用户名: 密码: 验证码:
子流形几何中的刚性及变分问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在子流形几何中,刚性问题和变分问题是两类重要问题,被几何学家广泛研究。刚性问题可以通过各种拼挤(pinching)定理来反映。对变分问题,我们可以研究临界点的稳定性和Jacobi算子的特征值。在本文中,我们运用子流形几何研究中的一系列方法,研究了乘积流形中的极小子流形的刚性和稳定性,球面中线性Weingarten超曲面的稳定性和特征值问题,以及乘积流形到任意黎曼流形的稳定调和映照。主要结果有三个方面:
     首先,我们研究了Sm(1)×R中的紧致极小子流形的刚性。我们得到了一个Simons型等式,进而分别证明了在Ricci曲率和截面曲率的拼挤条件下,关于Sm(1)×R中的紧致无边极小子流形的拼挤定理。通过上述拼挤条件,我们推出极小子流形实际上位于Sm(1)×{t0}≌Sm(1)中。通过Ricci曲率的拼挤条件,我们刻画了Clifford极小超曲面。通过截面曲率的拼挤条件,我们刻画了Veronese子流形。
     其次,我们用泛函F=∫M(a+nH)dv在保体积变分下的临界点刻画了Sn+1(1)中满足(n-1)H2+aH=b的线性Weingarten超曲面,其中a,b是常数。我们计算了该泛函的第一变分公式和第二变分公式,证明了此类线性Weingarten超曲面是稳定的当且仅当它是全脐但非全测地的超曲面,这推广了关于球面中的常平均曲率和常数量曲率超曲面的稳定性结果。我们还得到了与该变分问题相关联的Jacobi算子的第一特征值和第二特征值的最优上界估计。
     最后,我们研究了乘积流形中的紧致极小子流形的稳定性。我们证明了一个关于M1×M2中的稳定紧致极小子流形的分类定理,其中M1是欧几里得空间中的紧致超曲面,其维数m1≥3且截面曲率KM1满足1/(?)m1-1≤Km11≤1,M2是任意黎曼流形。这推广了Torralbo和Urbano的关于Sm(r)×M中的稳定紧致极小子流形的分类结果。特别地,我们证明了,当外围空间是M是欧几里得空间中的m维(m≥3)紧致超曲面且截面曲率满足1/(?)M+1≤KM≤1时,M中不存在稳定的紧致无边极小子流形。
Rigidity and variational problems are two kinds of important problems in geometry of submanifolds, which are widely studied by many geometers. Rigidity can be reflected by various pinching theorems. For a variational problem, we can study stability of the critical points and estimate the eigenvalues of the Jacobi operator. In this dissertation, we use a series of methods in geometry of submanifolds to study rigidity and stability of minimal submanifolds in Riemannian product manifolds, stability and eigenvalues of lin-ear Weingarten hypersurfaces in a sphere, and stable harmonic maps from a Riemannian product manifold to any Riemannian manifold. The main results are the following three parts:
     Firstly, we study the rigidity of compact minimal submanifolds in Sm(1)×R. We obtain a Simons'type equation, and then we prove some pinching theorems by the Ricci curvature and the sectional curvature pinching conditions, respectively. By our pinch-ing conditions, we conclude that, the minimal submanifolds lie in Sm(1)×{t0}=Sm(1). By the Ricci curvature pinching condition, we characterize the Clifford minimal hyper-surfaces. By the sectional curvature pinching condition, we characterize the Veronese submanifolds.
     Secondly, we show that linear Weingarten hypersurfaces in Sn+1(1) satisfying (n-1)H2+aH=b, where a and b are constants, can be characterized as critical points of the functional F=∫M (a+nH) dv for volume-preserving variations. We compute the first and second variational formulae of this functional, and prove that such a linear Weingarten hypersurface is stable if and only if it is totally umbilical and non-totally geodesic. This generalizes the stability results about hypersurfaces with constant mean curvature or with constant scalar curvature. We also obtain optimal upper bounds for the first and second eigenvalues of the Jacobi operator corresponding to the variational problem.
