用户名: 密码: 验证码:
蒙古马免疫相关基因表达研究及脾脏表达谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国马业正处在从传统马业向现代马业转型的过程中,急需培育出适应我国自然环境的马匹新品种(系)。为此,对优良地方品种蒙古马免疫相关基因进行研究,不但可以进一步了解蒙古马抗病力强的原因,为揭示蒙古马抗病力遗传特性提供理论依据,而且可以对蒙古马种质资源的保护、利用和创新起到积极的作用,并指导地方品种马的杂交改良、品种(系)的培育。本研究以蒙古马为研究对象,以纯血马为对照,首先对蒙古马与纯血马血液生化、免疫和抗氧化指标进行测定分析,判断正常生理情况下,蒙古马与纯血马血液指标是否存在差异,从总体上掌握两个品种马抗病力的情况;其次,对马匹抗病候选基因TLR2、TLR4多态性进行研究,分析两个品种马基因型的差异性;再次,采用实时荧光定量RT-PCR(RT-qPCR)的相对定量方法对两个品种马不同组织中TLRs基因的表达量进行差异分析,同时对在脂多糖(LPS)诱导下的两个品种马单核细胞与免疫相关基因的差异表达进行研究,得到各基因的相对表达量,进而分析免疫相关基因对不同品种间抗性的影响;最后,利用高通量测序技术对蒙古马与纯血马脾脏表达谱文库进行测序,以寻找两个品种马脾脏组织中的差异表达基因。通过本研究的结果可以为揭示蒙古马抗病力遗传特性提供理论依据,并获得以下主要研究结果:
     1.通过对血液生化、免疫和抗氧化指标的结果分析发现,纯血马血液中白蛋白和胆固醇的含量偏高,这与其饲料营养水平相一致;蒙古马血液中球蛋白、IgG和IgA的含量均显著高于纯血马(P<0.05),推测与蒙古马的免疫力高有关。
     2.采用PCR-SSCP技术对蒙古马与纯血马TLR2基因进行分型,两个群体都呈现出三种基因型(AA、AB和BB型);经测序发现该基因外显子存在两处突变:编码区945bp位置G→C的同义突变和1070bp位置G→A的错义突变;由于密码子的摆动性,945bp位置并未导致精氨酸的突变;而1070bp位置由精氨酸突变为谷氨酰胺。对基因型统计分析,蒙古马与纯血马品种之间不同基因型分布存在显著差异(0.01≤P<0.05)。
     3.通过直接测序方法发现,蒙古马与纯血马TLR4基因第3外显子共发现11处碱基突变,其中8处(520bp位置T→G,668bp位置A→G,817bp位置C→T,1003bp位置C→T,1513bp位置T→C,1546bp位置G→A,1771bp位置T→C和1903bp位置T→C)为同义突变;其他3处,713bp位置C→A导致谷氨酰胺变为赖氨酸,1353bp位置T→C使甲硫氨酸变为苏氨酸,1673bp位置A→G导致甲硫氨酸变为缬氨酸,并且这3处不同基因型分布存在极显著差异(P<0.01)。
     4.采用RT-qPCR的2-△Ct方法对蒙古马与纯血马TLR1-9基因在肝脏、脾脏、肺脏、盲肠和骨髓组织进行了差异表达研究。结果表明各基因在5个组织中均有表达;TLRs基因在免疫器官(脾脏和骨髓)中的表达量为蒙古马高于纯血马;而在肝脏中为蒙古马低于纯血马。
     5.马外周血单核细胞经LPS刺激后,无论是蒙古马还是纯血马TLR4、CD14、MD-2、TNF-α、INF-β、IL-1β、IL-6和IL-8基因表达量都有所增加(与对照组相比);TLR4、CD14、IL-1β、IL-6和IL-8基因的表达量均是蒙古马低于纯血马,其中TLR4基因和IL-1β基因表达差异显著(P<0.05)。单核细胞上清液中细胞因子(TNF-α、INF-β、IL-1β和IL-8)含量在两个品种之间差异不显著(P≥0.05)。
     6.构建了蒙古马-脾脏和纯血马-脾脏组织表达谱文库,经Illumina Miseq高通量测序,分别获得了6811804和7744386有效reads;两个文库Map到8号和1号染色体的reads最多,而Map到29号、30号和31号染色体的reads最少;两个文库共筛出279个差异表达基因,其中与免疫相关的基因有45个。GO功能富集分析结果表明差异表达基因与生物学过程、细胞组分和分子功能有关;KEGG通路富集分析结果表明差异最大的显著富集KEGG条目为免疫系统。
China Horse Industry is transforming from the traditional horse industry to themodern form. Breeding of new horse lines (breeds) adapt to the natural environmentalconditions of China become an urgent demand. It is necessary to research immune relatedgenes of Mongolian Horse, the excellent local species. There are several reasons to supportthe view above: Firstly, it indicates why Mongolian Horse can strongly resist diseases, andprovides the theoretical proofs to revealing the genetic characteristics of disease resistance;Secondly, the research plays a positive role for protecting, utilizing and breedinginnovation of germplasm; also improves the techniques of the crossbreeding and new lines’cultivation. Mongolian Horse and Thoroughbred have been chosen to be the experientgroup and control group resepectively. First of all, to figure out whether there wassignificant difference between the two species regarding to disease resistance ability, thefollowing blood analysis including biochemical, immune and antioxidant indices at theirnormal biophysical state had been done. Secondly, the study on polymorphism of bothTLR2and TLR4were used to analyze the differences of genotype between the two horsespecies. Thirdly, a differential expression assay of TLRs in different tissues of the twospecies by real-time reverse transcription quantitative PCR (RT-qPCR) had been taken.Meanwhile, stimulating horse monocytes by lipopolysaccharide (LPS), we got the relativeexpression data of immune related genes by the differential expression assay; furtherly, theinfluence of disease resistance genes had been analyzed on the resistance between differentspecies. Finally, expression profile analysis of spleen tissues of Mongolian Horse andThoroughbred by high-throughput sequencing was used to searche the differential genes.This thesis tried to provide the theoretical proofs to revealing the disease resistance geneticcharacteristics of Mongolian horses. The main results showed as following:
     1. The results of the blood biochemical, immune and antioxidant indices showed thatthe Thoroughbred had high levels of albumin and cholesterol content in Mongolian Horse,which was consistent with the nutrition level of feed; The globulin, IgG and IgA contentsof Mongolian Horse were significantly higher than Thoroughbred (P<0.05), whichsuggested it may be associated with the high immunity of Mongolian Horse.
