geol.Soc. Am.100,1988:1811~1204
    [2]潘保芝,薛林福,李舟波等.裂缝性火成岩储层测井评价方法与应用[M].石油工业出版社,2003年10月:43-45.
    [3]J.贝克等.南得克萨斯白垩纪裂缝性碳酸盐岩储集层评价,《石油测井译文集》(七,测井分析家协会18届年会论文集),1981.8.
    [4]Murray, G.H..Quantitative Fracture Study, Spanish Pool, Fracture-Controlled Production. AAPG, Bulleun Reprint series 21,1997.
    [5]洪有密.裂缝识别测井[J].测井技术,1983年01期:95-98.
    [6]裂缝识别程序DCAC在胜利油田使用[J].测井技术,1984年,(05)
    [7]廖觉生.四川碳酸盐岩层的裂缝识别[J].测井技术,1985年,19(3):12-27.
    [8]阎新民.应用计算机进行准噶尔盆地火山岩裂缝识别[J].石油地球物理勘探,1994年12月,29(增刊2):139-144.
    [9]罗利.低孔砂岩孔隙度计算方法及裂缝识别技术[J].测井技术,1999年,23(1):33-37.
    [10]孙建孟,刘荣,梅基席等.青海柴西地区常规测井裂缝识别方法[J].测井技术,1999年,23(4):268-272.
    [11]虞显和,刘建.川西坳陷中段中深层致密储层的裂缝识别[J].江汉石油学院学报,2003年9月,25(3):71-72.
    [12]万其力,韩颜峰,高伟琴等.泌阳凹陷深层系低孔渗储层常规测井裂缝识别技术[J].河南石油,2004年6月,18(增刊):1-3.
    [13]徐言岗,徐宏节,虞显.川西坳陷中深层裂缝的识别与预测[J].天然气工业,2004,24(3):9-11.
    [14]张吉昌,邢玉忠,郑丽辉.利用人工智能技术进行裂缝识别研究[J].测井技术,2005年2月,29(1):52-54.
    [15]杜飚.盐间非砂岩成像洲井裂缝识别方法[J].江汉石油大学学报,2005年3月,18(2):38-40.
    [16]中辉林,高松洋.基于BP神经网络进行裂缝识别研究[J].新疆石油天然气,2006年12月,2(4):39-52.
    [17]李雪英,蔺景龙,文慧俭.复杂地质背景下的多裂缝识别[J].大庆石油学院学报,2006年12月,30(6):16-19.
    [18]孙加华,肖洪伟,幺忠文等.声电成像测井技术在储层裂缝识别中的应用[J].大庆石油地质与开发,2006年6月,25(3):100-102.
    [19]高霞,谢庆宾.储层裂缝识别与评价方法新进展[J].地球物理学进展,2007年10月,22 (5):1460-1465.
    [20]黄宝华,陶宏根,陈浩等.交义偶极声波测井资料在裂缝识别上的应用[J].声学技术,2008年10月,27(5):242-243.
    [21]郑雷清,郑佳奎,陈文安.常规测井资料在火成岩裂缝识别中的应用[J].内蒙古石油化工,2008年第19期,120-122.
    [22]邓模,瞿国英,蔡忠贤.常规测井方法识别碳酸盐岩储层裂缝[J].地质学刊,2009,33(1),75-78.
    [23]陈力群,汪中浩,刘海军等.西北缘地区石炭系火成岩常规测井裂缝识别研究[J].国外测井技术,2008年12月第168期,35-38.
    [24]李建林、徐国盛,严维理等.川东沙罐坪气田石炭系储层裂缝识别与预测[J].天然气工业,2008,28(11):49-52.
    [25]陈钢花,吴文圣等.利用地层微电阻率成像测井识别裂缝[J].测井技术,1999,23(4):279-281.
    [26]李召成,孙建孟,耿生臣等.应用核磁共振测井T2谱划分裂缝型储层[J].石油物探,2001,40(4):113-118.
