用户名: 密码: 验证码:
龟纹瓢虫不同色斑型的生物学及生态学特性比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
龟纹瓢虫Propylea japonica (Thunberg)是我国分布较广的捕食性天敌昆虫,其个体小、捕食范围广泛,具有较强耐饥饿、高温和干旱的能力,对田间害虫的防控起到了积极的作用。同时,龟纹瓢虫具有明显的色斑多型现象,不仅各地区的色斑型种类不同,而且同一生境也会出现多种斑型共存且数量不同的现象。论文通过田间系统调查和室内饲养观察,研究龟纹瓢虫不同色斑型的形态、生物学及生态学特性差异,为阐释龟纹瓢虫不同色斑型与环境适应之间的关系提供理论依据。
     田间系统调查发现,在蚕豆、小麦和玉米田三种作物中,龟纹瓢虫斑型种类有锚斑变型、双二变型、肩斑变型、鼎斑变型和黄缘变型,其中锚斑变型数量最多,双二变型次之,黄缘变型最少。在蚕豆田中,肩斑与鼎斑数量相近,但在小麦和玉米田中肩斑变型的数量较鼎斑变型多,这可能与不同寄主作物的蚜虫种类以及温度变化有关。
     通过比较四种色斑型在田间的分布频率,我们发现锚斑变型在三种作物中所占比率均为最大,约占采集总数的44.87%,而黄缘变型最少,仅占0.60%。不同作物中四种主要斑型的雌虫比率在30.47%-60.71%之间,锚斑变型的雌虫比率均小于50%。
     从个体大小看,玉米和小麦田中肩斑变型雌雄虫的体长分别大于鼎斑变型,玉米田中,锚斑变型的雌虫体宽也较鼎斑变型大。结果表明,肩斑和锚斑变型在个体大小上占有优势。另外,同一色斑型的龟纹瓢虫在不同作物中的体长也存在差异,其中玉米田中锚斑变型的雌雄虫体长小于该斑型在其它作物中的体长,其它斑型的雌虫或雄虫在玉米田中的体长也较小,但不同作物中相同斑型的雄虫体宽差异不显著。同时,不同斑型间雌虫的体长和体宽均大于雄虫。
     捕食试验表明,锚斑变型的雄虫在24h内取食豆蚜的数量多于肩斑变型,每天约捕食蚜虫45.5头,肩斑变型的雌虫比双二变型的雌虫摄食效率高,为15.1±2.4%。不同色斑型的龟纹瓢虫取食相同食物后,食蚜数、日增重和摄食效率均高于雄虫。测定成虫的耐热性和耐饥力发现,斑型间差异不显著。在相同的饲养条件下,锚斑变型的幼虫期较肩斑变型短,高温条件下饲养,会缩短瓢虫的发育历期;当用三种不同的蚜虫饲养锚斑变型的瓢虫时,取食蚕豆蚜的瓢虫发育历期比取食夹竹桃蚜的短,分别为7.9±0.15d和8.8±0.60d,可能与锚斑变型对不同蚜虫的喜食程度有关。
     选择交配试验发现,被雌雄虫选择次数最多的斑型分别是肩斑变型和鼎斑变型,斑纹较深的锚斑和鼎斑变型的雌虫被雄虫选择的机会较多,可能与这类斑型在田间的发生数量有一定的关系。
Proyplea japonica (Thunberg) (Coleoptera:Coccinellidae) was one of the predatory natural enemies which distributes widely in our country. The ladybird had small body size and accepted a large number of preyed species, meanwhile, it can survive under poor environmental conditions, such as starvation, high temperature and drought. So it played a positively role in biological control. In addition, P. japonica showed a high level of polymorphism in color pattern of elytral. Not only it had considerable geographic variation, but also the quantity of various phenotypes was different in the same area. By systematic field investigation and the common garden experiments, the morphologic, biological and ecological differences were compared to provide the theoretical basis that illustrating the relationship between the different phenotypes of Propylea japonica and environmental adaptation.
     In the field investigation, it found that there were five phenotypes distributed in the fields, which were ancora, dionea, tessellata, tessellata and marginata, respectively. Individuals of ancora were dominant in the three crops, dionea was the second, in contrast, marginata was at least. In broad bean field, the number of tessellata was similar to that of feliciae, whereas the number of tessellata was less than feliciae in the field of wheat and corn. It could be correlated with composition of aphid population in the three crops and temperature change.
