用户名: 密码: 验证码:
半固态流变压铸AlSi9Mg组织及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态流变成形的最大优势是工艺流程短、生产成本低,符合当今时代节能减排、绿色铸造的要求。近些年来已经成为了半固态成形技术的发展趋势。半固态流变压铸利用半固态合金熔体具有触变性的特点,能有效减轻甚至消除气孔缺陷,具有独特的优势,工业应用前景非常光明。
     本文利用倾斜板法制备半固态AlSi9Mg合金熔体,并流变压铸标准试样。研究了浇注温度、压射比压、压射速度、固溶处理工艺参数对半固态AlSi9Mg组织及性能的影响,分析了在沿程流动过程中初生固相组织演变规律。
     研究表明:浇注温度对半固态AlSi9Mg合金熔体的微观组织特征影响较大,在本试验条件下,合适的浇注温度为610~615℃,浇注温度为615℃时初生固相率为40.3%,初生固相的平均直径为22.4μm,圆整度为0.606。
     压铸压力对半固态AlSi9Mg微观组织和性能的影响较大,在本试验条件下,合适的压射比压为48~72MPa,压射比压为48MPa时试样的抗拉强度为233MPa,延伸率为4.5%,布氏硬度为76,冲击韧性为98kJ?m-2。其微观组织中初生固相率为27.3%,初生固相的平均直径为17.2μm,圆整度为0.662。
     压铸速度对半固态AlSi9Mg微观组织和性能的影响较大,在本试验条件下,合适的压射速度为1.5~2.0m/s,压射速度为1.5m/s时试样的抗拉强度为238MPa,延伸率为5.7%,布氏硬度为83,冲击韧性为134kJ?m-2。其微观组织中初生固相率为38.9%,初生固相的平均直径为22.7μm,圆整度为0.663。
     流变压铸试样各部位初生α-Al都为近球状晶粒,而非普通压铸的树枝晶。沿程流动时微观组织中圆整度变化很小,差异不超出0.1;初生固相率为波浪形曲线变化,变化值在20%左右;晶粒的平均直径在10~25μm内不规则变化。
     固溶处理工艺参数对流变压铸零件组织和性能有较大的影响。固溶处理温度对抗拉强度和延伸率有较大的影响。本试验条件下适宜的固溶处理工艺为固溶处理温度535℃,保温时间2h,水温80℃。在此固溶处理工艺参数下试样的抗拉强度305MPa,延伸率15.3%,布氏硬度107。
The greatest advantage of semi-solid rheological forming process is that process flow short, low production costs, in line with the requirements of energy-saving and emission reduction. In recent years it has become a trend of semi-solid forming technology. Use of semi-solid alloy melt with thixotropic characteristic semi-solid rheo-die casting can effectively reduce or eliminate the porosity defects. Semi-solid rheo-die casting has unique advantages and its industrial application is very promising.
     In this paper, semi-solid AlSi9Mg alloy melt prepared by sloping plate. Then rheo-die casting and made it to standard samples. Pouring temperature, injection pressure, injection speed and parameters of solution heat treatment process are studied. Find how they affect the microstructure and mechanical property on AlSi9Mg semi-solid alloy. Microstructure evolution of the primary solid phase is analysed along alloy melt filling process.
     The experiments show that: pouring temperature have great influences on the microstructure of semi-solid AlSi9Mg alloy melt. In this experiment, suitable pouring temperature is 610~615℃. When pouring temperature is 615℃the primary solid fraction is 40.3%, the average diameter of primary solid phase is 22.4μm, roundness is 0.606.
     Injection pressure has great influences on the microstructure and mechanical properties of semi-solid AlSi9Mg alloy. In this experiment, suitable injection pressure is 48~72MPa. When injection pressure is 48MPa, the tensile strength of the sample is 233MPa, elongation percentage is 4.5%, Brinell hardness is 76, and impact toughness is 98kJ?m-2. In microstructure the primary solid fraction is 27.3%, the average diameter of primary solid phase is 17.2μm, roundness is 0.662.
