用户名: 密码: 验证码:
高速客车铝基复合材料制动盘热损伤和结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轻量化是高速列车的关键技术之一。SiC颗粒增强铝基复合材料用于高速列车制动盘可减少簧下重量、实现轻量化。但铝基复合材料的膨胀系数较大、高温强度偏低,复合材料制动盘很容易受到热损伤,这使其使用速度受到限制。本文以有限元模拟计算为基础,通过理论分析和试验研究相结合的方法,开展了高速客车铝基复合材料制动盘的热损伤和结构设计研究。探讨了热损伤的特点和规律,在此基础上开展了制动盘的结构优化设计,提高了其适用的速度上限。
     本文测试了20wt%颗粒增强铝基复合材料在不同温度下的力学性能及热物理性能,得到了这两种性能随温度变化的曲线。通过有限元计算与试验验证相结合的方法系统研究了复合材料的微观损伤机理,得知室温下复合材料的裂纹萌生以基体撕裂和颗粒断裂为主;高温下其裂纹萌生机制以颗粒脱离和基体撕裂为主。开展了颗粒含量不同、颗粒含量相同但温度不同的铝基复合材料单向拉伸模拟计算,并通过与实测结果相比较,得出结论:颗粒含量不大于20wt%的复合材料的均质假设有限元模拟计算是有效的。这为20wt%颗粒增强铝基复合材料制动盘的均质假设有限元分析有效性奠定了基础。
     本文建立了三种制动盘制动过程有限元计算模型,并以1∶1制动试验中红外线温度成像系统测试的温度为依据,分析了它们的特点和适用性。在部分盘间接耦合模型的基础上,提出了整盘间接耦合计算模型。进一步研究了弹塑性热-机耦合问题,建立了盘形制动多体接触弹塑性热-机耦合模型。为铝基复合材料制动盘的热损伤和结构设计研究进行了研究方法上准备。
     本文采用有限元计算、理论分析和试验结果相结合的方法,研究了制动盘热斑、热裂纹和开裂三种热损伤的形成机理、影响因素和预防措施。研究表明,热斑是制动盘摩擦面局部高温区的组织变化和高温氧化的结果;热裂纹是由于制动盘摩擦面高温度区的边缘存在较大的内应力而萌生晶界裂纹,在径向和周向拉应力的作用下,裂纹沿晶界径向扩展而形成的;制动盘中不均匀的温度场分布造成不均匀变形,变形受阻形成热应力,热应力超过材料的高温强度导致制动盘开裂。此外,通过对制动盘热应力的研究,提出了产生制动盘热应力的五种约束。
     本文以热应力是否导致制动盘开裂为依据,采用有限元计算方法开展了SiC颗粒增强铝基复合材料制动盘结构设计研究。分析了制动盘各组成单元对热应力的影响,提出了制动盘结构单元组合设计方法,归纳了制动盘结构设计的一般原则,设计出了满足280km/h紧急制动条件的铝基复合材料制动盘。
Lightweight was one of the key technologies for the high-speed trains. Unsprung weight can be reduced by using SiCp/A356 brake disc, so as to reduce the weight of high-speed trains. Comparing to iron and steels, SiCp/A356 composites has larger linear expansion coefficient and lower strength at high temperature, which increase thermal damage tendency and limit speed range of SiCp/A356 brake discs. Based on finite element simulation, thermal damage and structure design of SiCp/A356 brake disc for high speed train were studied in this paper through theoretical analysis and experimental study. On the basis of the results, the structure optimization design of the brake disc was carried out in order to increase the speed of its application.