     2. The TLR2gene was categorized into three genotypes (AA, AB and BB) byPCR-SSCP in the two Horse species. The sequencing found that there were two deletionmutations in the exon: G→C synonymous mutation at945bp and G→A missense mutation at1070bp. Arg at945bp didn't alter due to the swing of the codon, but Arg was substitutedto Gln at1070bp. For the genotypes analysis, the distribution of genotypes had significantdifference between Mongolian Horse and Thoroughbred (0.01≤P<0.05).
     3. By direct sequencing, it was found there were11base mutations in exon3of TLR4gene in both species, which included8synonymous mutations (T→G at520bp, A→G at668bp, C→T at8171bp, C→T at1003bp, T→C at1513bp, G→A at1546bp, T→C at1771bp, and T→C at1903bp). The left3mutation sites were: i) C→A missense mutationat713bp leading to the Gln→Lys amino acid substitution; ii) T→C missense mutation at1353bp leading to the Met→Thr amino acid substitution; iii) A→G missense mutation at1673bp leading to the Met→Val amino acid substitution. And the genotype of these3sitesshowed a significant difference between Mongolian Horse and Thoroughbred(P<0.01).
     4. The differential expression of TLR1-9gene in liver, spleen, lung, caecum and bonemarrow of two species were analyzed by RT-qPCR with2-△Ctmethod. The results showedthat the genes mentioned above were detected in all tested tissues. The genes relativeexpression levels of Mongolian Horse were higher than Thoroughbred in immune organs(spleen and bone marrow), but lower in lung.
     5. In vitro treatment of equine peripheral blood monocytes with LPS increasedtranscription level of all TLR4, CD14, MD-2, TNF-α, INF-β, IL-1β, IL-6and IL-8fromboth Mongolian Horse and Thoroughbred compared with the control groups. The mRNAlevel of TLR4, CD14, IL-1β, IL-6and IL-8in Mongolian Horse was lower thanThoroughbred, and the difference of TLR4and IL-1β expression was significant (P<0.05).The levels of the cytokines (TNF-α, INF-β, IL-1β and IL-8) in the supernatant ofperipheral blood monocytes were no difference (P≥0.05) between the horse species.
     6. Expression profiling libraries of Mongolian Horse-spleen and Thoroughbred-spleen were constructed, and we obtained6811804and7744386useful reads by theIllumina Miseq sequencing respectively. Most reads of two expression profiling librarieswere maped on Chromosome8and Chromosome1, and least of reads were maped onChromosome29, Chromosome30and Chromosome31.279differential genes were foundbetween two expression profiling libraries, including45immune-related genes. The GeneOntology analysis showed that differentially expressed genes were related with biologicalprocess, cellular component and molecular function. The Kyoto Encyclopedia of Genesand Genomes analysis indicated that immune system was the greatest different KEGGterm.