     By comparison with distribution frequencies of these phenotypes among the three crops, individuals of ancora were dominant in all crops, which were 44.87%, and marginata was rarely, its frequency being 0.60%. In addition, the percentages of females in four main phenotypes among different crops ranged from 30.47% to 60.71%, the ratios of females in ancora were less than 50%.
     The measure of body size among different phenotypes showed that the body length of feliciae adults was larger than that of tessellata in the field of corn and wheat respectively, and body width of ancora female was also larger than that of tessellata in corn field. It suggested that feliciae and ancora had advantage in the body size. In addition, the same phenotype had different body sizes in the three crops. The body length of ancora adults in corn field was smaller than that in other field, and the body length of the other phenotypes female or male was also smaller in corn field. However, male collected in each crop did not show significant difference in body width among phenotypes. Meanwhile, the body size of female was larger than that of male for four phenotypes.
     Ancora male consumed more aphids than feliciae in 24 h, which the voracity was about 45.5 per day. Meanwhile, the feeding efficiency of feliciae females was higher than that of dionea, which was 15.1±2.4%. The results also indicated that the voracity, daily weight gain and feeding efficiency of females of these phenotypes were higher than those of males. However, there was no significant difference in heat resistance and starvation resistance among four phenotypes. In addition, our results showed the larval developmental duration of ancora was shorter than that of feliciae when the same raring condition was provided. The developmental duration was shorter in high temperature than in normal temperature. In addition, for ancora, that the developmental duration was shorter which they were feet on Aphis medicaginis Koch than which they were feet on Aphis nerii. They were 7.9±0.15d and 8.8±0.60d, respectively.It could be associated with the food preference of ancora.
     In the mating-choice laboratory experiments, feliciae male and tessellata female were predominantly selected for mating by female and male respectively. Ancora and tessellata females, which were darker on elytral than dionea and feliciae, were selected more easier by male. It suggested that they could be relatived to the quantity in nature.
引文
1.安瑞军,张立明,张宁,张冬梅.龟纹瓢虫Propylea japonica (Thunberg)生物学特性研究初报.哲里木畜牧学院学报,1998,8(3):48-51
    2.程树兰,张帆,庞虹.龟纹瓢虫广东种群和北京种群的耐热性比较研究.昆虫学报,2007,50(4):376-382
    3.崔素贞.龟纹瓢虫生物学特性及其对棉铃虫捕食功能的研究.棉花学报,科学,1996,8(5):269-275
    4.高峰,苏建伟,戈峰,刘向辉.温度对龟纹瓢虫呼吸代谢的影响.湖北农业科学.2007,46(4):562-564
    5.高效华,曲耀训,牟少敏,刘进展,王霞.龟纹瓢虫对麦蚜的捕食功能反应与寻找效应研究.莱阳农学院学报,2000,17(2):103-106
    6. 高孝华,时爱菊,曲耀训等.龟纹瓢虫捕食棉蚜的功能反应与寻找效应研究.山东农业大学学报(自然科学版),2001,32(4):457-460
    7.庚镇城,谈家桢.异色瓢虫的几个遗传学问题.自然杂志,1980,3(7):512-518
    8.郭海波,许永玉,鞠珍,李明贵.中华通草蛉成虫抗寒能力季节性变化.生态学报,2006,26(10):3238-3244
    9.胡长效,朱静,彭兰华,丁梁斌.红花田红花指管蚜及其天敌的生态位研究.河南农业科学.2007,5:66-70
    10.黄保宏,高正良.黑缘红瓢虫成虫的耐饥力研究.安徽农业大学学报,2003,30(1):53-56
    11.江幸福,罗礼智.昆虫黑化现象.昆虫学报,2007,50(11):1173-1180
    12.景晓红,康乐.昆虫耐寒性的测定与评价方法.昆虫知识,2004,41901:7-10
    13.雷朝亮,宗良炳,杨贵军,肖春.温度对龟纹瓢虫幼虫生长发育及捕食作用的影响.动物学研究,1988(2):111-113
    14.李国锋,郑发科,王慧.南充市郊瓢虫科昆虫的初步研究.西华师范大学学报,2005,26(2):145-147