     Injection speed has great influences on the microstructure and mechanical properties of semi-solid AlSi9Mg alloy. In this experiment, suitable injection speed is 1.5~2.0m/s. When injection speed is 1.5m/s, the tensile strength of the sample is 238MPa, elongation percentage is 5.7%, Brinell hardness is 83, and impact toughness is 134kJ?m-2. In microstructure the primary solid fraction is 38.9%, the average diameter of primary solid phase is 22.7μm, roundness is 0.663.
     At every transverse section of rheology die casting primary solidα-Al grains are nearly spherical, rather than ordinary die casting dendrite grains. Along alloy melt filling process the change of roundness in the microstructure is small, the difference does not exceed 0.1. Primary solid fraction has a wave-shaped change, and the value change is around 20%. The average diameter of grains is 10~25μm. It changes irregular.
     Solution treatment parameters have great influences on the microstructure and mechanical properties of rheology die casting. Solution treatment temperature has a significant impact on the tensile strength and elongation. In this experiment, the suitable solution treatment process for rheology die casting is that the solution heat treatment temperature is 535℃, holding time is 2h, water temperature is 80℃. Under this solution treatment parameters tensile strength of the sample is 305MPa, elongation percentage is 15.3%, Brinell hardness is 107.
引文
[1]周家荣.铝合金熔铸生产技术问答.北京:冶金工业出版社, 2002: 30-37
    [2]刘静安,谢水生.铝合金材料的应用与技术开发.北京:冶金工业出版社, 2004: 22-39
    [3]陆文华.铸造合金及其熔炼.北京:机械工业出版社, 2002: 262-339
    [4]杨妮,葛正浩,任威,等.金属半固态成形工艺概述.铸造技术, 2007, 28(1): 142-145
    [5]曾庆生,周健,刘则金. ZL104铝合金的工艺规程与铸造质量控制.南华大学学报, 2002, 16(2): 59-61
    [6]刘倩. ZL104铝合金的铸造工艺规程.湖南工程学院学报, 2005, 15(3): 38-41
    [7]苏义祥.铸铝合金液质量控制的主要途径.机械研究与应用, 2004, 36(5): 71-85
    [8] M. C. FLEMINGS. Behavior of Metal-alloys in the Semi-solid State. Metallurgical Transactions, 1991, 22(5): 957-981
    [9] D. H. KIRKWOOD. Semi solid Metal Processing. International Materials Reviews. 1994, 39(5): 173-189
    [10] D. N. LI, J. R. LUO, S. S. WU, et al. Study on the Semi-solid Rheocasting of Magnesium Alloy by Mechanical Stirring. Journal of Materials Processing Technology, 2002, 12(9): 431-434
    [11]康永林,毛卫民,胡壮麟.金属材料半固态加工理论与技术.北京:科学出版社, 2004: 230-247
    [12]赵祖德,罗守靖.半固态成形应用现状与未来.锻压技术, 2006(6): 1-4
    [13]张志峰,徐骏.轻合金及其复合材料半固态成型技术研究与应用.新技术新工艺, 2009(2): 19-22
    [14]吴树森,赵君文,万里,等.高能超声波制备铝合金半固态浆料技术的研究.特种铸造及有色合金, 2009, 29(1): 1-4
    [15] T. HAGA, P. KAPRANOS. Simple Rheocasting Process. Journal of Material Processing Technology, 2002, 130(1): 594-598
    [16]韩富银,张金山,高义斌,等.电磁搅拌对镁合金AZ91D半固态组织的影响.铸造技术, 2005, 26(6): 497-499
    [17]邢书明,鲍培玮.绿色铸造技术与应用.河北省铸造行业协会第十五届铸造年会论文汇编.石家庄:河北科技大学出版社, 2009: 84-95