    [27]Masanobu Oda. Fabric tensor discontinuous geological materials[J].Soil and Foundations JSSMFE.1982 (4):96-108.
    [28]陈定宝等译.EM.斯麦霍夫著.裂缝性油气储集层勘探的基本理论与方法[M].北京:石油工业出版社,1985.
    [29]陈钟祥译.T. D. Van Golf-Racht著.裂缝油藏工程基础[M].北京:石油工业出版社,1989.
    [30]Ronald A. Nelson天然裂缝性储集层地质分析[M].北京:石油工业出版社,1991.
    [31]Peck L, Barton C. C., Gordon R B. Microstructure and the resistance of rock to fracture[J]. Journal of geophysical Research,1985, (13):533-546.
    [32]T. Hiraa. Fractal dimension of fault system in Japan:fractal structure in rock geometry at various scales, Journal of Pure and Appl [J]. Geophysics,1989, (13):131-157.
    [33]Velde B. Duboes J. et al. Fractal analysis of fracture in rocks:the cantor's Dust method [J]. Tectonphysics,1990(3):61-68.
    [34]Velde B.Structure of surface cracks in soil and mud [J].Tectonphysics, 1999(1-2):101-124.
    [35]Barton C. C. Fractal analysis of scaling and spatial clustering of fracture [M] .Fractal in the earth sciences, Plenum. Press, New York,1995.
    [36]曾锦光,罗元华.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982(2):202-205.
    [37]殷有泉.有限单元方法及其在地学中的应用[M].北京:地震出出版社,1987.
    [38]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986.
    [39]安欧.构造应力场[M].北京:地震出版社,1992.
    [40]宋惠珍,黄立人.地应力场综合研究[M].北京:石油工业出版社,1990.
    [41]尚岳全,黄润秋.工程地质研究中的数值分析方法[M].成都:成都科技大学出版社,1991.
    [42]颜其彬,秦启荣.碳酸盐岩裂缝预测[M].北京:石油工业出版社,1999.
    [43]樊长江.火山岩油藏裂缝识别研究[D].西南石油学院,2002年4月,41-80.
    [44]金燕,张旭.测井裂缝参数估算与储层裂缝评价方法研究.天然气工业,2002,22(增刊):64-67.
    [45]中辉林,高松洋.交叉偶极声波资料地层裂缝评价[J].石油地质与工程,2007年1月,第21卷第1期:25-27.
    [46]申辉林,杨金花,高松洋.横波各向异性在安棚地区裂缝评价中的应用[J].新疆石油地质,2008年6月,第29卷第3期:373-375.
    [47]赵辉,司马立强,颜其彬等.川中大安寨段裂缝评价及储层产能预测方法[J].测井技术,2008年6月,第32卷第3期:277-280.
    [48]朱怡翔,廖明书,刘明高等.地球物理测井的裂缝评价方法[J].国外测井技术,2000年2月,15(1):4-7.
    [49]胡传忻.断裂力学及其工程应用[M].北京,石油工业出版社,1989.
    [50]赵建生.断裂力学及其断裂物理[M].湖北武汉:华中科技大学出版社,2003.
    [51]戴俊生,汪必峰,马占荣.脆性低渗透砂岩破裂准则研究[J].新疆石油地质,2007,28(4):393-395.
    [52]宋慧珍,曾海荣,孙君秀等.储层构造裂缝预测方法及其应用[J].地震地质,1999,21(3):205-213.
    [53]王军,戴俊生,季宗镇.储层裂缝多参数定量预测及在闵桥油田的应用[J].西南石油大学学报(自然科学版),2010,32(3):51-55.
    [54]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990,14(2):83-92
    [55]李善军,肖成文,汪涵明,等.裂缝的双测井响应的数学模型及裂缝孔隙度的定量解释[J].地球物理学报,1996,39(6):845-852.