引文
1中国畜禽遗传资源委员会组编.中国畜禽遗传资源志-马驴驼志[M].北京:中国农业出版社,2011
    2Hutt FB. Genetic resistance to disease in domestic animals [M]. New York: Comstockpublishing Aaaociates, Ithaca,1958
    3刘杨.猪LMP2、LMP7和MECL-1基因的分子特征及与免疫性状的关联分析[D].中国农业大学,2007
    4李立明主编.流行病学[M].北京:人民卫生出版社,2008
    5冷伟建.脂多糖受体复合物基因多态性与感染易感性相关研究[D].第一军医大学,2006
    6成贵,王英,鲁绍雄.猪遗传抗性和抗病育种的研究进展及展望[J].黑龙江畜牧兽医,2009,(3):29-30
    7施启顺,柳小春,马海明.猪的疾病抗性与抗病育种研究进展[J].国外畜牧学:猪与禽,2002,(3):35-38
    8刘博,黄炎坤,杜垒.家禽的抗病育种研究[J].畜牧与兽医,2005,37(10):47-49
    9严燕,殷宗俊.猪遗传抗性与抗病育种研究进展[J].猪业科学,2007,(6):58-61
    10袁峥嵘.动物抗病育种研究进展[J].畜牧与兽医,2007,39(9):68-70
    11陈冬金,谢喜平,陈岩锋,孙世坤.动物育种中抗病力的选择[J].中国畜牧兽医,2011,38(9):149-151
    12马小军.不同猪种免疫功能及免疫相关基因表达差异研究[D].甘肃农业大学,2005
    13杨海玲,曾勇庆,王慧.猪抗病和免疫相关候选基因的研究进展[J].猪业科学,2010,(1):92-94
    14李国勤,卢立志.鸡主要抗病基因研究进展[A].中国畜牧兽医学会家禽学分会.中国家禽科学研究进展——第十四次全国家禽科学学术讨论会论文集[C].中国畜牧兽医学会家禽学分会:2009:6
    15吴华莉,朱庆.鸡主要相容性复合体(MHC)与抗病育种[A].中国畜牧兽医学会、中国畜牧业协会.第四届中国畜牧科技论坛论文集[C].中国畜牧兽医学会、中国畜牧业协会:2009:4
    16管峰,潘磊,石国庆,刘守仁,杨利国.绵羊PRNP遗传多样性与抗病育种研究进展[J].遗传,2009,31(2):137-141
    17李勇,徐新明,赵兴,白杰.主要抗病候选基因在牛抗病育种中的研究进展及展望[J].黑龙江畜牧兽医,2009,(11):23-24
    18Fox-Clipsham LY, Carter SD, Goodhead I, et al. Identification of a mutationassociate-ed with fatal Foal Immunodeficiency Syndrome in the Fell and Dales pony[J]. PLoS Genet,2011,7(7):e1002133
    19日本中央競馬会競走馬総合研究所編.馬の医学書(第1版)[M].日本:株式会社チクサン出版社,1996
    20Klaus-Dieter Budras, Sabine R ck,橋本善春.馬の解剖(第3版)[M].日本:株式会社チクサン出版社,2001
    21李琦涵,施海晶,等译.免疫学概览(原著第二版)[M].北京:现代生物技术与医药科技出版中心,2005
    22Nusslein-Volhard C, Lohs-Schardin M, Sander K, et al. A dorso-ventral shift of embr-yonic primordial in a new maternal-effect mutant of Drosophila [J]. Nature,1980,283(5746):474-476
    23Hashimoto C Hudson K L, Anderson K V. The Toll gene of Drosophila, required fordorsal-ventral embryonic polarity, appears to encode a transmembrane protein [J].Cell,1988,52(2):269-279
    24Gay NJ, Keith FJ. Drosophila Toll and IL-1receptor [J]. Nature,1991,351(6325):355-356
    25Nomura N, Miyajima N, Sazuka T, et al. Prediction of the coding sequences ofunidentified human genes. I. The coding sequences of40new genes (KIAA0001-KIAA0040)deduced by analysis of randomly sampled cDNA clones from human immature myeloid cellline KGI [J]. DNA Research,1994,1(1):27-35
    26周若宇.TLR4基因单核苷酸多态与云南汉族人群系统性红斑狼疮相关性研究[D].云南大学,2010
    27Takeda K, Akira S. Toll-like receptors in innate immunity [J]. Int Immunol,2005,17(1):1-14
    28舒红兵编著.细胞抗病毒天然免疫[M].北京:科学出版社
    29Kindt Thomas J, Goldsby Richard A, et al. Kuby Immunology (sixth edition)[M]. WH Freeman&Co,2006
    30Thompson AJ, Locarnini SA. Toll-like receptors, RIG-I-like RNA helicases and theantiviral innate immune response [J]. Immunol Cell Biol,2007,85(6):435-445
    31Takeda K, Kaisho T, Akira S. Toll-like receptors [J]. Annu Rev Immunol,2003,21:335-376
    32Hoebe K, Georgel P, Rutschmann S, et al. CD36is a sensor of diacylglycerides[J].Nature,2005,433(7025):523-527
    33Takeuchi O, Kawai T, Muhlradt PF, et al. Discrimination of bacterial lipoproteinsby Toll-like receptor6[J]. Int Immunol,2001,13(7):933-940
    34Takeuchi O, Horiuchi T, Hoshino K, et al. Role of TLR1in mediating immune responseto microbial lipoproteins [J]. J Immunol,2002,169(1):10-14
    35刘利.TLR2基因多态性及其与奶牛乳房炎的相关分析[D].吉林大学,2009
    36张翠霞.TLR2基因的SNPs及其与奶牛乳腺炎相关性研究[D].四川农业大学,2008
    37Berndt A, Derksen FJ, Venta PJ, et al. Expression of toll-like receptor2mRNA inbron-chial epithelial cells is not induced in RAO-affected horses [J]. Equine VetJ,2009,41(1):76-81
    38Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNAand activation of NF-kappa B by Toll-like receptor3[J]. Nature,2001,413(6857):732-738
    39Tabeta K, Georgel P, Janssen E, et al. Toll-like receptors9and3as essentialcomponents of innate immune defense against mouse cytomeg-alovirus infection [J].Proc Natl Acad Sci USA,2004,101:3516-3521
    40Diamond MS, Klein RS. West Nile virus: crossing the blood-brain barrier [J]. NatMed,2004,10(12):1294-1295
    41Bruno S, Isabelle C, Marie C R, et al. TLR3can Directly Trigger aoptosis in HumanCancer Cells [J]. J Immunol,2006,176(8):4894-4901