     The mechanical and thermal physical properties of the 20 wt% SiCp/A356 composites at different temperatures were tested in this paper. And the property-temperature curves were obtained. Through the method of the finite element analysis and experiments, micro-damage mechanism of SiCp/A356 composites was investigated systematically. Micro-damage mechanism obtained by the finite element simulation was consistent with the mechanism from the fracture analysis. It can be concluded that the crack initiation mechanism of the composites at room temperature was mainly tear of the matrix and fracture of SiC particles mainly; while the mechanism of the composites at high temperature was SiC particle debonding from the matrix and tear of the matrix. Finite element simulations of the monotonous tensile tests were carried out for different percentage of particle in the composites at room temperatures, and the same percentage of particle in the composites at different temperatures. The simulation results were consistent with the experimental results. It can be concluded that when the content of SiC particles in the composites was no more than 20 wt%, after the uniform assumption for the SiCp/A356 composites was valid during finite element analysis, which established the foundation for the finite element analysis of the SiCp/A356 brake disc.
     With regard to FEM of disc brake, three typical finite element models for the braking simulation in this paper were established. Based on the temperature data obtained by infra-red temperature test imaging system during 1:1 dynamo test, their characteristics and applicability were studied. On the basis of the part-disc indirect coupling method, the full-disc indirect coupling model was put forward by changing the flux input method. And the multi-contact elastic-plastic thermal-mechanical coupling model of disc brake was established in order to investigate the thermal-mechanical coupling problems. This provides the methods for the research on the thermal damage and structural design of the brake disc.
     In the aspect of thermal damage mechanism study of SiCp/A356 brake disc, the forming mechanism, influencing factors and preventive measures of three typical thermal damages including hotspots, thermal-cracks and cracking were investigated through the combination of the finite element simulation, the theoretical analysis and the test results in this paper. The results showed that hotspot was caused by the change of structure and the oxidation due to the high temperature caused by surface friction on the brake. Crack firstly initiated at grain boundary due to higher internal stress at the edge of high temperature field caused by surface friction. The cracks propagated along the grain boundary due to the radial and circumferential tensile stress and finally created thermal-cracks. Non-uniform deformation was caused by non-uniform distribution temperature field in the brake disc. When the deformation was constrained by the structure and mechanical constraints of the brake disc, the thermal stress was introduced. If the thermal stress was bigger than the strength of materials at corresponding temperature, it led to the crack of the brake disc. In addition, based on the thermal stress research of brake disk, five kinds of constraints which might lead to thermal stress were summed up.
     Considering whether the thermal stress led to brake disc cracking, the structure design of the SiCp/A356 brake disc was studied by Finite Element Method (FEM). The effects of the brake disc components on thermal stress were analyzed. A structural components combination method and general principles of structure design of the brake disc were put forward. Based on these researches, a brake disc structure was designed which satisfied the application requirements of emergency braking at 280 km/h.
引文
[1]马大炜.高度的安全保障---旅客列车制动技术装备的发展[J].铁道机车车辆,2003,19(1):13-16.
    [2]朱育权,马保吉,杜亚勤.制动盘(鼓)研究现状与发展趋势[J].西安工业学院学报,2001,21(1):73-79.
    [3]韩建民.高速列车SiCp/A356制动盘制造关键技术及摩擦特性研究[学位论文].北京:北京交通大学,2004.
    [4]马大炜.铁道车辆制动热负荷的计算机应用[J].中国铁道科学,2000,21(4):30-37.
    [5]孙福祥,吕换小.提速客车制动技术(6)[J].铁道机车车辆.2001.6:48-51.
    [6]T.A.Zeuner撰写.吴月华译.局部加强的轻型结构铸造盘形制动器[J].国外机车车辆,2000,6:5-15.
    [7]饶忠.列车制动[M].北京:中国铁道出版社.1998.
    [8]乐永康,张迎元.颗粒增强铝基复合材料的研究现状[J].材料开发与应用,1997,12(5):33-39.
    [9]T.W 克莱因,P.J.威瑟斯著,余永宁,房志刚译,贾成厂校.金属基复合材料导论[M].北京:冶金工业出版社,1996.