    [18] C. VIVES. Elaboration of Semi-solid Alloys by Means of New Electromagnetic Rheocasting processes. Metallurgical Transactions, 1992, 23(2): 189-206
    [19] S. KAMADO, J. KOIKE, K. KONDOH, et al. Magnesium Research Trend in Japan. Materials Scierce Forum, 2003, 42(2): 21-34·
    [20]朱光磊,杨湘杰,郭洪民.半固态A356压铸成形温度和压射速度的优化.特种铸造及有色合金, 2006, 26(12): 777-780
    [21]李东南,林涵,吴树森.流变压铸成形镁合金AZ91D的显微组织与性能.材料热处理学报, 2007, 28(4): 64-69
    [22]林柏年.特种铸造.杭州:浙江大学出版社, 2004: 200-203
    [23]曾大本,李双寿,戴建林.镁合金触变注射成形技术的发展及我国面临的机遇和对策——第三届中国国际压铸会议论文集.沈阳:东北大学出版社, 2002: 18-23
    [24] HAIYING ZHANG, SHUMING XING. Evaluation of Mold-filling Ability of Alloy Melt in Squeeze Casting. Journal of University of Science and Technology Beijing, 2006(1): 61-67
    [25]印飞,王亦新,洪慎率.半固态铸造铝合金材料的研究现状.特种铸造及有色合金, 2003(3): 44-46
    [26]王超,管仁国,尚剑洪,等.新型倾斜板技术半固态铸造Al-20Si合金.特种铸造及有色合金, 2006, 26(7): 482-485
    [27] T. HAGA. Semi-solid Strip Casting Using a Twin Roll Caster Equipped with a Cooling Slope. Die Casting Engineer, 2002, 130(1): 558-561
    [28]叶春生,张新平,潘冶.机械搅拌对过共晶Al-Si合金半固态组织的影响.热加工工艺, 2002(1): 27-29
    [29]管仁国,康立文,尚剑洪,等.倾斜式冷却剪切工艺条件对半固态合金组织的影响.特种铸造及有色合金, 2005, 25(10): 600-603
    [30] O. MEYER, U. FRITSCHING, K. BAUCHAGE. Numerical Investigation of Alternative Process Conditions for Influencing the Thermal History of Spray Deposited Billets. Internation Journal of Thermal Science, 2003, 42(2): 153-168
    [31] ALEX MUUMBO. The Microstructure and Properties of Semi-solid Cast Iron Prepared by Inclined Cooling Plate Technique——Proceeding of 7-th International Conference Semisolid Processing of Alloys and Composites. Toky: the Japan Institute of Material, 2002: 18-25
    [32]宋怀江,皇志富.倾斜冷却体制备半固态浆料的研究现状.热加工工艺, 2005(11): 54-56
    [33]谢丰广,赵恩军,管仁国,等.波浪型倾斜板振动作用下金属熔体的传热与传质.特种铸造及有色合金, 2008(4): 368-371
    [34] R. G. GUAN, C. WANG, J. H. SHANG, et al. Semi-solid Metal Forming by Novel Sloping Plate Process. Transactions of Nonferrous Metals Society of China, 2006, 16(3): 1265-1268
    [35]朱光磊,杨湘杰,郭洪民.半固态A356压铸成形温度和压射速度的优化.特种铸造及有色合金. 2006, 26(12): 777-781
    [36]王平,康浩,史立峰,等. ZL201合金半固态成形的AnyCasting模拟与验证.稀有金属材料与工程, 2006(6): 880-884
    [37]刘艳华. A380铝合金半固态流变压铸工艺研究. [南昌大学硕士论文]. 2007: 17-20
    [38] H. KAUFMAFNN, H.WABUSSEG. Metallurgical and Processing Aspects of the NRC Semi Solid Casting Technology. Aluminum, 2000, 76(2): 70-75
    [39]王平. A356铝合金半固态制浆及成形工艺与理论研究. [东北大学博士论文]. 2002: 35-40
    [40]郭洪民.半固态铝合金流变成形工艺与理论研究. [南昌大学博士论文]. 2007: 40-47
    [41]张小立.铝、镁合金半固态浆料制备技术的研究. [大连理工大学博士论文]. 2008: 14-20
    [42]谢水生,黄声宏.半固态金属加工技术及其应用.北京:冶金工业出版社, 1999: 13-24
    [43]毛卫民.先进的半固态合金流变铸造技术.机械工人, 2004(3): 14-17
    [44]张奎,刘国钧,张景新,等.铝合金半固态加工应用.中国有色金属学报, 2000(10): 135-140
    [45] Z. FAN. Semi Solid Metal Processing. Int. Mater. Rev, 2002, 47(2): 49-85
    [46]苏华钦,朱鸣芳,高志强.半固态铸造的现状及发展前景.特种铸造与有色合金, 2002(5): 239-244.