    42Rudd BD, Smit JJ, Flavell RA, et al. Deletion of TLR3alters the pulmonary immuneenvironment and mucus production during respiratory syncytial virus infection [J].J Immunol,2006,176(3):1937-1942
    43王磊,覃少华.聚肌胞对小鼠的急性毒性和蓄积毒性阴[J].中国组织工程研究与临床康复,2007,11(15):2826-2828,2835
    44Kwon S, Vandenplas ML, Figueiredo MD, et al. Differential induction of Toll-likereceptor gene expression in equine monocytes activated by Toll-like receptor ligandsor TNF-α [J]. Vet Immunol Immunopathol,2010,138(3):213-217
    45Mignot CC, Pirottin D, Farnir F, et al. Effect of strenuous exercise and ex vivoTLR3and TLR4stimulation on inflammatory gene expression in equine pulmonaryleukocytes [J]. Vet Immunol Immunopathol,2012,147(3-4):127-135
    46Byrd-Leifer CA, Block EF, Takeda K, et al. The role of MyD88and TLR4in the LPS-mimetic activity of Taxol [J]. Eur J Immunol,2001,31(8):2448-2457
    47Kawasaki K, Akashi S, Shimazu R, et al. Mouse Toll-like receptor4.MD-2complexmediates lipopolysaccharide-mimetic signal transduction by Taxol [J]. J Biol Chem,2000,275(4):2251-2254
    48Gao B, Tsan MF. Endotoxin contamination in recombinant human heat shock protein70(Hsp70) preparation is responsible for the induction of tumor necrosis factor arelease by murine macrophages [J]. J Biol Chem,2003,278(1):174-179
    49薛云.CD14和TLR2基因多态性与中国汉族人群结核病易感性的关联研究[D].浙江大学,2010
    50Akashi S, Saitoh S, Wakabayashi Y, et al. Lipopolysaccharide interaction with cellsurface Toll-like receptor4-MD-2:higher affinity than that with MD-2or CD14[J].J Exp Med,2003,198(7):1035-1042
    51Mulhto G, Hihgtower L E. Cell surface expression of heat shock proteins and the immuneresponse [J]. Cell Stress Chaperone,1996,1(3):167-176
    52Waller AP, Huettner L, Kohler K, Lacombe VA. Novel link between inflammation andimpaired glucose transport during equine insulin resistance [J]. Vet ImmunolImmunopathol,2012,149(3-4):208-215
    53Bonin CP, Baccarin RY, Nostell K, et al. Lipopolysaccharide-induced inhibition oftran-scription of tlr4in vitro is reversed by dexamethasone and correlates withpresence of conserved NFκB binding sites [J]. Biochem Biophys Res Commun,2013,432(2):256-261
    54Lopes MA, Salter CE, Vandenplas ML, et al. Expression of inflammation-associatedgenes in circulating leukocytes collected from horses with gastrointestinal tractdisease [J]. Am J Vet Res,2010,71(8):915-924
    55Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterialflagellin is mediated by Toll-like receptor5[J]. Nature,2001,410(6832):1099-1103
    56Smith KD, Andersen-Nissen E, Hayashi F, et al. Toll-like receptor5recognizes acons-erved site on flagellin required for protofilament formation and bacterialmotility [J]. Nat Immunol,2003,4(12):1247-1253
    57Gewirtz AT, Navas TA, Lyons S, et al. Cutting edge: Bacterial flagellin activatesbasol-aterally expressed TLR5to induce epithelial proinflamma-tory gene expression[J]. J Immunol,2001,167(4):1882-1885
    58Hawn TR, Verbon A, Lettinga KD, et al. A common dominant TLR5stop codon poly-morphismabolishes flagellin signaling and is associated with susceptibility to legio-nnaires’disease [J]. J Exp Med,2003,198(10):1563-1572
    59Dunstan SJ, Hawn TR, Hue NT, et al. Host susceptibility and clinical outcomes intoll-like receptor5-deficient patients with typhoid fever in Vietnam [J]. J InfectDis,2005,191(7):1068-1071
    60Zhang F, Gao XD, Wu WW, et al. Polymorphisms in toll-like receptors2,4and5areassociated with Legionella pneumophila infection [J]. Infection,2013[Epub aheadof print]
    61Ahmad-Nejad P, H cker H, Rutz M, et al. Bacterial CpG-DNA and lipopolysaccharidesactivate Toll-like receptors at distinct cellular compartments [J]. Eur J Immunol,2002,32(7):1958-1968
    62Latz E, Schoenemeyer A, Fitzqerald KA, et al. TLR9signals after translocating fromthe ER to CpG DNA in the lysosome [J]. Nat Immunol,2004,5(2):190-198
    63Heil F, Hemmi H, Hochrein H, et al. Species-specific recognition of single-strandedRNA via Toll-like receptor7and8[J].Science,2004,303(5663):1526-1529
    64Lund JM, Alexopoulou L, Sato A, et al. Recognition of single-stranded RNA virusesby Toll-like receptor7[J]. Proc Natl Acad Sci USA,2004,101(15):5598-5603