    15.李国庆,段金花,秦志峰.龟纹瓢虫对菊小长管蚜的捕食功能反应.湘潭师范学院学报(自然科学版),2003,25(3):77-79
    16.李建军,李修炼.龟纹瓢虫成虫对麦红吸浆虫捕食作用研究.陕西农业科学,2000,11:8-10
    17.林克剑,吴孔明,刘山蓓,张永军,郭予元.中华草蛉、龟纹瓢虫和异色瓢虫对B型烟粉虱的捕食功能反应.昆虫知识,2006,43(3):339-342
    18.刘崇乐.经济昆虫志,鞘翅目,瓢虫科(一).科学出版社,1963,47-49
    19.刘凤英,沈维良.龟纹瓢虫对蚕豆蚜的捕食效应研究.安徽农学通报,2001,7(3):49-50
    20.吕永贤,张武军,斐强,廖永忠.龟纹瓢虫生物学及饲养初步试验.昆虫天敌,1983,5(1):33-38
    21.蒲天胜,韦德卫.瓢虫斑型变异的地理倾群现象.广西植保,1990,34-37
    22.亓东明,郑发科.龟纹瓢虫行为学观察.四川动物,2007,26(3):632-635
    23.任乐萍,刘生辉.龟纹瓢虫生物学特性及捕食效应的观察.2007,28(2):158-160
    24.沈志诚,胡萃,龚和.龟纹瓢虫人工饲养的研究进展.昆虫知识,1989,5:13-316
    25.宋宏伟,卢绍辉,梅象信,谌馥佳,冯宁.河南省田间3种主要瓢虫对飞蓬指管蚜的捕食功能.2007,33(3):30-33
    26.宋慧英,吴力游,陈国发.龟纹瓢虫propylea japonica (Thunberg)的研究.湖北农学院学报,1986,2:29-36
    27.宋慧英,吴力游,陈国发,汪泽春,宋庆明.龟纹瓢虫生物学特性的研究.昆虫天敌,1988,10(1):22-23
    28.苏建伟,盛承发.棉花两种瓢虫与叶色草蛉干扰竞争初探.中国棉花,2002,29(8):16-17
    29.苏建亚,郝康陕,徐源辉.龟纹瓢虫对豆蚜的捕食功能反应及寻找效应研究.华东昆虫学报,1996,5(2):83-87
    30.田仲,管德义,刘剑.异色瓢虫耐饥能力及饥饿对其捕食槐蚜功能的影响.植物保护,2007,33(4):80-83
    31.魏建华,冉瑞碧.龟纹瓢虫的研究.昆虫天敌,1983,5(2):89-93
    32.王俊刚,李永刚,杨德松,贺福德.北疆多样瓢虫耐饥能力的研究.中国棉花, 2004,31(5):12-13
    33.王根,魏建华.龟纹瓢虫残食同种卵行为的研究.昆虫天敌,1990,12(3):101-104
    34.许俊杰.泰山侧柏林柏小爪螨及其天敌生态位研究.科技导报,2006,24(10):21-23
    35.杨俊成,沈佐锐.冷藏条件对瓢虫存活的影响.昆虫学报,2000,43(增刊):211-214
    36.杨建华.龟纹瓢虫的初步观察.昆虫知识,1983,20(5):215-217
    37.张安盛,于毅,张思聪,冯建国,李照会.桃园桃粉蚜、桃蚜及其主要天敌生态位的研究.山东农业大学学报(自然科版),2006,37(4):577-580
    38.赵静,于令媛,李敏,郑方强,张帆,许永玉.异色瓢虫成虫耐寒能力的季节性变化.昆虫学报,2008,51(12):1271-1278
    39.张春玲,孙爱香,冯惠琴等.龟纹瓢虫对麦长管蚜和棉蚜的功能反应及种内的干扰作用.山东农业大学学报,1994,25(4):444-448
    40.张春玲,岳凤荣.龟纹瓢虫对3种果树害虫的捕食作用研究.山东农业大学学报,1996,27(4):425-430
    41.张世泽,仵均祥,张强,姜军侠,许向利,陈继安.龟纹瓢虫生物生态学特性及饲料利用研究进展.干旱地区农业研究,2004,22(4):207-210
    42. Abbas I, Nakamura K. Variation of elytral spot patterns in a field population of lady beetle Epilachna aff. sparsa (Coleoptera:Coccinellidae) feeding on bitter cucumber in Sumatra. Sci Rep Kanazawa University,1985,30:27-32
    43. Abbas I, Nakamura K, Katakura H, et al. Geographical variation of elytral spot patterns in the ladybird Epilachna vigintiduopunctata (Coleoptera:Coccinellidae) in the province of Sumatrea Batat, Indonesia. Res Popul Ecol,1988,30:43-56
    44. Aldyhim Y N and Khalil A F. Influence of temperature and daylength on population development of Aphis gossypii on Cucurbita pepo. Entomol Exp Appl,1993,67: 167-172
    45. Angilletta M J, Niewiarowski P H, Navas C A. The evolution of thermal physiology in ectotherms. J Therm Biol,2002,27:249-268
    46. Asin L and Pons X. Effect of high temperature on the growth and Reproduction and predatory efficiency. Entomol Exp Appl,2001,30:1127-1134
    47. Bauwens D, Garland J T, Castilla A M, Van D R. Evolution of sprint speed in lacertid lizards:morphological, physiological and behavioral covariation. Evolution,1995, 49:848-863
    48. Buskirk J V, Mccollum S A, and Werner E E. Natural selection for environmentally induced phenotypes in tadpoles. Evolution,1997,51:1983-1992
    49. Brakefield P M and Willmer P G. The basis of thermal melanism in the ladybird Adalia bipunctata:differences in reflectance and thermal properties between the morphs.1985, Heredity,54:9-14
    50. Crawley M J and Krebs J R. Foraging theory. Pp.90-114 in M J Crawley(Ed.). Natural Enemies. Blackwell Scientific Publications, Oxford.1992,592
    51. Dixon A F G. Aphid Ecology:An Optimization Approach. Chapman and Hall, London,1998
    52. Crisp M, Cook L M, Hereward F V. Color and heat balance in the lizard Lacerta dugesii, Copeia 1979,250-258