    [47] A. MUUMBO, H. NOMURA. Casting of Semi-solid Cast Iron Slurry Using Combination of Cooling Slope and Pressurization. International Journal Cast Metals Research, 2004(1): 39-46
    [48]金蕴琳,许宝成,郑才,等.最新实用压铸技术.北京:兵器工业出版社, 1993
    [49]罗守靖,姜巨福,杜之明.半固态成形研究的新进展、工业应用及其思考.机械工程学报, 2004, 39(11): 52-60
    [50] J. YUEKO. Idra Prince Rheocasting and Squeeze Casting Technology. Die Casting Engineer, 2002(4): 20-23
    [51]郭琪敏.镁合金压铸技术研究. [中北大学硕士论文]. 2005: 2-13
    [52] J. C. CHOI, H. J. PARK. Microstructural Characteristics of Aluminum 2024 by Cold Working in the SIMA Process, Mater. Proc. Tech, 1998, 82(1): 107-116
    [53] H. HU. Squeeze of Magnesium Alloys and Their Composites. Materials Science and Technology, 1998(33): 1579-1589
    [54] T. MOTEGI. Continuous Casting of Semisolid Mg-9%AI-1%Zn Alloy——Proceedings of the 7-th International Conference Semi-Solid Processing of Alloys and Composites. Tsukuba: Journal of Materials Processing Technology, 2002: 831-836
    [55]唐靖林.半固态A356合金流变行为的研究. [清华大学博士论文], 2000: 5-14
    [56]郭洪民,杨湘杰.流变压铸YL112铝合金的微观组织特征.中国有色金属学报, 2008, 18(3): 400-408
    [57] ANNATISA POLA, Roberto Roberti, Ermanno Bertoli, et al. Design and Production of New Aluminum Thixotropic Alloys for the Manufacture of Structural Components by Semi-solid Die Casting. Diffusion and Defect Data, 2006, 11(6): 58-63
    [58]王平,郑连辉,路贵民,等.低过热度电磁铸造合金组织与性能.材料科学与工艺, 2007, 15(5): 738-740
    [59]冯鹏发,唐靖林,李双寿,等.制浆-成形分离式铝合金流变成形技术.中国有色金属学报, 2007, 17(2): 239-247
    [60] F. TANABE. Continuous casting of semi-solid AC4CH aluminum alloy produced using an inclined cooling plate. Joumal of the Japan Institute of Metals, 2003, 67(6): 291-294
    [61]吴树森,李东南,毛有武,等.半固态流变压铸AZ91D镁合金的组织与性能.铸造, 2002, 51(10): 583-586
    [62]肖泽辉,罗吉荣,吴树森,等. AZ91D半固态流变压铸成形的研究.热加工工艺, 2004(2):41-43
    [63]余忠士,张恒华,邵光杰.热处理对铝合金半固态成形件组织与性能的影响. 2002, 38(11): 490-495
    [64]赵大志,路贵民,张宇,等. AlSi7MgBe合金半固态挤压成形件热处理工艺的优化.铸造, 2007, 56(11): 1160-1163
    [65] GEO FFERYA, EDWARDS. Graham: Precipitation and Age-hardening in Al-Si-Cu-Mg-Fe Casting Alloys. Materials Science Forum, 1996, 21(7): 777-782
    [66]李东南,吴和保,吴树森,等.半固态AZ91D镁合金组织与性能研究.中国机械工程, 2006, 17 (13): 1421-1425
    [67]王英杰.倾斜冷却剪切流变对半固态ZAlSi9Mg合金组织及性能影响研究. [河北科技大学硕士论文]. 2007: 23-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700