    65Astakhova NM, Perelygin AA, Zharkikh AA, et al. Characterization of equine and othervertebrate TLR3, TLR7, and TLR8genes [J]. Immunogenetics,2009,61(7):529-539
    66Hemmi H, Takeuchi O, Kawai T, et al. A Toll-like receptor recognizes bacterial DNA[J]. Nature,2000,408(6813):740-745
    67Verthelyi D, Ishii KJ, Gursel M, et al. Human peripheral blood cells differentiallyreco-gnize and respond to two distinct CpG motifs [J]. J Immunol,2001,166(4):2372-2377
    68Lund J, Sato A, Akira S, et al. Toll-like receptor9-mediated recognition of Herpessimplex virus2by plasmacytoid dendritic cells [J]. J Exp Med,2003,198(3):513-520
    69Krug A, French AR, Barchet W, et al. TLR9-dependent recognition of MCMV by IPC andDC generates coordinated cytokine responses that activate antiviral NK cell function[J]. Immunity,2004,21(1):107-109
    70Viglianti GA, Lau CM, Hanley TM, et al. Activation of autoreactive B cells by CpGdsDNA [J]. Immunity,2003,19(6):837-847
    71Boulé MW, Broughton C, Mackay F, et al. Toll-like receptor9-dependent and-independent dendritic cell activation by chromatin-immunoglobulin G complexes [J].J Exp Med,2004,199(12):1631-1640
    72H cker H, Mischak H, Miethke T, et al. CpG-DNA-specific activation ofantigen-presenting cells requires stress kinase activity and is preceded by non-specific endocytosis and endosomal maturation [J]. EMBO J,1998,17(21):6230-6240
    73Bordin AI, Liu M, Nerren JR, et al. Neutrophil function of neonatal foals is enhancedin vitro by CpG oligodeoxynucleotide stimulation [J]. Vet Immunol Immunopathol,2012,145(1-2):290-297
    74Liu M, Liu T, Bordin A, et al. Activation of foal neutrophils at different ages byCpG oligodeoxynucleotides and Rhodococcus equi [J]. Cytokine,2009,48(3):280-289
    75Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity [J]. Cell,2006,124(4):783-801
    76Horng T, Barton GM, Flavell RA, Medzhitov R. The adaptor molecule TIRAP providessignalling specificity for Toll-like receptors [J]. Nature,2002,420(6913):329-333
    77Yamamoto M, Sato S, Mori K, et al. Cutting edge: a novel Toll/IL-1receptordomain-containing adapter that preferentially activates the IFN-beta promoter inthe Toll-like receptor signaling [J]. J Immunol,2002,169(12):6668-6672
    78Oshiumi H, Sasai M, Shida K, et al. TIR-containing adapter molecule (TICAM)-2, abridging adapter recruiting to toll-like receptor4TICAM-1that induces interferon-beta [J]. J Biol Chem,2003,278(50):49751-49762
    79Hemmi H, Takeuchi O, Sato S, et al. The roles o two IkappaB Kinase-related kinasesin lipopolysaccharide and double stranded RNA signaling and viral infection [J].J Exp Med,2004,199(12):1641-1650
    80Gohda J, Matsumura T, Inoue J. Cutting edge: TNFR-associated factor (TRAF)6isessential for MyD88-dependent pathway but not toll/IL-1receptor domain-containingadaptor-inducing IFN-b eta (TRIF)-dependent pathway in TLR signaling [J]. J Immunol,2004,173(5):2913-2917
    81Meylan E, Burns K, Hofmann K, et al. RIP1is an essential mediator of Toll-likereceptor3-induced NF-kappa B activation [J]. Nat Immunol,2004,5(5):503-507
    82Honda K, Yanai H, Mizutani T, et al. Role of a transductional-transcriptionalprocessor complex involving MyD88and IRF-7in Toll-like receptor signaling [J].Proc Natl Acad Sci USA,2004,101(43):15416-15421
    83Kawai T, Sato S, Ishii KJ, et al. Interferon-alpha induction through Toll-likereceptors involves a direct interaction of IRF7with MyD88and TRAF6[J]. Nat Immunol,2004,5(10):1061-1068
    84Uematsu S, Akira S. Toll-like receptors and innate immunity [J]. J Mol Med (Berl),2006,84(9):712-725
    85朱来华.马鼻肺炎病毒分子生物学快速检测技术[D].南京农业大学,2007
    86田舜,李韬.AFLP技术操作流程的变革及其衍生技术[J].扬州大学学报(农业与生命科学版,2006,27(4):62-65
    87赵一萍,芒来.中国蒙古马遗传资源的保护与利用[J].国际遗传杂志,2010,33(4):218-221
    88赵一萍,杨永平,布仁巴雅尔,芒来.内蒙古自治区马产业的现状与发展[J].内蒙古科技与经济,2010,5:43-45
    89Kaneko JJ. Clinical Biochemistry of Domestic Animals [M]. New York, London, Toronto,Sydney and San Francisco: Academicpress,1980
    90赵拴平,王睿琪,唐中林,昝林森,李奎.3个地方品种猪血液生化指标分析[J].中国畜牧兽医,2012,39(2):96-100