    [56]李善军,汪涵明,肖成文,等.碳酸盐岩地层中裂缝孔隙度的定量解释[J].测井技术,1997,21(3):205-214.
    [57]陈贵科,穆曙光,魏彩茹,等.一种评价碳酸盐岩储层裂缝参数的测井新模型[J].西南石油学院学报,2003,25(1):6-9.
    [58]周英杰.裂缝性潜山油藏表征与预测[J].北京:石油工业出版社,2009.
    [59]樊政军,柳建华,张卫峰.塔河油田]奥陶系碳酸盐岩储层测井识别及评价[J].石油与天然气地质,2008,29(1):60-64.
    [60]魏斌,卢毓周,乔德新,等.裂缝宽度的定量计算及储层流体类型识别[J].物探与化探,2003,27(3):217-219.
    [61]张莹.火山岩岩性识别和储层评价的理论与技术研究[D].吉林大学博十学位论文,2010:101-104.
    [62]工曦焓.火山岩储层次生孔隙度的确定方法研究[D].吉林大学硕十学位论文,2010:48-51.
    [63]王敏.基于二维成像测井的裂缝性储层测井评价方法研究[D].石油大学博十学位论文(华东),2010:27-29.
    [64]Mike Lovell, Peter Jackson, Robert Flint. Fracture Mapping WithElectrical lmages:Observations From Cores and Modelling[J].SPWLA 43 rd Annual Logging Symposium.2002.June2-5.
    [65]Luthi. S.M. and Souhaite. P.FractureAperture from Electrical Scans:Geophysics,1994,55: 821-833
    [66]D. V. (Vivek) Chitale, John Quirein and Tegwyn Perkins. Application of new borehole imager and technique to character secondary porosity and net-to-gross in vugular and fractured carbonate reservoirs in Permian basin[J]. SPWLA 45th Annual Logging Symposium, June 6-9,2004.
    [67]徐志英.岩石力学(第三版)(M).水利电力出版社,1993年3月:47-49.
    [68]李清松,潘和平,张荣.电导率成像测井进展[J].工程地球物理学报,2005,2(4):340-310.
    [69]肖丽,范晓敏.利用成像测井资料标定常规测井资料裂隙发育参数的方法研究[J].吉林大学学报(地球科学版).2003.33(3):559-563.
    [70]Behzad Tokhmechi et al., Fracture detection from water saturation log data using a Fourier-wavelet approach[J].Journal of Petroleum Science and Engineering.2009(69):129-138.
    [71]Zhang Xiao-feng.Pan Bao-zhi,Zhang Cheng-en.A Study of Wavelet Transform in the Identification of Fracture of Formation Micro-Conductivity Image logging[J].The 2nd International Conference on Information Science and Engineering (ICISE2010),2010:4888-4891.
    [72]瞿子易,周文,罗鑫等.基于粒子群和支持向量机的裂缝识别[J].石油与天然气地质,2009,30(6):786-791.
    [73]潘保芝,薛林福.李舟波等.裂缝性火成岩储层测井评价方法与应用[M]:北京,石油工业出版社,2003,45-46.
    [74]Sibit A M, faivre O. The dual laterolog response in fractured rocks.26th SPWLA annual symposim transactions,1985.
    [75]Fertl W H. Evaluation of fractured reservoir rocks using geophysical well logs.SPE8938,1975.
    [76]Rigby A F.Fracture identification in an igneous geothermal reservoir Surprise Valley.Callifornia,SPWLA,21th annual logging symposium,1980,July.
    [77]Geoge R. Coates. Lizhi Xiao, and Manfred G. Prammer. NMR Logging Principles & Applications [M]. Huston:Seagulf Press.1999.
    [78]李周波,张存和.地球物理测井数据处理与综合解释[M].长春地质学院,1991.
    [79]谭茂金.核磁共振测井信息处理与应用方法研究[D].东营:石油大学硕士论文(华东).2003.
    [80]邵维志,刘德武,韩成.利用T2谱评价板桥潜山油气藏[J].测井技术,2000,24(5):345-350.