    53. Donald P O, Majerus M E N. Non-random mating in Adalla bipunctata (the two-spot ladybird).Ill. New evidence of genetic preference. The Genetical Society of Great Britain,1992,69:521-526
    54. Eric L, Daniel C, Charles V. Voracity and feeding preferences of two aphidophagous coccinellids on Aphis citricola and Tetranychus urticae. Entomol Exp Appl,1997,85: 151-159
    55. Eubanks M D and Denno R F. Health food versus fast food:the effects of prey quality and mobility on prey selection by a generalist predator and indirect interactions among prey species. Ecol Entomol,2000,25:140-146
    56. Evans E W, Stevenson A T, Richards D R. Essential versus alternative food of insect predators:benefits of a mixed diet. Oecologie,1999,12:107-112
    57. Futuyma D J. Evolutionary Biology (3rd ed.). Sinauer Associates Inc., Massachusetts.1998,763
    58. Gates D M. Biophysical Ecology. Springer, New York,1980
    59. Gao F, Zhu S R, Sun Y C, Du L, Parajulee M, Kang L, Ge F. Interactive effects of elevated CO2 and cotton cultivar on tritrophic interaction of Gossypium hirsutum, Aphis gossyppii, and Propylea japonica. Environ Entomol,2008,37 (1):29-37
    60. Grill C P. Development of color in an aposematic lady beetle:The role of environmental conditions. Evol Ecol Res,1999,1:651-662
    61. Hantson E. Kleurverschillen bij het veelkleurig Aziatisch Lieve heersbeestje in Vlaanderen. Coccinula,2004,10:16-19
    62. Hemptinne, J L, Dixon A F G, Doucet J L, Petersen J E. Optimal foraging by hoverflies (Diptera:Syrphidae) and ladybirds (Coleoptera:Coccinellidae): Mechanisms. Eur J of Entomol,1993,90:141-150
    63. Hodek I, Hone k A. Ecology of Coccinellidae. Kluw Acad Pub, Netherlands,1996, 464
    64. Hoffman A A. Genetic analysis of territoriality of Drosophila melanogaster. In Boake C. (ed.):Quantitative Genetic Studies of Behavioral Evolution. University Chicago Press, Chicago,390
    65. Honek A. Colour polymorphism in Adalia bipunctata in Bohemia (Coleoptera: Coccinellidae). Ent Germ,1975,1:293-299
    66. Hosino Y. Genetical studies on the pattern types of the lady-bird beetle, Harmonia axyridis Pallas. J Genet,1940,40:215-228
    67. Jong P, Gussekloo S, Brakefield P. Differences in thermal balance, body temperature and activity between non-melanic and melanic two-spot ladybird beetles (Adalia bipunctata) under controlled conditions. JExp Biol,1996,12:2655-2666
    68. Kawauchi S. Comparative studies on the fecundity of three aphidophagous coccinellids (Coleoptera:Coccinellidae). Jpn J Appl Entomol Z,1985a,29: 203-209 (in Japanese with English summary)
    69. Kawauchi S. Effects of photoperiod on the induction of diapause, the live weight of emerging adult and the duration of development of three species of aphidophagous coccinellids (Coleoptera:Coccinellidae). Kontyu,1985b,53:536-546 (in Japanese with English summary)
    70. Kearns, P W E, Tomlinson, I P M, O'donald P and Veltman. Non-Random mating in the two-spot ladybird(Adalia bipunctata):I. A reassessment of the evidence. Heredity,1990,65:229-240
    71. Komai T. Genetics of ladybeetles. Advances in Genetics,1956,8:155-189
    72. Komai T and Hosino Y. Contributions to the evolutionary genetics of the lady-beetle, Harmonia. II. Microgeographic variations. Genetics,1951,36:382-390
    73. Komai T. Genetics of lady-beetles. Adv Genet,1956,8:155-185