    91何春波,王党伟,刘桂琼,姜勋平.湖北乌羊血液生化指标测定及其相关性分析[J].中国畜牧杂志,2012,(19):11-13
    92Rubio MD, Mu oz A, Santisteban R, Tovar P, Castejón FM. Comparative hematol-ogicalstudy of two breeds of foals (Andalusian and Arab) subjected to exercise ofprogressive intensity [J]. J Vet Med Sci,1995,57(2):311-315
    93周正,王嘉福,党珍,等.贵州矮马体尺性状及血液理化指标分析[J].畜牧与兽医,2011,43(2):55-60
    94鲁守炜,赵崇学,李岩,苏积武.普氏野马生理生化指标测定[J].甘肃农业大学学报,1994,(2):232-236
    95吴树清,马刚,殷翠琴,王新生,郭永清.蒙古马与英纯血马血液生化指标的比较研究[J].内蒙古农业大学学报(自然科学版),2003,24(3):1-6
    96马小军,张小丽,王立贤,刘宗平.松辽黑猪、大白猪免疫指标和生产性能的比较研究[J].中国畜牧兽医,2011,38(2):52-56
    97魏国生,韩光微.猪某些免疫指标及其与部分生产性状关系的研究[J].畜牧兽医学报,1995,26(2):122-128
    98徐琪,李秀,张扬,等.不同鸭种间部分免疫性状的比较分析[J].中国兽医学报,2012,32(12):1862-1865
    99刘国民.无角多赛特、苏尼特、乌珠穆沁羊种间抗病性比较[D].内蒙古农业大学,2011
    100王荣,韩敏,刘国民,张建军.新西兰娟珊奶牛、荷斯坦奶牛与中国荷斯坦奶牛抗氧化指标比较[J].畜牧与饲料科学,2012,(4):9-11
    101Horin, Sabakova K, Futas J, et al. Immunity-related gene single nucleotide polymo-rphisms associated with Rhodococcus equi infection in foals [J]. Int J Immunogenet,2010,37(2):67-71
    102Vychodilova-Krenkova L, Matiasovic J, Horin P. Single nucleotide polymorphisms infour functionally related immune response genes in the horse: CD14,TLR4, Cepsilon,andFcepsilon R1alpha [J]. Int J Immunogenet,2005,32(5):277-283
    103Librado P, Rozas J. DnaSP v5: A software for comprehensive analysis of DNA polymo-rphism data [J]. Bioinformatics,2009,25(11):1451-1452
    104Takaki A, Yamazaki A, Maekawa T, et al. Positive selection of Toll-like receptor
    2poly-morphisms in two closely related old world monkey species, rhesus and Japanesemacaques [J]. Immunogenetics,2012,64(1):15-29
    105Zhang LP, Gan QF, Ma TH, et al. Toll-like receptor2gene polymorphism and itsrelationship with SCS in dairy cattle [J]. Anim Biotechnol,2009,20(3):87-95
    106Bergman IM, Rosengren JK, Edman K, Edfors I. European wild boars and domestic pigsdisplay different polymorphic patterns in the Toll-like receptor (TLR)1, TLR2, andTLR6genes [J]. Immunogenetics,2010,62(1):49-58
    107Muneta Y, Minagawa Y, Kusumoto M, et al. Development of allele-specific primer PCRfor a swine TLR2SNP and comparison of the frequency among several pig breeds ofJapan and the Czech Republic [J]. J Vet Med Sci,2012,74(5):553-559
    108Horin P, Sabakova K, Futas J, et al. Immunity-related gene single nucleotide polymo-rphisms associated with Rhodococcus equi infection in foals [J]. Int J Immunogenet,2010,37(2):67-71
    109Ferwerda B, McCall MB, Alonso S, et al. TLR4polymorphisms, infectious diseases,andevolutionary pressure during migration of modern humans [J]. Proc Natl Acad SciUSA,2007,104(42):16645-16650
    110邵静茹.中国汉族和54个少数民族TLR4基因遗传多态性比较研究[D].云南大学,2010
    111胡艳,胡辉,朱文奇,等.12个地方品种鸡TLR4基因多态性分析[J].中国家禽,2011,(21):19-22
    112刘筱,方晓敏,任守文,等.猪Toll样受体4基因(TLR4)外显子SNP检测及生物信息学分析[J].江苏农业学报,2011,27(4):782-789
    113Vychodilova-Krenkova L, Matiasovic J, Horin P. Single nucleotide polymorphisms infour functionally related immune response genes in the horse: CD14,TLR4, Cepsilon,andFcepsilon R1alpha [J]. Int J Immunogenet,2005,32(5):277-283
    114Figueiredo MD, Salter CE, Andrietti AL, et al. Validation of a reliable set of primerpairs for measuring gene expression by real-time quantitative RT-PCR in equineleukocytes [J]. Vet Immunol Immunopathol,2009,131(1-2):65-72
    115Kwon S, Gewirtz AT, Hurley DJ, et al. Disparities in TLR5expression and responsive-eness to flagellin in equine neutrophils and mononuclear phagocytes [J]. J Immunol,2011,186(11):6263-6270
    116Di ME, Cangemi G, Filippetti M, et al. Development and clinical validation of areal-time PCR using a uni-molecular Scorpion-based probe for the detection ofMycopl-asma pneumoniae in clinical isolates [J]. New Microbiol,2007,30(4):415-421
    117Morsczec C, Korenkov M, Nagelschmid M, et al. Total RNA Isolation of Abdominal Herniaof Rats for Quantitative Real Time Reverse Transcription (RT) PCR Assays [J]. PrepBiochem Biotechnol,2008,38(1):87-93
    118Sobajima S, Shimer A L, Chadderdon R C, et al. Quantitative analysis of gene expr-ession in a rabbit model of intervertebral disc degeneration by real-time polymerasechain reaction [J]. Spine J,2005,5(1):14-23