     Finally, we study stability of compact minimal submanifolds in Riemannian product manifolds. We prove a classification theorem for stable compact minimal submanifolds in M1×M2, where M1is an m1-dimensional (m1≥3) compact hypersurface in Euclidean space with the sectional curvature Km1satisfying1/(?)m1-1≤KM1≤1, and M2is any Rie-mannian manifold. This generalizes the result of Torralbo and Urbano for stable compact minimal submanifolds in Sm(r)×M. In particular, we prove that, when the ambient s- pace M is an m-dimensional (m≥3) compact hypersurface in Euclidean space with the sectional curvature satisfying1(?)m+1≤KM≤1, there exist no stable compact minimal submanifolds in M.
引文
[1] Simons J. Minimal varieties in Riemannian manifolds. Ann. of Math.,1968,88(1):62–105.
    [2] Chern S S, do Carmo M, Kobayashi S. Minimal submanifolds of a sphere with second funda-mental form of constant length//Browder F E. Functional Analysis and Related Field. NewYork: Springer,1970:59–75.
    [3] Itoh T. On Veronese manifolds. J. Math. Soc. Japan,1975,27(3):497–506.
    [4] Itoh T. Addendum to my paper “On Veronese manifolds”. J. Math. Soc. Japan,1978,30(1):73–74.
    [5] Yau S T. Submanifolds with constant mean curvature II.. Amer. J. Math.,1975,97(1):76–100.
    [6] Ejiri N. Compact minimal submanifolds of a sphere with positive Ricci curvature. J. Math.Soc. Japan,1979,31(2):251–256.
    [7] Xu Hongwei, Tian Ling. A diferentiable sphere theorem inspired by rigidity of minimal sub-manifolds. Pacific J. Math.,2011,254(2):499–510.
    [8] Shen Yibing. Curvature pinching for three-dimensional minimal submanifolds in a sphere.Proc. Amer. Math. Soc.,1992,115(3):791–795.
    [9] Gauchman H. Minimal submanifolds of a sphere with bounded second fundamental form.Trans. Amer. Math. Soc.,1986,298(2):779–791.
    [10] Alencar H, do Carmo M. Hypersurfaces with constant mean curvature in spheres. Proc. Amer.Math. Soc.,1994,120(4):1223–1229.
    [11] Xu Hongwei. A rigidity theorem for submanifolds with parallel mean curvature in a sphere.Arch. Math.(Basel),1993,61(5):489–496.
    [12] Xu Hongwei, Fang Wang, Xiang Fei. A generalization of Gauchman’s rigidity theorem. PacificJ. Math.,2006,228(1):185–199.
    [13] Xu Hongwei, Huang Fei, Xiang Fei. An extrinsic rigidity theorem for submanifolds withparallel mean curvature in a sphere. Kodai Math. J.,2011,34(1):85–104.
    [14] Xu Hongwei, Gu Juanru. Rigidity of submanifolds with parallel mean curvature in space froms.2011. http://arxiv.org/abs/1105.2920v1.
    [15] Shen Chunli. A global pinching theorem of minimal hypersurfaces in the sphere. Proc. Amer.Math. Soc.,1989,105(1):192–198.
    [16] Hu Zejun, Li Haizhong. A global pinching theorem for compact surfaces in S3with constantmean curvature. Acta Math. Sinica (N.S.),1996,12(2):126–132. A Chinese summary appearsin Acta Math. Sinica40(1997). no.1,156.
    [17] Xu Hongwei. Ln/2-pinching theorems for submanifolds with parallel mean curvature in asphere. J. Math. Soc. Japan,1994,46(3):503–515.
    [18] Daniel B. Isometric immersions intoSn×RandHn×Rand applications to minimal surfaces.Trans. Amer. Math. Soc.,2009,361(12):6255–6282.
    [19] Dillen F, Fastenakels J, Veken J. Surfaces inS2×Rwith a canonical principal direction. Ann.Global Anal. Geom.,2009,35(4):381–396.
    [20] Dillen F, Fastenakels J, Veken J, et al. Constant angle surfaces inS2×R. Monatsh. Math.,2007,152(2):89–96.
    [21] Dillen F, Munteanu M I. Constant angle surfaces inH2×R. Bull. Braz. Math. Soc.(N.S.),2009,40(1):85–97.