    74. Lee R E J. Insect cold hardiness:to freeze or not to freeze. Bioscience,1989,39:308-313
    75. Luke C A. Color as a phenotypically plastic character in the sideblotched lizard, Uta stansburiana. Ph.D. Dissertation, University of California, Berkeley,1989
    76. Majerus M E N, O'Donald P, Weir J. Evidence for preferential mating in Adalia bipunctata. Heredity,1982,49,37-49
    77. Majerus M E N. Ladybirds. The New Naturalist Library, Harper Collins, London. 1994,367
    78. McDonald J R, Head J, Bale J S, et al. Cold tolerance, overwintering and establishment potential of Thripspalmi. Physiol Entomol,2000,25:159-166
    79. Mills N J. Some aspects of the rate of increase of a coccinellids. Ecol Entomol,1981, 6:293-299
    80. Muggleton J. Selection against the melanic morphs of Adalia bipunctata (two-spot ladybird):a review and some new data. Heredity,1978,40:269-280
    81. Naoya O and Takayoshi N. Seasonal variation in elytral colour polymorphism in Harmonia axyridis (the ladybird beetle):the role of non-random Mating. Heredity, 1992,69:297-307
    82. Nick B, Jochem B, Dirk B, Luc T, Patrick D C. Influence of diet and photoperiod on development and reproduction of European populations of Harmonia axyridis (Pallas) (Coleoptera:Coccinellidae). Bio Control,2008,53:211-221
    83. Nussear K E, Simandle E T, Tracy C R. Misconceptions about color, infrared radiation, and energy exchange between animals and their environments. Herpetol J, 2000,10:119-122
    84. O'Donald P and Majerus M E N. Non-random mating in the two-spot ladybird, Adalia bipunctata. New evidence of genetic preference. Heredity,1992,69:521-526
    85. Hodek I. Habitat and food specificity in aphidophagous predators. Biocontrol Sci Techn,1993,3:91-100
    86. Obaba S and Johki Y. Distribution and behaviour of adult ladybird, Harmonia axyridis Pallas (Coleoptera:Coccinellidae), around aphid colonies. Jap J Entomol, 1990,58:839-845
    87. Olszak R W. Suitability of three aphid species as prey for Propylea quatuordecimpunctata. In:Ecology of aphidophaga. Ed. by Hodek I, Academia, Prague and Dr. W Junk, Dordrecht, Boston,1986,51-55
    88. Olszak R W. Voracity and development of three species of Coccinellidae, preying upon different species of aphids. In:Ecology and effectiveness of aphidophaga. Ed. By Niemczyk E., Dixon A. F. G, SPB Academic Publishing, the Hague,1988,47-53
    89. Osawa N and Nishida T. Seasonal variation in elytral colour polymorphism in Harmonia axyridis(the ladybird beetle):the role of non-random mating. The Genetical Society of Great Britain,1992,69:297-307
    90. Rana J S, Dixon A F G, JaroSik V. Costs and benefits of prey specialization in a generalist insect predator. J Anim Ecol,2002,71:15-22
    91. Ricklefs R E. Ecology. (3rd ed.). W.H. Freeman and Company. New York.1990,896
    92. Seo M J, Kim G H, Youn, Y N. Differences in biological and behavioural characteristics of Harmonia axyridis (Coleoptera:Coccinellidae) according to color pattern of elytra. J Appl Entomol,2008,132:239-247
    93. Serpa L, Schanderl H, Brito C, Soares A O. Fitness of five of phenotypes of Harmonia axyridis Pallas (Coleoptera:Coccinellidae) proceeding of the 8th International Symposium on Ecology of Aphidophaga:Biology, Ecology and Behaviour of Aphidophagous Insects,2003,43-49