    [10]V.V.Bhanuprasad,M.A.Staley,P.Ramakrishnan,Y.R.Mahajan.Fractography of Metal Matrix Composites[J].Key Engineering Materials,1995,2:495-506.
    [11]欧阳柳章,罗承萍,隋贤栋等.外加颗粒增强金属基复合材料的现状及展望[J].中国铸造装备与技术,2000,1:3-6.
    [12]王文龙,吴军华,张国定.铝基复合材料的摩擦磨损性能[J].金属学报,1998,(34)11:1178-1182.
    [13]陈跃,刑建东,张永振等.增强颗粒对铝基复合材料摩擦学性能的影响[J].摩擦学学报,2001,21(4):251-255.
    [14]王泽华.复合材料在高速列车上的应用[J].机械工程材料,2001,25(10):1-4,30.
    [15]小松纪仁(日本)等.铁道车辆用蠕墨铸铁制动盘的开发[J].国外机车车辆工艺,2002,4:24-27.
    [16]刑绍美,马建平.碳化硅Al基复合材料的应用与加工[J].航天工艺,1997,6:30-35.
    [17]KNORR-BREMSE SYSTEME FOR SCHIENENFAHRZEUGE GMBH.Information-Paper KB Aluminum Brake Discs for Railway Vehicles[M].German:KNORR,2003.
    [18]Ling,S.,Gupta,M.and Srivatsan,T.S.The Quasi-static Responseand Fracture Behavior of a Thermo mechanically Processed Aluminum Alloy Metal-matrix Composite[J].Materials Letters,1999,38(4):254-259.
    [19]Hunt,Jr.,W.H.,Brockenbrough,J.R.and Magnusen,P.E.An Al-Si-Mg Composite Model System:Micro-structural Effects on Deformation and Damage Evolution[J].Scripta Metallurgicaet Materialia,1991,25(1):15-20.
    [20]Christman,T.,Needleman,A.and Suresh,S.An Experimental and Numerical Study of Deformation in Metal-Ceramic Composites[J].Acta Metallurgica,1989,37(11):3029-3050.
    [21]Koh SK,Oh SJ,Li C,Ellyin F.Low-cycle fatigue life of SiC particulate reinforced Al-Si cast alloy composites with tensile mean strain effects[J].Int J Fatigue,1999,21(10):1019-1032.
    [22]Cevdet Kaynak,Suha boylu.Effects of SiC particulates on the fatigue behavior of an Al-alloy matrix composite[J].Materials and Design,2006,27(9):776-782.
    [23]Razaghian A,Yu D,Chandra T.Fracture behavior of a SiC-particle-reinforced aluminum alloy at high temperature[J].Compos Sci Technol,1998,58(2):293-298.
    [24]Kumai S,Hu J,Nunomura S.Effects of dendrite cell size and particle distribution on the near-threshold fatigue crack growth behavior if cast Al-SiCp composites[J].Acta Metall,1996,44(6):2249-2257.
    [25]葛晓陵,吴东棣.SiCp/Al复合材料断裂失效的微观机理[J].复合材料学报,1994,11(4):44-48.
    [26]孔常静,尚嘉兰等.铸态SiCp/Al复合材料原位拉伸细观损伤的研究[J].材料科学与工程,1998,16(2):56-58,71.
    [27]陈尚平,解念锁 等.非连续增强铝合金复合材料的力学性能[J].材料科学与工程,1997,15(4):72-74,63.
    [28]郭成,程羽,尚春阳等.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,2001,18(4):54-57.
    [29]傅敏士,肖亚航.SiCp/Al复合材料的断裂行为[J].机械工程材料,2001,25(11):17-19.
    [30]肖伯律,毕敬,赵明久等.SiCp尺寸对铝基复合材料拉伸性能和断裂机制的影响[J].金属学报,2002,38(9):1006-1008.
    [31]郭荣鑫,Gerard LORMAND,李俊昌.球形颗粒增强铝基复合材料的细观失效分析[J].昆明理工大学学报,2001,26(5):14-17.