    [81]谭茂金,赵文杰.用核磁共振测井资料评价碳酸盐岩等复杂岩性储集层[J].地球物理学进展,2006,21(2):489-493.
    [82]杨唐斌.用斯通利波评价裂缝的有效性[J].测井技术,1998,22(2):132-136.
    [83]刘之的,戴诗华,王宏亮等.利用DSI评价火成岩裂缝的有效性[J].测井技术,2007,31(2):156-158.
    [84]Bremer M H, Kulenkampff J, Schopper J R. Lithological and fracture response of common logs in crystalline rocks. In:Hurst A, Griffiths C M, Worthington P F eds. Geological Society Special Publication,1992, (65):221-234.
    [85]李舟波,潘葆芝,沈金松等.塔东北碳酸盐岩裂缝性储集层测井解释方法.中国塔里木盆地北部油气地质研究(第三辑).中国地质大学出版社(武汉),1991.195-206.
    [86]卢颖忠,黄智辉,管志宁等.储层裂缝特征测井解释方法综述[J].地质科技情报,1998,17(1):85-90.
    [87]乐群星、魏法杰.蚂蚁算法的基本原理及其研究发展现状[J].北京航空航天大学学报(社会科学版)2005,18(4):5-8.
    [88]宋雪梅、李兵.蚁群算法及其应用[J].河北理工学院学报.2006,28(1):42-45.
    [89]高尚、杨静宇、吴小俊.聚类问题的蚁群算法[J].计算机工程与应用.2004:90-92
    [90]孙建孟,刘蓉,梅基席等.1999,青海柴西地区常规测井裂缝识别方法[J]:测井技术,23(4).268-272.
    [91]王松桂、陈敏、陈立萍.线性统计模型:线性回归与方差分析[M].高等教育出版社,1999.
    [92]潘保芝,薛林福.分数维及其在测井地质解释中的应用[J].测井技术,1992,16(3):214-221.
    [93]Pan Baozhi.Xue Linfu.Fractual dimension of fractures.London Petro-physical Society Meeting for Fractures,London.1995.
    [94]冯志强,刘嘉麒,王璞珺等.油气勘探新领域:火山岩油气藏—松辽盆地大型火山岩气田发现的启发.地球物理学报,2011,54(2):267-279.
    [95]Pan Baozhi, Xue Linfu, Huang Buzhou et al., Evaluation of volcanic reservoirs with the "QAPM mineral model" using a genetic algorithm[J]. APPLIED GEOPHYSICS,Vol.5,No.1(Mar 2008),1-8.
    [96]Wu Qingling, Zhao Haibo, Li Lailin et al., Analysis of rock physics response of gas-bearing volcanic reservoir based on three-phase poroelastic theory[J]. APPLIED GEOPHYSICS,Vol.5/No.4(December2008),277-283.
    [97]Li Ning, Wu Hongliang, Feng Qingfu et al., Matrix porosity calculation in volcanic and dolomite reservoirs and its application[J]. APPLIED GEOPHYSICS,Vol.6.No.3(September 2009).287-298.
    [98]王允诚.裂缝性致密油气储集层[M].石油工业山版社,北京,1992,117-120.
    [99]邓瑞,郭海敏,戴家才等.裂缝性储层的常规测井识别方法[J].勘探地球物理进展,2007,30(2):107-111.
    [100]牟永光.地震数据处理方法[M].石油工业出版社,2007.
    [101]高伟,王允诚,徐静等,2008,小波分析在测井裂缝识别中的应用[J]:西南石油大学学报,30(1),51-53.
    [102]陈亮,张莉萍,罗晓密等.三岔坪裂缝型气减井周有效裂缝评价[J].重庆科技学院学报(自然科学版),2008,10(6):37-39.
    [103]林勇,蒲经军,周小军等.火成岩储层XMAC套管中压裂缝评价及应用[J].石油天然气学报,2009,31(5):70-74.