    119赵一萍,黄金龙,白东义,陈建兴,赵启南,芒来.蒙古马不同组织器官TLR1、TLR2、TLR4和TLR6mRNA转录水平研究[J].中国兽医学报,2012,32(10):1542-1546
    120赵一萍,白东义,李蓓,黄金龙,张宇宏,芒来.马Toll样受体表达水平SYBR GreenⅠ荧光定量RT-PCR检测方法的建立[J].畜牧兽医学报,2013,44(2):220-227
    121修金生,周伦江,陈如敬,王隆柏,陈小权.猪流行性腹泻病毒SYBRⅠ实时荧光定量RT-PCR检测方法的建立[J].中国兽医科学,2012,42(2):160-165
    122WONG ML, MEDRANO JF. Real-time PCR for mRNA quantitation [J]. Biotechniques,2005,39(1):75-85
    123李蓓.蒙古马毛色性状相关基因多态性分析及组织表达研究[D].内蒙古农业大学,2011
    124PFAFFL MW. A new mathematical model for relative quantification in real-time RT-PCR[J]. Nucleic Acids Research,2001,29(9):2002-2007
    125LIVAK KJ, SCHMITTGEN TD. Analysis of relative gene expression data using real-timequantitative PCR and the2-△△Ctmethod [J]. Methods,2001,25(4):402-408
    126Tirumurugaan KG, Dhanasekaran S, Raj GD, et al. Differential expression of toll-likereceptor mRNA in selected tissues of goat (Capra hircus)[J]. Vet ImmunolImmunopathol,2010,133(2-4):296-301
    127朱浩妮.不同品种仔猪TLRs表达规律及VA对仔猪TLRs表达量影响的研究[D].四川农业大学硕士学位论文,2010
    128Singh Suri S, Janardhan KS, Parbhakar O, et al. Expression of Toll-like receptor
    4and2in horse lungs [J]. Vet Res,2006,37(4):541-551
    129Quintana AM, Landolt GA, Annis KM. Immunological characterization of the equineairway epithelium and of a primary equine airway epithelial cell culture model [J].Vet Immunol Immunopathol,2011,140(3-4):226-236
    130Gornik K, Moore P, Figueiredo M, et al. Expression of Toll-like receptors2,3,4,6,9, and MD-2in the normal equine cornea, limbus, and conjunctiva [J]. VetOphthalmol,2011,14(2):80-85
    131Berndt A, Derksen FJ, Venta P.J, et al. Elevated amount of Toll-like receptor4mRNAin bronchial epithelial cells is associated with airway inflammation in horses withrecurrent airway obstruction [J]. Am J Physiol Lung Cell Mol Physiol,2007,292(4):936-943
    132Iqbal M, Philbin VJ, Smith AL. Expression patterns of chicken Toll-like receptormRNA in tissues, immune cell subsets and cell lines [J]. Vet Immunol Immunopathol,2005,104(1-2):117-127
    133Menzies M, Ingham A. Identification and expression of Toll-like receptors1-10inselected bovine and ovine tissues [J]. Vet Immunol Immunopathol,2006,109(1-2):23-30
    134Vignesh AR, Dhanasekaran S, Raj GD, et al. Transcript profiling of patternrecognition receptors in a semi domesticated breed of buffalo, Toda, of India [J].Vet Immunol Immunopathol,2012,147(1-2):51-59
    135Zhang YW, Davis EG, Blecha F, et al. Molecular cloning and characterization of equinetoll-like receptor9[J]. Vet Immunol Immunopathol,2008,124(3-4):209-219
    136Schneberger D, Caldwell S, Suri SS, et al. Expression of Toll-Like Receptor9inHorse Lungs [J]. Anat Rec (Hoboken),2009,292(7):1068-1077
    137Akira S, Takeda K. Toll-like receptor signaling [J]. Nat Rev Immunol,2004,4(7):499-511
    138Shinkai H, Suzuki R, Akiba M, Okumura N, Uenishi H. Porcine Toll-like receptors:recognition of Salmonella enterica serovar Choleraesuis and influence of polymo-rphisms [J]. Mol Immunol,2011,48(9-10):1114-1120
    139Leise BS, Yin C, Pettigrew A, Belknap JK. Proinflammatory cytokine responses ofcultured equine keratinocytes to bacterial pathogen-associated molecular patternmotifs [J]. Equine Vet J,2010,42(4):294-303
    140Shimazu R, Akashi S, Ogata H, et al. MD-2, a molecule that confers lipopolysacchari-de responsiveness on Toll-like receptor4[J]. J Exp Med,1999,189(11):1777-1782
    141Schromm AB, Lien E, Henneke P, et al. Molecular genetic analysis of an endotoxinnonresponder mutant cell line: a point mutation in a conserved region of MD-2abolishes endotoxin-induced signaling [J]. J Exp Med,2001,194(1):79-88
    142Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor forcomplexes of lipopolysaccharide (LPS) and LPS binding protein [J]. Science,1990,249(4975):1431-1433
    143Du X, Poltorak A, Silva M, Beutler B. Analysis of Tlr4-mediated LPS signal transdu-ction in macrophages by mutational modification of the receptor [J]. Blood CellsMol Dis,1999,25(5-6):328-338
    144Lu YC, Yeha WC, Ohashia PS. LPS/TLR4signal transduction pathway [J]. Cytokine,2008,42(2):145-151