    [22] Batista M H. Simons type equation inS2×RandH2×Rand applications. Ann. Inst. Fourier(Grenoble),2011,61(4):1299–1322(2012).
    [23] Chen Qun, Cui Qing. Normal scalar curvature and a pinching theorem inSm×RandHm×R.Sci. China Math.,2011,54(9):1977–1984.
    [24] Chen Daguang, Chen Gangyi, Chen Hang, et al. Constant angle surfaces inS3(1)×R. Bull.Belg. Math. Soc. Simon Stevin,2012,19(2):289–304.
    [25] Abresch U, Rosenberg H. A Hopf diferential for constant mean curvature surfaces in S2×Rand H2×R. Acta Math.,2004,193(2):141–174.
    [26] Alencar H, do Carmo M, Tribuzy R. A theorem of Hopf and the Cauchy-Riemann inequality.Comm. Anal. Geom.,2007,15(2):283–298.
    [27] Fetcu D, Rosenberg H. A note on surfaces with parallel mean curvature. C. R. Math. Acad.Sci. Paris,2011,349(21-22):1195–1197.
    [28] Chen Hang, Chen Gangyi, Li Haizhong. Some pinching theorems for minimal submanifoldsinSm(1)×R. Sci. China Math.,2012. http://dx.doi.org/10.1007/s11425–012–4556–y.
    [29] Reilly R C. Variational properties of functions of the mean curvatures for hypersurfaces inspace forms. J. Diferential Geometry,1973,8:465–477.
    [30] Reilly R C. On the first eigenvalue of the Laplacian for compact submanifolds of Euclideanspace. Comment. Math. Helv.,1977,52(4):525–533.
    [31] Cao Linfen, Li Haizhong. r-Minimal submanifolds in space forms. Ann. Global Anal. Geom.,2007,32(4):311–341.
    [32]曹林芬.子流形几何中的变分问题[D].北京:清华大学,2007.
    [33] Barbosa J L, do Carmo M. Stability of hypersurfaces with constant mean curvature. Math. Z.,1984,185(3):339–353.
    [34] Barbosa J L, do Carmo M, Eschenburg J. Stability of hypersurfaces of constant mean curvaturein Riemannian manifolds. Math. Z.,1988,197(1):123–138.
    [35] Alencar H, do Carmo M, Colares A G. Stable hypersurfaces with constant scalar curvature.Math. Z.,1993,213(1):117–131.
    [36] Barbosa J L, Colares A G. Stability of hypersurfaces with constant r-mean curvature. Ann.Glob. Anal. Geom.,1997,15(3):277–297.
    [37] Tang Zizhou, Yan Wenjiao. New examples of Willmore submanifolds in the unit sphere viaisoparametric functions. Ann. Global Anal. Geom.,2012,42(3):403–410.
    [38] Qian Chao, Tang Zizhou, Yan Wenjiao. New examples of Willmore submanifolds in the unitsphere via isoparametric functions, II. Ann. Global Anal. Geom,2013,43(1):47–62.
    [39] Tang Zizhou, Yan Wenjiao. Isoparametric foliation and Yau conjecture on the first eigenvalue.J. Diferential Geometry,2013,94:1–20.
    [40] Guo Zhen, Li Haizhong, Wang Changping. The second variational formula for Willmore sub-manifolds in Sn. Results Math.,2001,40(1-4):205–225.
    [41] Alencar H, Colares A G. Integral formulas for the r-mean curvature linearized operator of ahypersurface. Ann. Glob. Anal. Geom.,1998,16(3):203–220.
    [42] Cheng S Y, Yau S T. Hypersurfaces with constant scalar curvature. Ann. Global Anal. Geom.,1977,225(3):195–204.
    [43] Alencar H, do Carmo M, Rosenberg H. On the first eigenvalue of the linearized operator of ther-th mean curvature of a hypersurface. Ann. Glob. Anal. Geom.,1993,11(4):387–391.
    [44] Takahashi T. Minimal immersions of Riemannian manifolds. J. Math. Soc. Japan,1966,18:380–385.
    [45] Yau S T. Problem section//Yau S T. Seminar on Diferential Geometry. Princeton: PrincetonUniversity Press,1982:669–706.