    94. Sheppard P M. Natural Selection and Heredity (5th ed.). Hutchinson, London.1975, 239
    95. Smith B C. Note on parasitism of two coccinellids, Coccinella trifasciataperplexa Muls. and Coleomegilla maculate lengi Timb (Coleoptera:Coccinellidae) in Ontario. Can Entomol,1966,92:652
    96. Soares A O, Coderre D, Schanderl H. Influence of phenotype on fitness parameters of Harmonia axyridis Pallas (Coleoptera:Coccinellidae). Eur J Entomol,2001,98: 287-293
    97. Soares A O, Coderre D, Schanderl H. Effect of temperature and intraspecific allometry on predation by two phenotypes of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Environ Entomol,2003a,32:939-944
    98. Soares A O, Coderre D, Schanderl H. Influence of prey quality on the reproductive capacity of two phenotypes of Harmonia axyridis Pallas (Coleoptera:Coccinellidae). the 8th International Symposium on Ecology of Aphidophaga:Biology, Ecology and Behaviour of Aphidophagous Insect. Arquipelago, Life and Marine Sciences,2003b, Supplement 5:51-54
    99. Soares A O, Coderre D, Schanderl H. Dietary self-selection behaviour by the adults of the aphidophagous ladybeetle Harmonia axyridis (Coleoptera:Coccinellidae). J Anim Ecol,2004,73:478-486
    100.Soares A O, Coderre D, Schanderl H. Influence of prey quality on the fitness of two phenotypes of Harmonia axyridis adults. Entomol Exp Appl,2005,114:227-232
    101.Stephens D W, Krebs J R. Foraging theory. Princeton University Press, Princeton. 1986,237
    102.Stevenson, R.D. The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am Nat 1985, 126,362-386
    103.Susana C T, Johannes H, Van W, James R. Spotila. Thermal melanism in ectotherms. J Therm Biol,2007,32:235-245
    104.Tan C C. Mosaic dominance in the inheritance of color patterns in the ladybird beetle Harmonia axyridis. Genetics,1946,3:195-210
    105.Tomlinson I P M. Study of Nonrandom Mating in a British Population of the Two-Spot Ladybird with a High Frequency of the Melanic Morph, J Insect Behav, 1996,9 (4):550-556
    106.True J R. Insect melanism:the molecules matter. Trends Ecol Evol,2003,18:640-647
    107.Waage J K. and Mills N J. Biological control. P P.1992,421-430 in M. J.
    108.Crawley (Ed) Natural enemies. Blackwell Scientific Publications, Oxford,592
    109.Waldbauer G P, Cohen R W, Friedman S. Self-selection of an optimal nutrient mix from defined diets by larvae of the corn earworm, Heliothis zae (Boddie). Physiol Zool,1984,57:590-597
    110.Waldbauer G P and Friedman S. Self-selection of optimal diets by insects. Annu Rev of Entomol,1991,36:43-63
    111.Walgenbach D, Elliott N C, Kieckhefer R W. Constant and punctuating temperature effects on developmental rates and life stable statistics of the green bug (Homoptera: Aphididae). JEcon Entomol,1988,81:501-507
    112.Watt W B. Adaptive significance of pigment polymorphisms in Colias butterflies. I. Variation of melanin pigment in relation to hermoregulation. Evolution,1968,22: 437-458
    113.Woods H A, Harrison J F. Interpreting rejections of the beneficial acclimation hypothesis:when is physiological plasticity adaptive? Evolution,2002,56:1863-1866
    114.Wright E J, Laing J E. The effects of temperature on development, adult longevity and fecundity of Coleomegilla maculate lengi and its parasites. Perilitus coccinelliae. Proc. Entomol Soc Ontario,1978,109:33-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700