    145Yang Y, Zhou H, Yang Y, et al. Lipopolysaccharide (LPS) regulates TLR4signaltransduction in nasopharynx epithelial cell line5-8Fvia NF-КBand MAPKs signalingpathways [J]. Molecular Immunol,2007,44(5):984-992
    146Matsuguchi T, Musikacharoen T, Ogawa T, Yoshikai Y. Gene expressions of Toll-likereceptor2, but not Toll-like receptor4, is induced by LPS and inflammatory cytokinesin mouse macrophages [J]. J Immunol,2000,165(10):5767-5772
    147Guo Y, Zhao G, Tanaka S, Yamaguchi T. Differential responses between monocytes andmonocyte-derived macrophages for lipopolysaccharide stimulation of calves [J]. CellMol Immunol,2009,6(3):223-239
    148盛金良,陈创夫,杨霞,王远志,张辉.绵羊Toll样受体家族在肺泡巨噬细胞的分布及脂多糖(LPS)刺激对TLR2、TLR4表达的影响[J].华北农学报,2010,25(1):30-35
    149Strandberg Y, Gray C, Vuocolo T, et al. Lipopolysaccharide and lipoteichoic acidinduce different innate immune responses in bovine mammary epithelial cells [J].J Cytokine,2005,31(1):72-86
    150王亨,孟霞,邱昌伟,马翀,李建基,齐长明.脂多糖诱导奶牛乳腺上皮细胞先天性免疫反应[J].中国兽医学报,2010,30(3):398-401
    151Muzio M, Bosisio D, Polentarutti N, et al. Differential expression and regulationof toll-like receptors (TLR) in human leukocytes: selective expression of TLR3indendritic cells [J]. J Immunol,2000,164(11):5998-6004
    152陈海英.不稳定型心绞痛合并2型糖尿病患者单核细胞TLR4信号通路的变化及其调控机制[D].大连医科大学,2009
    153韩猛立,黄新,何延华,宋天增,薄新文,钟发刚.牛Toll样受体实时荧光定量PCR检测方法的建立[J].农业生物技术学报,2011,19(3):521-529
    154Lohmann KL, Vandenplas ML, Barton MH, Bryant CE, Moore JN. The equine TLR4/MD-2complex mediates recognition of lipopolysaccharide from Rhodobacter sphaeroides asan agonist [J].J Endotoxin Res,2007,13(4):235-242
    155Figueiredo MD, Vandenplas ML, Hurley DJ, Moore JN. Differential induction of MyD88-and TRIF-dependent pathways in equine monocytes by Toll-like receptor agonists [J].Vet Immunol Immunopathol,2009,127(1-2):125-134
    156Sun WC, Moore JN, Hurley DJ, et al. Adenosine A2A receptor agonists inhibitlipopolysaccharide-induced production of tumor necrosis factor-alpha by equinemonocytes [J]. Vet Immunol Immunopathol,2008,121(1-2):91-100
    157Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity [J]. BiochemBiophys Res Commun,2009,388(4):621-625
    158Rossol M, Heine H, Meusch U, et al. LPS-induced cytokine production in human monocytesand macrophages [J]. Crit Rev Immunol,2011,31(5):379-446
    159Hunter DJ. Gene-environment interactions in human diseases [J]. Nat Rev Genet,2005,6(4):287-298
    160Song HK, Hong SE, Kim T, Kim do H. Deep RNA sequencing reveals novel cardiactranscriptomic signatures for physiological and pathological hypertrophy [J]. PLoSOne,2012,7(4):e35552
    161Sun Q, Zhou G, Cai Y, et al. Transcriptome analysis of stem development in thetumourous stem mustard Brassica juncea var. tumida Tsen et Lee by RNA sequen-cing[J]. BMC Plant Biol,2012,12:53
    162芒来著.马在中国[M].香港:香港文化出版社,2009
    163Wade CM, Giulotto E, Sigurdsson S. Genome sequence, comparative analysis, andpopulation genetics of the domestic horse [J]. Science,2009,326(5954):865-867
    164Bowling AT, Breen M, Chowdhary BP, et al. International system for cytogeneticnomenclature of the domestic horse. Report of the Third International Committee forthe Standardization of the domestic horse karyotype, Davis, CA, USA,1996[J].Chromosome Res,1997,5(7):433-443
    165刘武艺.两个品种鸡胸肌不同发育阶段全基因组表达谱的系统分析[D].中国农业大学,2010
    166Li XJ, Yang H, Li GX, et al. Transcriptome profile analysis of porcine adipose tissueby high-throughput sequencing [J]. Anim Genet.2012,43(2):144-152
    167辉钱.利用表达谱芯片技术研究中外猪种不同时期肌肉组织中的表达差异基因[D].华中农业大学,2012
    168Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification ofbiology. The Gene Ontology Consortium [J]. Nat Genet,2000,25(1):25-29
    169幺宝金.梅花鹿鹿茸顶端组织转录组分析及不同生长期差异基因筛选[D].吉林大学,2012
    170Tatusov RL, Fedorova ND, Jackson JD, et al. The COG database: an updated versionincludes eukaryotes [J]. BMC Bioinformatics,2003,4:41
    171Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for decipheringthe genome [J]. Nucleic Acids Res,2004,32(Database issue): D277-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700