    [46] Tang Zizhou, Xie Yuquan, Yan Wenjiao. Isoparametric foliation and Yau conjecture on the firsteigenvalue, II.2012. http://arxiv.org/abs/1211.2533v1.
    [47] Alencar H, Marques F, do Carmo M. Upper bounds for the first eigenvalue of the operator Lrand some applications. Illinois J. Math.,2001,45(3):851–863.
    [48] Al′as L J, Brasil A, Sousa L A M. A characterization of Cliford tori with constant scalarcurvature one by the first stability eigenvalue. Bull. Braz. Math. Soc.(N.S.),2004,35(2):165–175.
    [49] Grosjean J F. A Reilly inequality for some natural elliptic operators on hypersurfaces. Difer-ential Geom. Appl.,2000,13(3):267–276.
    [50] Wu Chuanxi. New characterizations of the Cliford tori and the Veronese surface. Arch. Math.(Basel),1993,61(3):277–284.
    [51] Perdomo O. First stability eigenvalue characterization of Cliford hypersurfaces. Proc. Amer.Math. Soc.,2002,130(11):3379–3384.
    [52] Al′as L J, Barros A, Brasil A. A spectral characterization of the H(r) torus by the first stabilityeigenvalue. Proc. Amer. Math. Soc.,2005,133(3):875–884.
    [53] Cheng Q M. First eigenvalue of a Jacobi operator of hypersurfaces with constant scalar curva-ture. Proc. Amer. Math. Soc.,2008,136(9):3309–3318.
    [54] Soufi A E, Ilias S. Second eigenvalue of Schro¨dinger operators and mean curvature. Commun.Math. Phys.,2000,208(3):761–770.
    [55] Li P, Yau S T. A new conformal invariant and its applications to the Willmore conjecture andthe first eigenvalue of compact surfaces. Invent. Math,1982,69(2):269–291.
    [56] Li Haizhong, Wang Xianfeng. Second eigenvalue of a Jacobi operator of hypersurfaces withconstant scalar curvature. Proc. Amer. Math. Soc.,2012,140(1):291–307.
    [57] Li Haizhong, Suh Y J, Wei Guoxin. Linear Weingarten hypersurfaces in a unit sphere., Bull.Korean Math. Soc.,2009,46(2):321–329.
    [58] Chen Hang, Wang Xianfeng. Stability and eigenvalue estimates of linear Weingarten hyper-surfaces in a sphere. J. Math. Anal. Appl.,2013,397(2):658–670.
    [59] Chern S S. Minimal submanifolds in a Riemannian manifold. University of Kansas, Depart-ment of Mathematics Technical Report19(New Series), Kan.: Univ. of Kansas Lawrence,1968: iii+58.
    [60]白正国,沈一兵,水乃翔,等.黎曼几何初步(修订版).北京:高等教育出版社,2004.
    [61] Lawson H B, Simons J. Stable currents and their application to global problems in real andcomplex geometry. Ann. of Math.,1973,98(3):427–450.
    [62] Ohnita Y. Stable minimal submanifolds in compact rank one symmetric spaces. Tohoku Math.J.,1986,38(2):199–217.
    [63] Li Haizhong. Some nonexistence theorems on stable minimal submanifolds. Colloq. Math.,1997,73(1):1–13.
    [64] Shen Yibing, He Qun. On stable currents and positively curved hypersurfaces. Proc. Amer.Math. Soc.,2001,129(1):237–246.
    [65] Hu Zejun, Wei Guoxin. On the nonexistence of stable minimal submanifolds and the Lawson-Simons conjecture. Colloq. Math.,2003,96(2):213–223.
    [66] Torralbo F, Urbano F. On stable compact minimal submanifolds.2010. http://arxiv.org/abs/1012.0679v1.
    [67] Chen Hang, Wang Xianfeng. On stable compact minimal submanifolds of Riemannian productmanifolds. J. Math. Anal. Appl.,2013,402(2):693–701.
    [68] Eschenburg J. Local convexity and nonnegative curvature—Gromov’s proof of the spheretheorem. Invent. Math.,1986,84(3):507–522.
    [69] Li Haizhong. Willmore submanifolds in a sphere. Math. Res. Lett.,2002,9(5-6):771–790.