    [32]白以龙,郑哲敏,俞善炳.关于热-塑剪切带的演变[J].力学学报,1986,2:377-383.
    [33]M.Tirovic and A.J.Day.Disc brake interface pressure distributions[J].Proc Instn Mech Engrs.1991,205(2):137-146.
    [34]A.J.Day and M.Tirovic and T.P.Newconb.Thermal effects and pressure distributions in brakes [J].Proc Instn Mech Engrs,1991,205(2):199-205.
    [35]Dae-Jin Kim,Young-Min Lee et al.Thermal stress analysis for a disk brake of railway vehicles with consideration of the pressure distribution on a frictional surface[J].Materials Science and Engineering A,2008,483-484(15):456-459.
    [36]Chung Kyun Kim,Boo-Yong Sung etc.Finite element analysis on the thermal behaviors of a disk-pad brake for a high-speed train.Proceedings of the first Asia international conference on tribology,Beijing China,1998:95-102.
    [37]P.Zagrodzki,K.B.Lam,E.Al Bahkali,J.R.Barber.Nonlinear Transient Behavior of a Sliding System with Frictionally Excited Thermoelastic Instability[J].Journal of Tribology,2001,123(10):699-708.
    [38]P.Zagtodzki.Analysis of thermomechanical phenomena in multi-disc clutches and brakes[J].Wear,1990,140(2):291-308.
    [39]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(上)[J].铁道车辆,1995,33(9):6-8.
    [40]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(下)[J].铁道车辆,1995,33(10):33-38.
    [41]Floquet A.Thermomechanical behavior of mulitilayered media[J].ASME J of Tribo,1989,11(1):538-545.
    [42]郑剑云,郭晓晖,包子骞等.提速客车制动盘热应力有限元分析[J].机车车辆工艺,2002,3:4-6,27.
    [43]王文静.SiC_p/356复合材料制动盘温度场应力场数值模拟及热疲劳寿命预测[学位论文].北京:北京交通大学.2003.
    [44]丁群,谢基龙.基于三维模型的制动盘温度场和应力场计算[J].铁道学报,2002,24(6):34-38.
    [45]李继山,林祜亭,李和平.高速列车合金锻钢制动盘温度场仿真分析[J].铁道学报,2006,28(4):45-48.
    [46]Gao Chen-hui,Lin Xie-zhao.Transient temperature field analysis of brake in nonaxisymmetric three-dimensional model[J].Journal of Materials Processing Tech,2002,129(1-3):513-517.
    [47]林谢昭,高诚辉.紧急制动过程制动盘表面非轴对称温度场的数值模拟[J].摩擦学学报,2002,22(4):366-369.
    [48]林谢昭,高诚辉.盘式制动器非轴对称温度场的有限元模型.2002疲劳与断裂工程设计论文集,西安,2002:404-407.
    [49]赵海燕,徐济民,陈强等.高速列车制动盘寿命评估.清华大学科技研究报告,2003.
    [50]Kennedy F.E.,Ling,F.E A Thermal,Thermoelastic and Wear Simulation of a High-Emergy Sliding Contact Problem[J].ASMEJ.Lubr.Technol,1974,19(7):497-508.
    [51]唐旭晟,盘式制动器热-结构非线性分析与计算[学位论文].福州:福州大学,2003.
    [52]关莹.列车制动过程热-机耦合数值仿真[学位论文].大连:大连铁道学院,2002.
    [53]Thomas Zeuner(德国).高速列车使用铝基复合材料制动圆盘[J].国外机车车辆工艺,1999,2:19-21.
    [54]Taro Tsujimura(日本)等.机车车辆铝合金复合材料制动盘的开发[J].国外机车车辆工艺,1996.4:9-13.
    [55]Fumio HIROSE(日本)等.制动盘的新发展[J].国外铁道车辆,1989,1:9-14.