    [104]轲式镇.井壁电成像测井全三维数值模拟与裂缝评价模型[J].中国科学(D辑:地球科学),2008,38(增刊):150-153.
    [105]张莹,潘保芝,黄布宙等.测井资料小波变换在高分辨率层序地层划分中的应用[J].物探化探计算技术,2008,30(1):58-62.
    [106]葛哲学,陈仲生,2006,Matlab时频分析技术及其应用[M]:人民邮电出版社,9-10.
    [107]张德丰.Matlab小波分析与工程应用[M].北京:国防工业出版社,2008:197-204.
    [108]潘保芝,李舟波,石雨田.测井曲线剩余变化的分维描述火成岩裂缝发育情况[J].
    吉林大学学报(地球科学版),2002,32(4):399-402
    [109]文华川.探测天然裂缝的测井技术[J].石油工业测井技术科技情报协作组第四次会议论文集。
    [110]乔德新.成像测井资料定量计算方法研究及软件开发[D].中国地质大学(北京),2005.
    [111]汪必峰.储集层构造裂缝描述与定量预测[D].中国石油大学博士论文,2007.
    [112]江涛.低渗透油藏储层裂缝预测技术研究[D].中国地质大学(北京)博士论文,2007.
    [113]郭殿军.裂缝型新站油田精细油藏描述与剩余油分布规律研究[D].东北石油大学博士论文,2010.
    [114]向文飞.裂隙岩体表征单元体及力学特性尺寸效应研究[D].武汉大学博士论文,2005.
    [115]季宗镇.卞闵杨地区阜宁组储层裂缝定量研究[D].中国石油大学博士论文,2010.
    [116]王越之,田红.常规测井与FMI测井资料相结合研究储层裂缝[J].断块油气田,2001,8(5):30-32.
    [117]曹延蓉.EMI成像测井在L1井特殊岩评价中的应用[J].西部探矿工程,2008,12:81-83.
    [118]徐维胜,何川,龚彬等.普光气田基于多井资料的储层裂缝综合地质分析[J].中外能源,2011,2:51-56.
    [119]刘之的.不同地应力条件下定向井地层坍塌压力变化规律分析[J].天然气地球科 学,2010,21(1):107-111.
    [120]刘之的,戴诗华,王洪亮等.火成岩裂缝有效性测井评价[J].西南石油大学学报(自然科学版):2008,30(2):66-68.
    [121]许风光.火成岩储层岩性识别及裂缝评价研究[D].中国石油大学硕士论文,2007.
    [122]汤小燕,刘之的,王兴元.基于多测井参数的火山岩裂缝识别方法研究[J].测井技术,2009,33(4):368-370.
    [123]杨雪,潘保芝,张莹.利用测井曲线的分数维分析火山岩地层的结构[J].国外测井技术,2007,22(5):32-34.
    [124]汤小燕,王兴元,朱永红.综合概率法评价火山岩裂缝发育程度[J].天然气勘探与开发,2009,32(1):26-27.
    [125]文环明.分形测井解释理论方法研究[D].成都理工工大学博十论文,2003.
    [126]杨雪,潘保芝,张莹.利用测井曲线分数维分析火山岩地层结构[J].油气地球物理,2008,6(1):38-40.
    [127]郭秀娟,潘保芝,吴海波等.徐家围子断陷火成岩裂缝性地层的测井特征与识别[J].石油物探,2004,43(3):301-305.
    [128]刘之的,刘红歧,代诗华.火山岩裂缝测井定量识别方法[J].大庆石油地质与开发,2008,27(5):132-134.
    [129]王英伟.基于随机模拟的火山岩储层描述[D].吉林大学博士论文,2010.
    [130]徐国盛,匡建超,叶斌等.塔河三号油田奥陶系溶蚀缝洞储层识别与分级标准的建立[J].成都理工大学学报(自然科学版),2004,31(1):59-65.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700