    [70] Li Haizhong, Vrancken L. New examples of Willmore surfaces in Sn. Ann. Global Anal.Geom.,2003,23(3):205–225.
    [71] Ma Xiang, Wang Changping. Willmore surfaces of constant Mo¨bius curvature. Ann. GlobalAnal. Geom.,2007,32(3):297–310.
    [72] Guo Zhen, Li Haizhong, Wang Changping. The Mo¨bius characterizations of Willmore tori andVeronese submanifolds in the unit sphere. Pacific J. Math.,2009,241(2):227–242.
    [73] Ohnita Y. Stability of harmonic maps and standard minimal immersions. Tohoku Math. J.,1986,38(2):259–267.
    [74]彭家贵.极小子流形与调和映射的一些关系.数学年刊A辑(中文版),1984,5(1):85–90.
    [75]忻元龙.调和映照.上海:上海科学技术出版社,1995.
    [76] Xin Yuanlong. Some results on stable harmonic maps. Duke Math. J.,1980,47(3):609–613.
    [77] Leung P F. On the stability of harmonic maps//Knill R J, Kalka M, Sealey H C J. HarmonicMaps. Berlin: Springer,1982:122–129.
    [78] Leung P F. A note on stable harmonic maps. J. London Math. Soc.,1984,29(2):380–384.
    [79] Pan Yanglian. Some Nonexistence Theorems on Stable Harmonic-Mappings. Chinese AnnMath B,1982,3(4):515–518.
    [80] Pan Yanglian, Shen Yibing. Stability of harmonic maps and minimal immersions. Proc. Amer.Math. Soc.,1985,93(1):111–117.
    [81]沈一兵,潘养廉.椭球面的调和映照.数学物理学报,1986,6(1):71–75.
    [82] Howard R, Wei S W. Nonexistence of stable harmonic maps to and from certain homogeneousspaces and submanifolds of Euclidean space. Trans. Amer. Math. Soc.,1986,294(1):319–331.
    [83] Hu Hesheng, Pan Yanglian, Shen Yibing. Harmonic maps and a pinching theorem for positivelycurved hypersurfaces. Proc. Amer. Math. Soc.,1987,99(1):182–186.
    [84]吴传喜.关于稳定调和映照的一些结果.数学学报,1991,34(1):27–32.
    [85]吴传喜.关于稳定调和映照的一点注记.数学杂志,1991,11(1):72–76.
    [86] Li Anmin, Li Jimin. An intrinsic rigidity theorem for minimal submanifolds in a sphere. Arch.Math.(Basel),1992,58(6):582–594.
    [87] Li Haizhong. Curvature pinching for odd-dimensional minimal submanifolds in a sphere. Publ.Inst. Math.(Beograd)(N.S.),1993,53(67):122–132.
    [88] Erbacher J. Reduction of codimension of an isometric immersion. J. Diferential Geometry,1971,5:333–340.
    [89] Lawson H B. Local rigidity theorems for minimal hypersurfaces. Ann. of Math.(2),1969,89:187–197.
    [90] Hardy G H, Littlewood J E, Po′lya G. Inequalities.2nd ed. Cambridge: Cambridge Univ. Press,1952.
    [91]丘成桐,孙理察.微分几何讲义.北京:高等教育出版社,2004.
    [92] Montiel S, Ros A. Minimal immersions of surfaces by the first eigenfunctions and conformalarea. Invent. Math.,1986,83(1):153–166.
    [93] Perdomo O. On the average of the scalar curvature of minimal hypersurfaces of spheres withlow stability index. Illinois J. Math.,2004,48(2):559–565.
    [94] Urbano F. Minimal surfaces with low index in the three-dimensional sphere. Proc. Amer.Math. Soc.,1990,108(4):989–992.
    [95] Xin Yuanlong. An application of integral currents to the vanishing theorems. Sci. Sinica Ser.A,1984,27(3):233–241.
    [96] Smith R T. The second variation formula for harmonic mappings. Proc. Amer. Math. Soc.,1975,47:229–236.
    [97]伍鸿熙,沈纯理,虞言林.黎曼几何初步.北京:北京大学出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700