    [56]Taro Tsujimura(日本)等.制动盘材料的近期发展趋势-提高铁道车辆速度和降低维修成本[J].国外机车车辆工艺,1995,3:1-3.
    [57]《国外高速列车译文集》编委会.国外高速列车译文集(制动技术专集)[M].北京:铁道部科学研究院机辆所,1996,177-188.
    [58]《国外高速列车译文集》编委会.国外高速列车译文集(制动技术专集)[M].北京:铁道部科学研究院机辆所,1996,154-166.
    [59]迁村太郎(日本),骆巧珍 译.制动材料开发的动向[J].国外内燃机车,1993,6:30-34.
    [60]《国外高速列车译文集》编委会.国外高速列车译文集(制动技术专集)[M].北京:铁道部科学研究院机辆所,1996,132-138.
    [61]《国外高速列车译文集》编委会.国外高速列车译文集(制动技术专集)[M].北京:铁道部科学研究院机辆所,1996,147-153.
    [62]祝华 译.SAB Wabco公司开发出新型制动盘[J].国外铁道车辆,2005,42(3):42.
    [63]钱坤才.200 km/h高速客车制动盘的研究[J].机车车辆工艺,2005,2:23-24,28.
    [64]何正禄,卢笛等.新型客车制动盘结构与材料分析[J].机车车辆工艺,2000,6(6):1-6.
    [65]吴召玲.高质量SiC_p/A356复合材料制备工艺及重熔工艺的研究与应用[学位论文].北京:北京交通大学,2006.
    [66]沙镇嵩.真空调压铸造技术研究与应用[学位论文].北京:北京交通大学,2005.
    [67]中国航空材料手册编委会.中国航空材料手册(3)[M].北京:中国标准出版社,1987.
    [68]黄健萌.制动器摩擦热温度场的数值模拟[学位论文].福州:福州大学,1999.
    [69]诸文农.底盘设计[M].北京:机械工业出版社,1981.
    [70]鲁道夫.汽车制动系统的分析与设计[M].北京:机械工业出版社,1985.
    [71]王志刚.盘形制动器制动过程能量分析及温度场计算[J].四川工业学院学报,2004,23(4):19-20.
    [72]Day A J.The dissipation of frictional energy from the interface of an annular disc brake[J].Mech.E,1980,6(11):30-34.
    [73][美]D.皮茨,L.西索姆著.传热学[M].北京:科学出版社,2002.
    [74][美]W.F.休斯,J.A.布莱顿著.流体动力学[M].北京:科学出版社,2002.
    [75]林谢昭,高诚辉,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报,2006,13(1):45-48.
    [76]陈火红.MSC.Marc动力分析培训教程[M].北京:MSCPRC印刷,2001,6.
    [77]陈火红.MSC.Marc接触分析培训教程[M].北京:MSCPRC印刷,2001,6.
    [78]陈火红.MSC.Marc热分析培训教程[M].北京:MSCPRC印刷,2001,6.
    [79]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002.
    [80]席源山,陈火红.MSC.Marc温度场及其耦合分析培训教程[M].北京:MSCPRC印刷,2001.
    [81]中国第一汽车集团公司编写组.机械工程材料手册[M].北京:机械工业出版社,2003.
    [82]高红霞,刘建秀,王青.铜基粉末冶金刹车材料不同制动速度下的摩擦磨损性能[J].郑州轻工业学院学报(自然科学版),2005,8,20(3):10-12.
    [83]《国外高速列车译文集》编委会.国外高速列车译文集(制动技术专集)[M].北京:铁道部科学研究院机辆所,1995,87-96.
    [84]韩建民主编.材料成型工艺技术基础[M].北京:中国铁道出版社,2002.
    [85]彭孝庄,张耀宏,大岸秀之(日本)等.铝合金制动盘的开发[J].国外机车车辆工艺,2003,5:21-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700